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Abstract: Changes in soil abiotic and biotic properties can be powerful drivers of feedback between
plants and soil microbial communities. However, the specific mechanisms by which seasonal changes
in environmental factors shape soil microbial communities are not well understood. Here, we
collected soil samples from three sites along an elevational gradient (200–1200 m) in subtropical
forests with unvarying canopy vegetation. We used an elevation gradient with similar annual
precipitation but a clear temperature gradient, and phospholipid fatty acids (PLFAs) were measured
to determine the seasonal variations in the composition of soil microbial communities in response
to rising temperatures. Our results showed that the abundance of Gram-negative bacteria and total
PLFAs were the lowest at low elevations in winter, and the ratio of Gram-positive to Gram-negative
bacteria decreased with increasing elevation. However, the biomass of other microbial groups was
the highest at medium elevations in summer, with the exception of actinomycetes species and fungi.
Regardless of seasonal changes, soil fungal biomass tended to increase with increasing elevation.
Moreover, in summer, microbial carbon use efficiency (CUE) increased with increasing elevation,
whereas an opposite trend was observed in winter. Redundancy analysis and structural equation
modeling showed that the dissolved organic carbon in soil was the main factor affecting the microbial
communities along the elevation gradient in winter, whereas in summer, the microbial community
structure was driven by shifting nitrogen availability, with both being associated with changing
microbial CUE. As such, this study demonstrates distinct seasonal changes in the soil microbial
community composition across an elevation gradient that are driven by carbon and nitrogen resource
availability and shifts in microbial CUE. Furthermore, our results suggest that the interaction of
underground plant roots and microbes drives changes in resource availability, thereby resulting in
seasonal variation in soil microbial community composition across an elevation gradient.

Keywords: Cunninghamia lanceolata (Lamb.) Hook.; forests; elevation gradient; microbial community;
microbial C use efficiency; plant–microbial interactions

1. Introduction

Soil microorganisms are a vital component of forest ecosystems due to their role in
driving and regulating material circulation and biochemical processes [1–3]. These commu-
nities regulate ecosystem balance through basic ecological processes such as mineralization
and decomposition [4]. Previous studies have shown that soil microorganisms are an
essential medium connecting surface and soil ecologies, thereby promoting the growth of
plants and maintaining nutrient circulation [5]. These studies suggest that the soil microbial
community is a key determinant of function and that direct changes to the structure of this
community may alter not only microbial function but nitrogen and carbon soil dynamics as
well [6].
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It has been extensively shown that microbial biomass as well as community composi-
tion are highly interrelated with the seasons [7,8]. The changing of seasons leads to changes
in soil temperature, water, and other environmental factors, which may be the key factor
driving the seasonal dynamics of forest soil microbial communities [9,10]. This, in turn,
impacts the decomposition rate of soil organic matter and nutrient cycling [11]. In addition,
vegetation phenology and vegetation cover vary significantly with the seasons, and their
contributions to soil organic matter and nitrogen content may influence the composition
of the microbial community [12]. Plants excrete active carbon through roots and input
substrate through litter, which alters the effectiveness of soil microorganisms on carbon
and nitrogen processing [13].

Elevation gradients have been recognized as useful “natural experiments” for climate
change studies, as dramatic changes in climatic and biological characteristics are observed
over short geographic distances [14–17]. Elevation gradient studies help researchers un-
derstand the influence of environmental factors such as temperature, soil moisture, and
nutrient availability on soil microbial communities in a way not achievable through con-
ventional manipulation experiments [18–20]. However, previous studies on microbial
properties along elevation gradients have shown mixed results. For example, researchers
have reported that microbial communities show variable patterns of abundance and struc-
ture with increasing elevation in different ecosystems. These patterns have included a
continuous increase [21], a continuous decrease [22,23], a humpback pattern [24], and
no consistent pattern [25]. A global meta-analysis study performed in 2017 also showed
no consensus about the patterns of microbial communities or activities along elevation
gradients [26]. The conflicting results of these studies indicate that more work is needed to
disentangle the effects of complex environmental conditions along elevation gradients on
soil microbial communities.

