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Abstract: Pine wilt disease (PWD) has become a devastating disease that impacts China’s forest
management. It is of great significance to accurately predict PWD on a geospatial scale to prevent
its spread. Using the Cellular Automata (CA)–Markov model, this study predicts the occurrence
area of PWD in Anhui Province in 2030 based on PWD-relevant factors, such as weather, terrain,
population, and traffic. Using spatial autocorrelation analysis, direction analysis and other spatial
analysis methods, we analyze the change trend of occurrence data of PWD in 2000, 2010, 2020 and
2030, reveal the propagation law of PWD disasters in Anhui Province, and warn for future prevention
and control direction and measures. The results show the following: (1) the overall accuracy of the
CA–Markov model for PWD disaster prediction is 93.19%, in which the grid number accuracy is
95.19%, and the Kappa coefficient is 0.65. (2) In recent 20 years and the next 10 years, the occurrence
area of PWD in Anhui Province has a trend of first decreasing and then increasing. From 2000 to
2010, the occurrence area of disasters has a downward trend. From 2010 to 2020, the disaster area has
increased rapidly, with an annual growth rate of 140%. In the next 10 years, the annual growth rate of
disasters will slow down, and the occurrence area of PWD will reach 270,632 ha. (3) In 2000 and 2010,
the spatial aggregation and directional distribution characteristics of the map spots of the PWD pine
forest were significant. In 2020 and 2030, the spatial aggregation is still significant after the expansion
of the susceptible area, but the directional distribution is no longer significant. (4) The PWD center in
Anhui Province shows a significant trend of moving southward. From 2010 to 2020, the PWD center
moved from Chuzhou to Anqing. (5) PWD mainly occurs in the north slope area below 700 m above
sea level and below 20◦ slope in Anhui Province. The prediction shows that the PWD disaster will
break through the traditional suitable area in the next 10 years, and the distribution range will spread
to high altitude, high slope, and sunny slope. The results of this study can provide scientific support
for the prevention and control of PWD in the region and help the effective control of PWD in China.

Keywords: pine wilt disease; CA–Markov model; prediction; spatio-temporal dynamics

1. Introduction

PWD is caused by the pinewood nematode Bursaphelenchus xylophilus, known as the
“cancer” of pine trees (Pinus spp.), and is the most dangerous and destructive disease in the
forest ecosystem in China and Southeast Asia. It has strong diffusivity and destructiveness
and is one of the diseases that causes the most significant forestry losses in China [1]. It is
presumed that PWD originated in North America and was spread to Japan in the early 20th
century, and it is now outbreaking in pine forests around the world [2]. China quarantined
PWD for the first time in Nanjing in 1982, and PWD has since infested 19 provinces, which
has caused direct economic losses and ecological service value losses of up to hundreds
of billions of yuan in the past 40 years [3,4]. PWD has become a major threat to China’s
ecological security, biosafety, and economic development. It is significant for disaster
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prevention, control, and loss reduction to carry out fine-grained PWD area prediction and
early warning of PWD in large areas.

The growth and development of pests and disease pathogens relate to their living en-
vironment. The traditional pest and disease prediction mainly use their life history rhythm
dependence on meteorological elements. For example, disasters can occur when environ-
mental elements such as temperature, precipitation, or humidity meet the developmental
conditions of pests or pathogens. Researchers have predicted the probability and area of
disasters according to the measured or predicted environmental element data [5–8]. With
the increasing trend of global warming, climate change causes a series of chain reactions
such as temperature, precipitation, and humidity, which will have a direct impact on the
distribution of vegetation [9,10], and indirectly affects pest pathogens and invasive plants
by affecting harmful species such as insects that inhabit the vegetation. Therefore, it is
becoming increasingly difficult to predict pest outbreaks based on traditional methods
using only meteorological elements [10–16]. In order to cope with the uncertainty chal-
lenge of climate change on the prediction of vegetation diseases and insect pests, niche
models [17–20] and machine learning models [21–28] have been used to predict the spatial
and temporal prediction of vegetation diseases and insect pests in multi-situation and
multi-factor conditions and satisfactory accuracy has been obtained.

PWD prediction has received more and more attention because it can effectively guide
disaster prevention and formulate preventive measures in advance. Using satellite or
unmanned aerial vehicle remote sensing data to identify the diseased trees in the early
stage of PWD infection at the regional or individual scale and mapping the distribution
of the infected trees can achieve early disease control [29,30]. However, this is still an
overly passive and less effective early intervention. According to the influencing factors
of PWD infection and transmission, it is an effective early warning and control method
to predict the possible infection area [31]. This method can let people know the possible
occurrence area of the disease earlier, and help the forestry management department to
formulate the disease prevention and control measures in advance, so as to avoid more
pine trees being destroyed. Based on traditional climate predictions, PWD is mainly
concentrated in eastern and southern China, with the colder north being less suitable
for its life [32]. However, according to the Chinese government’s monitoring data, the
epidemic area of pine wilt nematode disease has developed in Jilin and Liaoning provinces
in northern China, with the northernmost point located in Kaiyuan, Tieling, Liaoning
Province [4]. Therefore, it is difficult to accurately predict the habitat of pests only by using
the prediction method of meteorological elements. At present, the CART model [33,34],
CLIMEX model [35,36], evapotranspiration model [37], climate scenario simulation [38,39],
spatiotemporal network model [40,41], MaxEnt model [42,43], random forest model [31],
spatially explicit model [44], disaster spread model [45–48] and other methods [49–51] are
mainly used to predict PWD based on meteorological and habitat factors to predict and
simulate the disaster-prone areas. However, due to less consideration of biological and
human factors, obtaining superior simulation accuracy and guiding PWD prevention and
control is challenging.