Despite its relevance, knowledge about the seasonal variation in microbial commu-
nities along elevation gradients is still scarce and contains critical knowledge gaps. Over
the annual cycle, soil microorganisms face large seasonal variations in environmental
conditions, such as temperature, moisture, and resource availability [27]. Further inves-
tigation into the response of soil microbial communities to changes in elevation during
different seasons can improve our understanding of the impact of climate change on soil,
plants, and microorganisms. However, the drivers of seasonal variation in soil microbial
communities over an elevation gradient are unclear. Climatic and edaphic variables (e.g.,
pH and C/N) are frequently reported as key factors shaping microbial elevational pat-
terns [18], but these variables have limited explanatory power. For example, plant and
microbial interaction-induced changes in soil microbial community composition are often
ignored [28].

To address this issue, in this study, we considered the elevation gradient as the carrier
of climate change and Cunninghamia lanceolata forests at different altitudes in Wuyishan
National Park in winter and summer as the research subjects. The Wuyishan National Park
is one of the best-preserved virgin forest vegetation reserves in southeast China, where
species resources are rich and diverse. It is therefore an ideal experimental site for us to
discuss the influence of seasons on the elevation gradient of the soil microbial community
structure in forests. For example, in summer, plants need more nutrients to supply their
growth requirements, so there will be intense nutrient competition between plants and
microorganisms. In winter, plants grow slowly and do not need as many nutrients, while
microbes need more carbon to adapt to lower temperatures. We hypothesized that across the
elevation gradient, seasonal resource availability for heterotrophic microbial communities
in soil will vary with increasing elevation and will thus modify the activity, biomass, and
composition of those communities.
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2. Materials and Methods
2.1. Site Description

The experimental sites for this study are located in Wuyishan National Park, Fujian
Province, China (27◦33′–27◦54′ N, 117◦27′–117◦51′ E). The park was established in 1979
and covers an area of about 570 km2. Wuyi Mountain is the main peak, with an elevation
of 2157.8 m, and the site is exposed to a subtropical monsoonal climate. Our study was con-
ducted in Cunninghamia lanceolata forests at different elevations spanning ~1000 m (200 m
to 1200 m) at low (200 m), medium (700 m), and high (1200 m) elevations. The mean annual
temperature ranges from 20.2 °C to 14.2 °C (from low to high elevations). Cunninghamia
lanceolata is the main dominant species, with few other species present. Understory shrubs
mainly consist of Eurya japonica Thunb, Ardisia japonica, Tectaria phaeocaulis, Microlepia Presl,
and other ferns. Table 1 lists the basic vegetation information of the three sites.

Table 1. Site characteristics across the studied elevations in Cunninghamia lanceolata forests. Values
are means ± standard deviation (n = 4). Different lowercase letters indicate significant differences
between elevations.

Elevation (m a.s.l) 200 700 1200

Stand density (Tree hm−2) 1696 1384 542
Tree height (m) 20.2 25.2 25.0

Diameter at breast height (cm) 16.7 16.4 28.8
Annual temperature (◦C) 20.2 17.6 14.2

Annual precipitation (mm) 2411 2374 2481
Soil pH 5.05 (0.32) a 4.86 (0.21) a 4.23 (0.02) b

Bulk density (g cm−3) 1.10 (0.07) a 0.74 (0.11) b 0.78 (0.08) b
Soil organic carbon (g kg−1) 26.14 (3.24) b 50.53 (6.50) a 53.31 (7.21) a

Total nitrogen (g kg−1) 1.90 (0.29) b 3.15 (0.34) a 2.62 (0.38) a
Soil C/N 13.76 (0.82) c 16.08 (0.39) b 20.35 (1.51) a

Total phosphorus (g kg−1) 0.39 (0.02) a 0.32 (0.02) b 0.28 (0.01) c
Soil temperature (◦C) 18.85 (0.08) a 16.74 (0.07) b 14.65 (0.12) c

Soil moisture (%) 10.18 (1.79) b 14.47 (0.97) a 15.00 (0.54) a

The soil types of the three elevations were classified as red soil (200 m), yellow red soil
(700 m), and yellow soil (1200 m) according to the Chinese Soil Classification System. These
are equivalent to Ultisols and Inceptisols in the United States Department of Agriculture
(USDA) Soil Taxonomy Classification System [28].

2.2. Sample Collection and Preparation

Field sampling was performed in January 2018 (winter) and in June 2018 (summer)
at three elevations of Cunninghamia lanceolata forests. At each elevation, four 4 m × 4 m
subplots were set up, and each of the four plots was separated by at least five meters. For
statistical purposes, we treated each of the four plots as independent replicates (n = 4).
In each subplot, ten replicate soil cores from the topsoil (0–10 cm depth) were collected
randomly using a hand auger (diameter 3.5 cm), and the 10 cm depth was entirely within
the A horizon at each site. Soil cores were pooled into one composite sample from each
quadrant. All soil samples were packed and immediately brought back to the laboratory for
processing. Tweezers were used to pick out visible root and plant debris, and the soil was
sieved through a 2 mm mesh. Subsequently, we divided the soil into two parts: one part
was stored at 4 ◦C for the determination of soil-available nutrients and the composition of
microbial community, and the remaining soil was air-dried and stored in airtight plastic
bags until analysis within one month. From January to December of 2018, we used a
hand-held long-rod electron temperature probe (SK-250WP, Sato Keiryoki, Kanda, Japan)
and a Time Domain Reflectometer (TDR300, Spectrum, Aurora, CO, USA) to monitor soil
temperature (Ts) and soil moisture (SM) (Figure A1).
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2.3. Soil Chemical Analysis

Soil pH was measured with a pH meter on a paste of 1:2.5 (w:v) air-dried soils
and deionized water. Soil organic carbon (SOC) and total nitrogen (TN) contents were
determined from the finely ground (<0.15 mm) subsamples of air-dried soil using a Vario
MAX CN elemental analyzer (Vario Max CN, Elementar, Landgenselbold, Germany).
Soil total phosphorus (TP) was analyzed by the HCIO4-H2SO4 acid digestion method
in a continuous flow analyzer (San++, SKALAR Corporation production, Breda, The
Netherlands) [29]. Soil dissolved organic carbon (DOC) and dissolved organic nitrogen
(DON) were extracted from 10g of field-fresh soil in 40 mL deionized water [30]. The DOC
and DON concentrations were determined using a TOC analyzer (TOC-VCPH, Shimadzu,
Kyoto, Japan) and a continuous flow analyzer, respectively. The concentrations of mineral
nitrogen (MN) were based on the sum of NH4

+ and NO3
−; 5 g of freshly collected soil was

extracted with a 2 mol L−1 KCl solution. Available phosphorus (AP) was extracted with
Mehlich III extract and then measured with a continuous flow analyzer [31].

2.4. Biomass and Composition of Microbial Communities

Soil microbial biomass carbon (MBC) and nitrogen (MBN) were determined using
the chloroform (CHCl3) fumigation and potassium sulfate (K2SO4) extraction techniques
described by [32,33], and the TOC analyzer (TOC-VCPH, Shimadzu, Kyoto, Japan) was then
used to determine MBC, and a continuous flow analyzer (San++, SKALAR Corporation
production, Breda, The Netherlands) was used to determine MBN. The universal conversion
factors of MBC and MBN were 0.45 and 0.54, respectively.

The microbial community structure was determined using phospholipid fatty acid
(PLFA) analysis as described by White et al. [34] and Bardgett et al. [35]. In summary, we
used a mixture of chloroform–methanol–phosphate buffer (1:2:0.8 v/v/v) to extract lipids
from 3 g freeze-dried soil, and the extraction process had two stages: the chloroform stage
and citric acid buffer stage. The extracted phospholipids were methylated to form fatty
acid methyl esters (FAMEs), which were identified on a gas chromatograph (GC) (Agilent
6890 N, Santa Clara, CA, USA) equipped with the MIDI Sherlock Microbial Identification
System. The concentration of each PLFA was calculated on the basis of the 19:0 internal
standard concentrations. Relative nanomole per gram of dry soil was used to express
the abundance of individual fatty acids using standard nomenclature [36]. The PLFA
biomarkers i14:0, i15:0, a-15:0, i16:0, i17:0, and a17:0 represented Gram-positive bacteria
(GP) [37], and 16:1 w9c, 16:1 w7c, 18:1 w7c, 18:1 w5c, cy19:0 w7c, and cy17:0 w7c were
biomarkers for Gram-negative bacteria (GN) [38,39]. Fungi were identified by the PLFAs
18:1w9c and 18:2 w6c [40], while 16:1 w5c was used to represent arbuscular mycorrhiza
fungi (AMF) [41]. PLFAs 16:0 10-methyl, 17:0 10-methyl, and 18:0 10-methyl were used
as markers for actinomycetes (ACT) [40,42]. The ratio of fungal to bacterial PLFAs (F:B)
was used to estimate the relative importance of bacterial and fungal metabolism in the
community.