This research primarily concentrates on disease mechanism, the interaction between
nematodes and vector beetles, ecological impact, prevention strategies, risk area based
on meteorological components, and habitat prediction—biological, natural, and human
activity all impact PWD catastrophes. As a result, it is currently a significant problem that
needs to be solved, and it will also be the primary focus of PWD research in the future
The objectives of this study are the following: (1) based on the field survey data collected
by forestry patches in Anhui Province in 2000, 2010, and 2020, the CA–Markov model
will be used to predict the occurrence of PWD in Anhui Province in 2030; (2) to analyze
the occurrence, distribution, and characteristics of the disease in these four periods. This
study is of great significance to grasp the spatio-temporal distribution, change the law, and
future development trend of PWD in Anhui Province, scientifically and effectively carry
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out epidemic prevention and control, reduce the risk of epidemic spread and reduce the
losses caused by disasters.

2. Materials and Methods
2.1. Study Area

Anhui is located in East China, belonging to the lower reaches of the Yangtze River
economic belt and the hinterland of the Yangtze River Delta. Its geographical location is
114◦54′–119◦37′ E and 29◦41′–34◦38′ N, with a total area of 140,100 km2. In terms of climate,
it belongs to the transitional area between warm temperate zone and subtropical zone. The
north of Huaihe River belongs to warm temperate zone semi-humid monsoon climate,
and the south of Huaihe River belongs to sub-hot-humid monsoon climate. The annual
frost-free period is 200–250 days, the accumulated temperature above 10 ◦C is 4600–5300
◦C, the annual average temperature is 14–17 ◦C, and the annual average precipitation is
800–1800 mm, which is characterized by more in the south and less in the north, and more
in the mountains and less in the plains and hills (Figure 1). The province has a forest area
of 4.17 × 106 ha, with a forest coverage rate of 30.22%.
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PWD was first discovered in Anhui Province in 1988. As the environmental conditions
in Anhui Province are very suitable for the prevalence and spread of PWD, there is a
widespread distribution of PWD in Anhui Province. By the end of 2020, the total area of
PWD is 99,603 ha, and 77.01 × 104 infected pines are found in Anhui Province.

2.2. Data Acquisition
2.2.1. Distribution of Pine Forest and PWD Data

The data on the distribution of pine forests and the occurrence of PWD of Anhui
Province are vector data at chart patch level, which are from the field survey of counties
summarized by the Anhui Forestry Administration in 2000, 2010 and 2020, respectively,
and the data format is shapefile (Figure 2). These data are used for the risk forecast of the
occurrence of PWD of Anhui Province.
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2.2.2. Normalized Vegetation Index (NDVI)

NDVI comes from Google Earth Engine (GEE) platform (https://earthengine.google.
com) (accessed on 4 February 2021) Landsat5 and Landsat-8 OLI 32-Day data have a spatial
resolution of 30 m and a temporal resolution of 32 d. The time of pine tree discoloration
caused by PWD in the study area is from November of the current year to February of
the next year. Therefore, the NDVI data collected the average number of November and
December of the current year in 2000, 2010 and 2020, and January and February of the
next year.

2.2.3. DEM

DEM comes from Geospatial Data Cloud (https://www.gscloud.cn/) (accessed on
4 February 2021) ASTER GDEM V3 product. The spatial resolution is 30 m, and the data
format is TIFF.

2.2.4. Meteorological Data

The raster data of meteorological elements are derived from the monthly climate and
water balance dataset of the global land surface (TerraClimate). The spatial resolution
of the raster is 5000 m, the temporal resolution is month, and the data format is TIFF.
The meteorological data include the monthly average wind speed, monthly maximum
temperature, and monthly accumulated rainfall in 2000, 2010, and 2020. The data of
sunshine hours come from National Meteorological Information Center (http://data.cma.
cn/) (accessed on 4 February 2021), using the Kriging difference method to obtain the raster
data, and then calculate the meteorological data of each county. Since the short-distance
transmission of PWD mainly depends on the vector insect Monochamus alternatus Hope

https://earthengine.google.com
https://earthengine.google.com
https://www.gscloud.cn/
http://data.cma.cn/
http://data.cma.cn/
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(Coleoptera Cerambycidae) (Japanese pine sawyer beetle) [52], the dormancy period of
Monochamus alternatus Hope is from October of the current year to March of the next
year [53]; therefore, the mean value of each meteorological factor from April to September
of each year is taken as the explanation factor of meteorological elements in this study. In
order to keep consistent with the spatial resolution of land use data and NDVI data in the
study area, the spatial resolution of meteorological data grid is uniformly resampled to
30 m.

2.2.5. Population Distribution Data

Population and GDP distribution data comes from Global Change Research Data
Publishing & Repository (http://www.geodoi.ac.cn/) (accessed on 4 February 2021), with
a collection cycle of every five years. The nationwide grid data of 2000, 2010 and 2020 are
obtained, respectively. The grid spatial resolution is 1 km, and the data format is TIFF. The
Anhui Provincial boundary is used to cut the grid, and the spatial resolution of the grid is
resampled to 30 m to be consistent with NDVI.

2.2.6. Road Distribution Data

Road distribution data comes from the Geographic Data Platform of College of Urban
and Environmental Science, Peking University (http://geodata.pku.edu.cn) (accessed on
4 February 2021), the data format is shapefile, including national roads, provincial roads,
county roads, township roads, expressways, railways, and urban level-1, level-2, level-3,
and level-4 roads. The collected time is 2000, 2010 and 2020, respectively.

2.3. Methodology

In this study, CA–Markov model is used to predict the occurrence of PWD in Anhui
Province, and spatial analysis method is used to analyze the spatial and temporal distribu-
tion. The overall technical roadmap is shown in Figure 3 and Figure S1. Firstly, Markov
transformation and multi-criteria evaluation (MCE) were carried out by using the patch
data (grid) of pine forest and PWD disasters in 2000 and 2010, to obtain the disaster transfer
(change) area, probability matrix and the suitability atlas of PWD prediction in 2000 and
2010, in Anhui Province. Secondly, CA–Markov prediction is used to obtain the prediction
map of PWD occurrence in 2020. The grid quantity accuracy and Kappa coefficient accuracy
of the prediction map are verified by using the patch data (grid) of pine forest and PWD
disaster occurrence in 2020 and the field survey data. If the accuracy is low (Kappa < 0.4),
the influencing factors and weights of PWD occurrence need to be re-evaluated, and the
above two steps should be repeated. If the accuracy meets the actual application require-
ments, it shall be considered that CA–Markov model can be used to predict the occurrence
of PWD, and the influencing factors and weights of PWD are reasonable, which can be
used to predict the next decade (2030). Thirdly, based on the patch data (grid) of pine forest
and PWD disasters in 2010 and 2020, Markov transformation and MEC evaluation are also
carried out to obtain the suitability atlas of PWD prediction in 2020, then Markov transfer
(change) area and probability matrix are conducted, respectively, and further, CA–Markov
prediction is used to obtain the prediction map of PWD occurrence in 2030; Finally, the
spatial analysis of the occurrence data of PWD in the four periods (2000, 2010, 2020 and
2030) is carried out to reveal the propagation law of the disaster in Anhui Province and
warn the future prevention and control direction and measures.

http://www.geodoi.ac.cn/
http://geodata.pku.edu.cn
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2.3.1. CA–Markov Model

CA model is a spatiotemporal dynamic simulation model based on discontinuity,
which is generated by some very simple local rules [54]. CA system generally includes four
elements [55], i.e., unit, state, neighborhood range and conversion rule, whose formula is:

St+1 = f (St, N) (1)

where S is the state set of discrete and finite units (i.e., cells), N is the neighborhood of cells,
t and t + 1 represent two different moments, and f is the cell state conversion rule.

Markov model is a model to study the probability of things changing from one state
to another with the relevant knowledge of probability theory, and predict the future state
of things. The model focuses on the prediction of future quantity.

St+1 = St × Pij (2)

where St + 1 is the state of things in the moment of t + 1, St is the state of things in the
moment of t, and Pij is the probability that a thing changes from one state to another.

CA–Markov model: The prediction of the random change state of Markov model is
mainly a quantitative prediction, not spatial prediction; CA model has the concept of spatial
information and the ability to simulate dynamic evolution; CA–Markov model combines
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the Markov model and CA model, and it highlights the advantages of the two, which can
better simulate the spatiotemporal changing pattern of things.

In this study, the states of random change in the CA–Markov model are divided into
three states: healthy pine forest, infected pine forest (pine forest infected with PWD) and
non-pine forest. In this way, the three states of pine forest can be predicted both in time
and space.

(1) Markov Transition Matrix

The Markov transfer area matrix reflects the amount of area interconverted between
healthy pine forests, affected pine forests, and non-pine forests in different periods and
the probability of interconversion, which is generated based on the transfer area matrix.
The transfer matrix is the basis of the Markov model for prediction. In this study, the
small-group data (raster) of pine forest and pine wood nematode occurrence in Anhui
Province in 2000, 2010, and 2020 were used as input data, and Markov transfer matrices
were generated for 2000–2010 and 2010–2020 using the Markov module of IDRISI software,
respectively (Table 1).