2.5. Soil Enzymes Activities and Microbial Carbon Use Efficiency

We also studied soil enzymes that play key roles in the mineralization of C, N, and P in
soil, including β-glucosidase (βG), cellulosebiohydrolase (CBH), nacetyl glucosaminidase
(NAG), and acid phosphatase (AP-Tase), using moist soil stored at 4 ◦C. To obtain the
specific enzyme activity index, we normalized the total enzyme activity using the total
potential activity according to the MBC concentration. Based on Sinsabaugh et al. [43], we
calculated the ratios of C, N, and P by determining the enzyme activity.

The microbial CUE was calculated based on the following equations for C:N stoi-
chiometry:

CUEC:N = CUE max [SC:N/(SC:N + KN)]
SC:N = (1/EEAC:N) (BC:N/LC:N)

where SC:N is a scalar quantity to indicate the extent to which the distribution of enzyme
activity offsets the difference between the DOC:TDN ratio of resources and microbial
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biomass [44]. The half-saturation constant KN was set to 0.5. CUEmax is the upper limit
for microbial growth efficiency and was set to 0.6 according to the thermodynamic con-
straints [44]. EEAC:N is the ratio of the enzyme activity of C and N obtained directly from
the environment, which is calculated as (BG + CBH)/NAG. LC:N is the ratio of labile organic
matter.

2.6. Statistical Analysis

All statistical analyses were carried out using the IBM SPSS Statistics 21.0 software
(SPSS Inc., Chicago, IL, USA), Origin 2021 (Origin Lab Corporation, Northampton, MA,
USA), and CANOCO 5.0 software (Microcomputer Power Inc. Ithaca, NY, USA). One-way
ANOVA comparisons with least significant difference (LSD) multiple comparisons were
used to explore the differences in soil and microbial parameters (soil temperature, soil
moisture, SOC, TN, TP, AP, MN, DOC, DON, microbial biomass, microbial PLFAs, CUE,
and enzymes activities) at different elevations. An independent-sample t-test was used to
determine the effects of season on soil properties and microbial parameters. The effects of
elevation and season on microbial community structure, CUE, and enzyme activity were
determined using two-way ANOVA followed by LSD post hoc multiple comparisons. The
level of significance of the statistical tests was α = 0.05. The heat maps for correlation
analysis between the microbial community and soil characteristics were drawn in Origin
2021. Redundancy analysis (RDA) was used to test the elevation effects on soil microbial
community structure and environmental variables. We used structural equation modeling
(SEM) with AMOS 24.0 (AMOS Development Corporation, Chicago, IL, USA) to examine
the key factors driving seasonal variations in microbial community structure, the prior
models used for structural equation modeling analysis are presented in the Appendix A
(Figure A2 and Table A2).

3. Results
3.1. Soil Properties at Different Elevations

The SOC and TN contents increased along the elevation gradient at a consistent rate,
with the lowest levels at 200 m. However, soil TP content decreased linearly with elevation
(p < 0.05, Table 1). The availability of soil C, N, and P were significantly different at different
elevations. Soil DOC and DON concentrations increased with rising elevation both in
winter and summer, and the difference in DOC was significant between elevations (p < 0.05,
Figure 1). It was observed that the variation trend of soil NH4

+ and NO3
− was dramatically

different with increasing elevation. Soil NO3
− was the highest at 200 m and was lower

at the other two elevations (p < 0.05, Figure 1). As an important part of mineral nitrogen,
the variation trend of NH4

+ is consistent with that of mineral nitrogen. In winter, the
concentrations of soil AP at high elevations were significantly lower than that at 200 m and
700 m, whereas it was the highest at medium elevations in summer (p < 0.05, Figure 1).
Taken together, it was clear that the availability of soil nutrients was significantly higher in
summer than in winter, except for NO3

− (Figure 1).

3.2. Microbial Biomass and Community Structure

Soil microbial biomass carbon (MBC) at 700 m and 1200 m was significantly higher
than that at 200 m, regardless of season (p < 0.05; Figure 2). We did not observe significant
variation associated with elevation in soil microbial biomass nitrogen (MBN) in winter,
whereas in summer, the MBN content was significantly lower at 200 m (p < 0.05; Figure 2).
Overall, the soil MBC and MBN concentrations in summer were higher than those in winter.
In winter, the soil MBC/MBN ratio was the lowest at the low elevation (200 m), and there
was no significant difference between the elevations in summer.