Table 1. Markov transition probability matrix.

Time
2010

Time
2020

States of
Pine Forest

Healthy
Pine Forest

Infected
Pine Forest

Non-Pine
Forest

States of
Pine Forest

Healthy
Pine Forest

Infected
Pine Forest

Non-Pine
Forest

2000

healthy
pine forest 0.8472 0.1528 0

2010

healthy
pine forest 0.7682 0.2318 0

infected
pine forest 0 0 1 infected

pine forest 0 0 1
non-pine

forest 0.065 0.0125 0.9225 non-pine
forest 0.0439 0.0202 0.9359

(2) Designation of suitability Atlas

Suitability atlas is a spatial representation of the suitability of pine forest state transfor-
mation, that is, the comprehensive transformation rule of healthy pine forest, infected pine
forest and non-pine forest, which refers to the degree of different types to which the region
is suitable for development in a certain period of time in the future. When making the
suitability atlas, it is necessary to consider two factors, limiting conditions and influencing
conditions, in which the limiting factors specify whether pine forest state changes can occur
in the region, and the influencing factors determine the change trend of suitable pine forest
state, which is a continuous process.

According to the state of healthy pine forest, infected pine forest and non-pine forest,
set the limiting conditions and influencing conditions, respectively, to make the suitability
atlas, and then combine the suitability atlas to generate the model-readable suitability atlas
(Figure 4). The multi-criteria evaluation (MCE) model is used to set the limiting factors and
influencing factors of the suitability atlas (Table 2). The limiting factor of the infected pine
forest (pine forest infected with PWD) is the construction land (from the artificial surface in
the land use map), that is, PWD is unlikely to occur in this land type; the influencing factors
are NDVI (average value in November and December of the current year and January
and February of the next year), average wind speed, solar radiation intensity, population
density, average relative humidity, average rainfall, maximum temperature, DEM, and
distance from the road. The limiting factors of “healthy pine forest” and “non-pine forest”
are all set with construction land. The influencing factors are NDVI and DEM, with weights
of 0.6 and 0.4, respectively. The three pine forest states of healthy pine forest, infected pine
forest and non-pine forest are transformed into each other according to the conditions set
in Table 2 (i.e., limiting factors, influencing factors, functional relationships, and weights).
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Figure 4. Pine state suitability atlas (A,D) are non-healthy pine forests in 2010 and 2020, respectively;
(B,E) are health pine forests in 2010 and 2020, respectively; (C,F) are non-pine forest in 2010 and
2020, respectively.

Table 2. The elements and weights table of PWD suitability atlas.

Limiting Factors Influencing Factors Functional Relationships Weights

Building up NDVI Diminishing—J Shape 0.205
/ Average wind speed Diminishing—Sigmoidal 0.203
/ Solar radiation intensity Diminishing—Sigmoidal 0.104
/ Population density Diminishing—J Shape 0.073
/ Average relative humidity Diminishing—J Shape 0.052
/ Average rainfall Diminishing—Sigmoidal 0.034
/ Maximum temperature Diminishing—Sigmoidal 0.032
/ DEM Diminishing—Sigmoidal 0.007
/ Distance from the road Diminishing—Sigmoidal 0.29
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(3) CA–Markov Prediction

CA–Markov prediction is based on the transition probability matrix, area matrix and
suitability atlas of “pine forest state” of healthy pine forest, infected pine forest, and non-
pine forest. Firstly, according to the transition probability matrix and area matrix of “pine
forest state” in 2000 and 2010 and the 2010 suitability atlas, the occurrence of PWD in
2020 (Figure 5) is predicted, and the accuracy is verified according to the true value of the
investigation of PWD in 2020, so as to evaluate whether the model can be used in this study
and verify the rationality of the suitability atlas. After verifying that the model is usable
and the suitability atlas is reasonable, based on the transition probability matrix and area
matrix of “pine forest state” in 2010 and 2020 and the suitability atlas in 2020 as input data,
the disaster occurrence in 2030 is predicted. In the prediction process, the CA–Markov
model has two cycles, that is, the PWD in 2020 is predicted based on the relevant data
in 2000 and 2010, and then the occurrence distribution map of PWD in 2030 is predicted
based on the relevant data in 2010 and 2020, The setting of the number of cycles depends
on the time interval between the base period year and the forecast year, which is usually
a multiple of the study period interval. The research periods of this paper are 2000, 2010,
2020 and 2030, the time interval is 10, and the cycle number is set as 1, that is, the model is
run at an interval of 10 years.
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(4) Simulation Accuracy Verification

The grid number error and error matrix (or “confusion matrix”) are used to verify the
simulation accuracy.

ri =

∣∣∣∣Sim − Sin
Sim

∣∣∣∣× 100%, (3)

where ri is the grid number error of class i, Sim is the actual number of pixels of class i, and
Sin is the number of simulated pixels of class i.



Forests 2022, 13, 1736 10 of 23

The basic statistical indicators of the error matrix are: Overall accuracy (OA), User
accuracy (UA), Product accuracy (PA), and Kappa coefficient (Kappa).

OA =
n

∑
i=1

xii/N (4)

Kαppα =

N
r
∑

i=1
xii −

r
∑

i=1
(xi+x+i)

N2 −
r
∑

i=1
xi+x+i

(5)

where r is the total number of columns in the error matrix (i.e., the total number of cate-
gories); xii is the number of pixels on the i row and i column of the error matrix (i.e., the
number of analog types is the same as the real type, which is generally located on the
diagonal of the error matrix); xi+ and x+i are the sum of i row (analog type) and i column
(real category), respectively; and N is the total number of samples. According to pertinent
study [56], simulation accuracy can be evaluated according to Kappa. If Kappa is less than
0.4, it indicates that the simulation accuracy is too low, and if it is greater than 0.60, the
simulation accuracy is high.

The result shows that the numerical accuracy error of disaster simulation grid is 4.81%,
the OA is 93.19%, and the Kappa is 0.65. The comprehensive analysis shows that the
CA–Markov model has high simulation accuracy for PWD in Anhui Province in 2020, and
can be used to predict and simulate the occurrence of PWD in 2030. The prediction results
are shown in Figure 6.
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2.3.2. Directional Distribution

D. Welty Lefever proposed the directional distribution (standard deviation ellipse)
algorithm, which expressed the spatial distribution trend of samples with parameters such
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as ellipse center and rotation angle in 1926. In this study, the standard deviation ellipse
algorithm was used to reveal the spatial distribution characteristics of PWD infection spots.
The formulas of standard deviation ellipse are:

SDEx =

√
∑n

i=1 (xi − X)
2

n
, (6)

SDEy =

√
∑n

i=1 (yi −Y)2

n
, (7)

where xi and yi are the spatial coordinates of each element;
{

X, Y
}

is the arithmetic mean
center of the element; SDEx and SDEy are calculated variances of the ellipse; and n is the
total number of elements. This study is the number of pine forest patch infected by PWD in
each stage.

tanθ =
A + B

C
, (8)

A =
(
∑a

i=1 x̃2 −∑a
i=1 ỹ2

)
, (9)

B =

√(
∑a

i=1 x̃2 −∑a
i=1 ỹ2

)2
+ 4
(
∑a

i=1 x̃ỹ
)2

, (10)

C = 2∑a
i=1 x̃ỹ, (11)

where θ refers to the clockwise rotation angle with the x-axis as the criterion and the true
north (12 o’clock direction) as 0◦, that is, the long axis direction of the standard deviation
ellipse; and x̃i and ỹi are the differences between the average center and x-axis and y-axis
coordinates of each patch.

The formula for calculating the standard deviation of x-axis and y-axis is as follows:

δx =
√

2

√
∑n

i=1(x̃icosθ − ỹisinθ)2

n
, (12)

δy =
√

2

√
∑n

i=1(x̃isinθ + ỹicosθ)2

n
, (13)

where δx and δy are the standard deviations of the X, Y axis.

s =
x
δx

+
y
δy

, (14)

where s is the confidence value; we can query the chi square probability table according to
the number of elements. In spatial statistics, the direction of the ellipse is determined by
the long and short semi-axes. The greater the oblateness of the ellipse, that is, the difference
between the long and short semi-axes, indicating that the more obvious the directionality
of the spatial distribution of the data, the higher the degree of aggregation and, on the
contrary, the greater the degree of dispersion.

In this study, the direction distribution (standard deviation ellipse) tool in ArcGIS 10.3
software was used to analyze the direction trend of PWD infection spots in 2000, 2010, 2020
and 2030, that is, the major axis, minor axis, and oblateness of ellipse within 68% of the
elements of PWD infection spots in each period were calculated according to the model.

2.3.3. Spatial Autocorrelation Analysis Method

Spatial autocorrelation analysis method refers to the correlation degree between a
certain geographical phenomenon or an attribute value in a certain spatial region and
the same phenomenon or attribute value in adjacent spatial regions [57]. Global spatial
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autocorrelation mainly studies the global spatial characteristics of attribute values, it is
used to determine whether a phenomenon has spatial correlation. Moran’s I is usually
used as the spatial autocorrelation index [58,59], as shown in Formula (15):

I =
n∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 wij∑n

j=1(xi − x)2 , (15)

where I is the overall Moran index, n is the total number of spots of pine forest infected
by PWD at each stage, wij is the spatial weight element value, xi and xj are the areas of
infected spots of PWD, and x is the average area of pine forest spots infected by PWD at
each stage.