Forests 2022, 13, 1657 6 of 17Forests 2022, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Soil carbon, nitrogen, and phosphorus availability in Cunninghamia lanceolata forests at 
different elevations during winter and summer. Values are means ± standard deviation (n = 4). DOC, 
dissolved organic carbon; DON, dissolved organic nitrogen; MN, mineral nitrogen; AP, available 
phosphorus. Different capital letters on the bar indicate significant differences between seasons at 
the same elevation, and different lowercase letters above the bar indicate significant differences be-
tween elevations during the same season (p < 0.05). 

3.2. Microbial Biomass and Community Structure 
Soil microbial biomass carbon (MBC) at 700 m and 1200 m was significantly higher 

than that at 200 m, regardless of season (p < 0.05; Figure 2). We did not observe significant 
variation associated with elevation in soil microbial biomass nitrogen (MBN) in winter, 
whereas in summer, the MBN content was significantly lower at 200 m (p < 0.05; Figure 
2). Overall, the soil MBC and MBN concentrations in summer were higher than those in 
winter. In winter, the soil MBC/MBN ratio was the lowest at the low elevation (200 m), 
and there was no significant difference between the elevations in summer. 

With the exception of fungi, the biomass of all of the PLFA biomarkers showed sim-
ilar trends along the elevation gradient. The total PLFAs, Gram-positive bacteria (GP), 
Gram-negative bacteria (GN), and arbuscular mycorrhizal fungi (AMF) were higher at the 
medium elevation (700 m). The difference was significant in summer (p < 0.05; Figure 3), 
but we did not observe significant variation in winter. The fungi biomass showed an in-
creasing trend with rising elevation both in summer and winter. Moreover, these bi-
omarkers were higher in summer compared to in winter. With respect to the ratio of 
GP:GN, we observed that there were no distinctive differences between the elevation sites 
in summer, while it was the highest at 200 m in winter (p < 0.05; Figure 3). The ratio of F:B 
was the highest at 1200 m in both seasons, and seasonal differences only existed at this 
elevation. There was no significant interaction effect between elevation and season on the 
total PLFAs, GP, GN, AMF, ACT, fungi biomass, and F:B, with the exception of GP:GN 
(Figure 3). 
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elevations during the same season (p < 0.05).
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Figure 2. Soil microbial biomass carbon and microbial biomass nitrogen at different elevations.
Values are means ± standard deviation (n = 4). Different capital letters on the bar indicate significant
differences between seasons at the same elevation, and different lowercase letters above the bar
indicate significant differences between elevations within the same season (p < 0.05). MBC, microbial
biomass carbon; MBN, microbial biomass nitrogen; MBC:MBN: the ratio of microbial biomass carbon
to microbial biomass nitrogen.

With the exception of fungi, the biomass of all of the PLFA biomarkers showed similar
trends along the elevation gradient. The total PLFAs, Gram-positive bacteria (GP), Gram-
negative bacteria (GN), and arbuscular mycorrhizal fungi (AMF) were higher at the medium
elevation (700 m). The difference was significant in summer (p < 0.05; Figure 3), but we
did not observe significant variation in winter. The fungi biomass showed an increasing
trend with rising elevation both in summer and winter. Moreover, these biomarkers were
higher in summer compared to in winter. With respect to the ratio of GP:GN, we observed
that there were no distinctive differences between the elevation sites in summer, while it
was the highest at 200 m in winter (p < 0.05; Figure 3). The ratio of F:B was the highest at
1200 m in both seasons, and seasonal differences only existed at this elevation. There was
no significant interaction effect between elevation and season on the total PLFAs, GP, GN,
AMF, ACT, fungi biomass, and F:B, with the exception of GP:GN (Figure 3).
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Figure 3. Effects of elevation and season on the abundance of phospholipid fatty acid biomarkers
(in nmol g−1 soil). Values are means ± standard deviation (n = 4). Different lowercase letters in the
same season (winter or summer) represent significant differences (p < 0.05) among three elevations.
* above the bar indicates significant differences between winter and summer at the same elevation;
ns, no significant difference; *, p < 0.05; **, p < 0.01; ***, p < 0.001. GP, Gram-positive bacteria;
GN, Gram-negative bacteria; AMF, arbuscular mycorrhizal fungi; ACT, actinomycetes; Total, total
microbial PLFAs; GP:GN, the ratio of Gram-positive bacteria to Gram-negative bacteria; F:B, fungi to
bacteria ratio.