In this study, ArcGIS 10.3 software was used to analyze the global spatial autocorrela-
tion of the infected spots of PWD, and to clarify the spatial distribution characteristics and
spatial dependence of the infected spots of pine forest.

2.3.4. Topographic Analysis

(1) The influence of altitude on the distribution of pine trees is mainly reflected in the
temperature and light conditions. In high altitude areas, the temperature is low and the soil
is poor, which is not suitable for the growth of pine trees. Similarly, the relationship between
PWD and altitude shows the same trend. When the altitude is less than 400 m, PWD occurs
seriously; when the altitude is between 400–700 m, PWD occurs; when the altitude is more
than 700 m, dead trees caused by PWD are rarely seen [60]. Therefore, combined with
previous studies and field investigations, the altitude of pine forest distribution in the study
area is divided into 15 intervals at an interval of 50 m.

(2) The impact of slope gradient on the distribution area of PWD is reflected in the
aggregation and loss rate of soil nutrients, water content and other substances, which may
affect the distribution or growth status of pine forests, due to inappropriate conditions,
and then affect the spread of PWD. This study uses ArcGIS software to calculate the slope
grid based on DEM data. Because the distribution gradient of pine forest in the study area
is 0–50◦, this study divides the slope of PWD in the study area into 5 intervals with an
interval of 10◦.

3. Results

Based on the spot survey of pine forest and PWD in Anhui Province in 2000, 2010
and 2020, the occurrence and spread of disasters in 2030 were predicted and simulated by
using the CA–Markov model, and the spatial-temporal dynamic changes and distribution
characteristics of disaster distribution in each period were analyzed.

3.1. Spatiotemporal Dynamic Changes in PWD

In the last 20 years, the occurrence area of PWD in Anhui Province has shown a trend
of first decreasing and then increasing (Figure 5). After 2010, it witnessed a large outbreak
trend. The disaster area increased rapidly, with an annual growth rate of 140%. By 2020,
the disaster area had reached 29 times that of 2010. As the disaster base in 2020 is large, the
annual growth rate of disaster (11%) in the next 10 years will slow down, but the growth
trend is still rapid, and the occurrence area in 2030 will be 2.7 times that in 2020.

According to Figures 6 and 7, the infected pine forests are widely distributed in the
south of the study area, especially in the southwest, and there are many in Anqing, Lu’an,
Chuzhou, and Xuancheng. The counties and districts with distribution of infected pine
forests increased from 15, in 2000, to 47, in 2020 (see in Supplementary Table S1), showing
an explosive growth. According to the forecast, it may reach 57 in 2030, covering almost all
pine forest distribution counties (districts) in Anhui Province.
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Figure 7. Spatial distribution of PWD in Anhui Province (superposition of 4 periods).

3.2. Spatial Autocorrelation Characteristics of PWD

It can be seen from Figure 8 and Table 3 that the overall Moran’s I index in the
distribution area of PWD in each year is greater than 0, and all of them pass the test
of p value (≥1.96), indicating that the patches of PWD in each year presents a trend of
concentrated distribution in space. In terms of time, Moran’s I and z-score first increased
and then decreased, with the strongest in 2020. This shows that the occurrence areas of
PWD in 2000, 2010 and 2020 are relatively concentrated, and there is a relatively clear
source of occurrence, rather than a scattered disorderly dot-like occurrence, which is more
conducive to post-disaster prevention and control. The further spread of the epidemic can
be controlled by cutting down and destroying the infected trees. In 2030, the occurrence
area of PWD still showed a trend of agglomeration. However, due to the large occurrence
area and large diffusion range, the aggregation degree decreased compared with the first
three stages.
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Table 3. Spatial autocorrelation Moran’s I report of PWD distribution in each year.

Years Moran’s I Z-Score p Value

2000 0.019187 8.610313 0.000000
2010 0.036988 6.207085 0.000000
2020 0.043532 100.330302 0.000000
2030 0.012793 25.764980 0.000000

3.3. Characteristics of Directional Distribution and Center Movement of PWD

It can be seen from Figure 9 that the spatial distribution of the infected spots of PWD
in 2000 and 2010 has significant directionality, which is northwest–southeast and northeast–
southwest, respectively. With the continuous spread of the disease, the occurrence area and
scope of PWD in 2020 and 2030 are larger than those in the previous two periods, and the
spatial distribution directionality of the infected spots is gradually weakened. By 2030, the
standard deviation ellipse is approximately circular.
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Figure 9. Map of directional distribution and center movement of PWD in different periods.

As seen in Figure 9, in the past 20 years, the distribution center of PWD has a trend of
moving southward. From 2000 to 2010, the disease occurrence center moved from inside
Chuzhou to its northwest. From 2010 to 2020, the occurrence area changed significantly,
that is, from Chuzhou to Anqing. By 2030, the occurrence area of PWD has further spread,
and the focus of the disaster area is still in Anqing.
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3.4. Distribution Characteristics of PWD According to Topographic Conditions
3.4.1. PWD Distribution along Elevation

According to Figure 10, by 2020, PWD occurs in the area below 700 m above sea level,
and the frequency of PWD below 300 m is very high, with frequency values of 1.07% and
approximately 0.00%, respectively. Therefore, 700 m can be regarded as the upper edge of
the spatial distribution of PWD. Within the range of 0–700 m above sea level, the interval
with the highest distribution frequency is 50–100 m, followed by 0–50 m and 100–150 m,
with the frequencies of 29.30%, 17.89% and 13.86%, respectively. The three intervals account
for 61.04% in total, indicating that nearly two-thirds of PWDs are distributed in the vertical
space of 150 m, indicating that the spatial pattern of PWD and pine forest distribution is
restricted by topographic factors such as altitude. Above 100 m, the distribution of PWD
gradually decreases with the increase in altitude, especially in the area above 450 m, there is
a sharp change trend. The prediction shows that the upper edge of the spatial distribution
of PWD will break through 700 m in 2030. With the increase in altitude, the distribution
area of the infected pine forest will gradually decrease.
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Figure 10. Statistics of vertical distribution of PWD along altitude.

Based on the data of the distribution of infected pine forests with altitude from 2000
to 2030, it is found that with the passage of time, the distribution altitude of PWD has
gradually climbed, and the upward trend has become increasingly prominent.

3.4.2. PWD Distribution along Slope Gradient

According to Table 4, the proportion below 10◦ accounts for 53.16%, taking up the
largest proportion; 10–20◦ accounts for 34.31%, 20–30◦ accounts for 11.37%, and 30–40◦

accounts for 1.09%. It can be seen that the slope condition in the region is more conducive
to the growth and distribution of PWD, and it is not the main factor limiting the spread of
PWD. With the passage of time, the average gradient of the distribution of infected pine
forests has increased, especially after 2010, and the proportion of the distribution within
10◦ has decreased significantly. In 2030, the distribution of infected pine forests within 10◦
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will account for less than 50%, indicating that with the influence of climate warming and
other factors, the suitable range of PWD has expanded.

Table 4. Distribution area of PWD along slope gradient in different years.

Year
Distribution Area of PWD on Different Grade Slope/ha

1 2 3 4 5 Total

2000 7066 665 126 7857
2010 3190 206 43 3440
2020 64,695 26,884 7385 640 0.41 99,605
2030 127,888 103,165 35,824 3509 245 270,632
Total 202,839 130,920 43,378 4149 245 381,532

3.4.3. Distribution of PWD along Aspect

Table 5 shows that there are significant differences in the area distribution of infected
pine forests in each aspect. Among them, the north slope accounts for 17.62%, with the
highest proportion; the northwest slope accounts for 15.17%, holding the second highest;
and the east slope and southeast slope account for 8.09% and 7.32%, respectively. It can be
seen that the slope conditions in the region have a certain impact on the distribution of PWD.
Sunshine in sunny slope is relatively abundant, which is more conducive to the spread of
PWD. Compared with 2000, the proportion of infected pine forests in sunny slope increases
in 2020. The forecast shows that the proportion of infected pine forests on sunny slope will
further increase in 2030, and the proportion on shady slope will decrease significantly.

Table 5. Distribution area of PWD along aspect in each year in the study area.

Year
Distribution Area of PWD on Different Grade Aspect/ha

North Northeast East Southeast South Southwest West Northwest Total

2000 1229 864 618 481 841 1094 1500 1231 7857
2010 595 427 211 285 344 456 526 597 3440
2020 17,718 12,083 8145 7349 10,879 13,677 14,761 14,993 99,605
2030 32,116 22,449 16,676 28,875 40,058 42,158 45,328 42,972 270,632
Total 51,658 35,822 25,649 36,990 52,122 57,384 62,115 59,792 381,533

3.5. Relationship between the Occurrence Area and Road of PWD

PWB (Monochamus alternatus) is the vector of PWD. During the transportation of wood
or infected wood, PWB carrying the disease source of PWD will migrate to both sides of
the transportation road [61], which will also cause PWD to spread along both sides of the
road. By analyzing the buffer zone of the same grade roads of and superimposing the PWD
map in each period, the infected area within different road distances (Figures 11 and 12) is
counted, and the Pearson correlation analysis method is used to quantitatively analyze the
relationship between the occurrence area of PWD and road distance.

Figure 12 shows that the occurrence area of PWD on both sides of provincial and
county roads is the largest within 800–1000 m away from the highway, and the infected
area on both sides of township roads decreases gradually. While the infected area on both
sides of township roads increases with the increase in distance, which may be related to the
migration distance of PWB, and is similar to the research conclusion of Xiao [62]; that is,
the migration distance of adults of PWB can generally reach 1.0–2.4 km.
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Figure 12. Relationship between occurrence area of PWD per unit length of road and distance of road
in 2020.

In order to compare the occurrence area of PWD in different types of highways, the
total area in different distances and the total length of different grades of highways are
used to obtain the occurrence area of PWD in unit distance of different types of highways.
Figure 12 shows that the occurrence area of PWD in unit length of township roads is the
largest, followed by county roads, and the smallest is provincial roads. The infected area
of township roads increases with the increase in distance. In combination with Table 6,
there is a significant correlation between the occurrence area of PWD and township roads,
and the correlation is 0.896 and 0.950, respectively. This may be mainly because PWB may
escape, or some infected branches and leaves may fall during the transportation of wood or
infected wood on low-grade roads, and then the epidemic will spread along the way. With
the increase in highway grade, the higher requirements on transport vehicles and goods
appearance (such as the goods should be wrapped by tarpaulins) leads to the reduction
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in the number of escaping PWB, which may also be related to fewer vehicles transporting
wood or infected wood on high-grade roads.

Table 6. Correlation analysis between PWD area and road distance.

Road Type 2020 Correlation 2030 Correlation

Provincial road 0.491 0.626
County Road 0.392 0.270
Country road 0.896 ** 0.950 **

** indicates a significant correlation at the 0.01 level (two-tailed).

4. Discussion
4.1. Research Contributions

Based on the spot patch data of pine forest and PWD survey, this study creatively
applied the CA–Markov model to forest disease prediction research, and realized the patch-
level PWD occurrence prediction mapping in a province. The CA–Markov model combines
all the advantages of the Cellular Automata model (CA) and the Markov model. It was first
introduced into the field of geoscience by Tobler [63]. After continuous development, it is
now widely used in land use/land cover (LULC) [64–68] and the study of urban landscape
pattern evolution and prediction [69]. At present, there is a lack of research on the prediction
of PWD, and the prediction of large-scale disease suitable areas [43] has been unable to meet
the needs of precise and efficient prevention and control of multi-point frequently-occurring
PWD. The simulation ability of the CA–Markov model to spatiotemporal dynamic change
can not only meet the needs of LULC change simulation research, but also apply to the
prediction of affected areas of land cover change caused by pests. In this study, the CA–
Markov model is applied to the prediction of PWD for the first time, and the large-scale
(provincial scale) fine-grained (map spot level) PWD occurrence prediction mapping is
realized, with an accuracy of 93.19%. Our prediction result is that it is strictly limited to the
pine forest coverage area, which is of great help to guide the PWD disaster prevention and
control in Anhui Province in the next 10 years. This method is not only used in this study
area, but can also be applied to PWD prediction in other areas.

4.2. Limitations and Prospects

It is worth noting that this paper has limitations for further research. Firstly, it is
difficult to obtain historical data of pine forest and PWD distribution based on patches.
Not all regions can obtain such detailed data, which limits the wide application of this
method. Secondly, the spatial resolution of some data used in this paper is not high (for
example, the spatial resolution of meteorological data is 5000 m), which may lead to the
neglect of some spatial heterogeneity features in the prediction process of PWD, and may
ultimately affect the prediction accuracy. However, this effect may only occur in areas
with significant elevation changes. As we all know, elevation can redistribute temperature
and precipitation.

With the continuous enrichment of remote sensing big data resources and the improve-
ment of temporal and spatial resolution, the patch-based pine forest and PWD distribution
data provided by the forestry department in this paper may be replaced by the big data
remote sensing interpretation results, which has great potential for the wide application of
PWD prediction based on the CA–Markov model.

4.3. Countermeasures and Suggestions

PWD is known as the “cancer” of pine trees [70]. Once pine trees are infected, they
will perish. We hope to control the spread of PWD and reduce its losses to pine forests
and ecosystems by strengthening the timely monitoring, early warning, and decisive
management of PWD. According to the findings in Section 3.5, we suggest that during
the removal and transportation of PWD infected trees, all the litter of the trees should
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be completely cleaned to avoid the risk of PWD transmission caused by the fall of pine
branches infected with PWD during the transportation.

5. Conclusions

In this study, taking Anhui Province as the study area, the CA–Markov model was
used to predict and calculate the occurrence area of PWD in Anhui Province in 2030. Spatial
autocorrelation analysis, standard deviation ellipse (direction) analysis and other spatial
analysis methods are used to analyze the occurrence data of PWD in 2000, 2010, 2020
and 2030, and to clarify the spatio-temporal dynamic changes and distribution laws of
PWD in Anhui Province. (1) The CA–Markov model can be used to predict the disaster of
PWD, and can accurately predict the location and area of the disease in the next decade;
(2) the infected area of PWD in Anhui province increased rapidly, with the characteristics
of clustering distribution, and the disease center spread from northeast to southwest; (3)
the topography has certain restrictions on the spatial distribution of PWD. In the next 10
years, the infected areas will break through the traditional suitable areas and spread to high
altitude, high slope, and sunny slope areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13101736/s1, Supplementary Table S1: Area of pine wood
nematode disease by county and city in Anhui Province, by year. Figure S1: Workflow of PWD
prediction based on CA–Markov model.
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