3.3. CUE and Soil Enzyme Activity

The variation trend of soil CUE with elevation was opposite in winter and summer,
and the interaction between season and elevation on CUE was significant (p < 0.05; Figure 4).
C-degrading enzymes were significantly higher at 1200 m than at 700 m or 200 m, and there
was no significant difference between winter and summer, except for at 700 m (p < 0.05;
Figure 4). In winter, the N-degrading enzymes increased with increasing elevation, while
in summer, they were the lowest at 700 m, and the seasonal differences were significant
only at the high elevation (p < 0.05; Figure 4). In addition, there were interactive effects
on the C-degrading enzymes and N-degrading enzymes between elevation and season
(p < 0.05). For p-degrading enzyme activity, it was also the highest at 1200 m, and there
were significant differences among different seasons (p < 0.05; Figure 4), but elevation and
season had no interaction on it (p > 0.05).
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* above the bar indicates significant differences between winter and summer at the same elevation;
ns, no significant difference; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.4. Factors Drive Seasonal Variation in Soil Microbial Community Composition

The correlations were plotted to explore the relationship of the PLFAs with different
variables (Figure 5). There was no significant correlation between MBN, AMF, and soil
properties in winter (Figure 5a). In addition to SOC, TN, and TP, soil fungi biomass was
positively correlated with soil moisture (p < 0.01), DOC (p < 0.001) and DON (p < 0.05) and
negatively correlated with soil temperature (p < 0.05). The ratio of GP:GN was significantly
negatively correlated with soil moisture (p < 0.05) and DOC (p < 0.01); the F:B ratio was
positively correlated with the concentration of soil moisture, DON (p < 0.05), and DOC
(p < 0.01) and negatively correlated with soil temperature (p < 0.01) and soil pH (p < 0.05;
Figure 5a). In summer, it was observed that the PLFA biomarkers were significantly
positively correlated with available N and AP, except for fungi (Figure 5b). The fungi
showed a negative relationship to the Ts and pH and were significantly positively correlated
with the contents of DOC and DON as well as with the F:B ratios (Figure 5b). There was no
relationship between the GP:GN ratios and the soil properties.

Redundancy analysis (RDA) showed that the composition of the soil microbial commu-
nity in winter was related to soil DOC, explaining 35.5% of the variance in the composition
(p = 0.02; Figure 6a and Table A1). The selected soil properties explained 66.54% of the
variation in the microbial community composition in winter (Figure 6a). The composition
of soil microbial community in summer was related to MN, which explained 48.9% of
the variance (p = 0.002), and to pH and SM, which explained 24.3% (p = 0.006) and 12.4%
(p = 0.002) of the variance, respectively. Together, these selected environmental variables
explained 90.94% of the variations in the microbial community composition in summer
(Figure 6b; Table A1).
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Figure 5. Correlation heat map between soil physicochemical properties and microbial index for
(a) the winter and (b) summer. Red and green squares indicate positive and negative relationships,
respectively. The figure shows the Pearson’s correlation coefficients; * indicates p < 0.05, ** indicates
p < 0.01, *** indicates p < 0.001. Ts, soil temperature; SM: soil moisture; SOC, soil organic carbon; TN,
soil total nitrogen; TP, soil total phosphorus; AP, available phosphorus; MN, mineral nitrogen; DOC,
dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN,
microbial biomass nitrogen; MBC:MBN: the ratio of microbial biomass carbon to microbial biomass
nitrogen; CUE: carbon use efficiency; GP, Gram-positive bacteria; GN, Gram-negative bacteria; AMF,
arbuscular mycorrhizal fungi; ACT, actinomycetes; Total, total microbial PLFAs; GP:GN, the ratio of
Gram-positive bacteria to Gram-negative bacteria; F:B, fungi to bacteria ratio.
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Figure 6. Redundancy analysis ordination biplot of PLFA profiles indicating the relationships between
the variation in microbial community composition and environmental parameters: (a) winter and
(b) summer. GP, Gram-positive bacteria; GN, Gram-negative bacteria; AMF, arbuscular mycorrhizal
fungi; ACT, actinomycetes; Total, total microbial PLFAs; GP:GN, the ratio of Gram-positive bacteria
to Gram-negative bacteria; F:B, fungi to bacteria ratio; Ts: soil temperature; SM: soil moisture; DOC,
dissolved organic carbon; DON, dissolved organic nitrogen; MN, mineral nitrogen; AP, available
phosphorus.

The SEM with Ts, DOC content, and SM on the elevation gradient could explain
71% of the total variance in the PLFAs in winter (Figure 7a). Elevation was negatively
associated with Ts but positively correlated with DOC and SM. Ts and DOC showed a
positive relationship with PLFAs, whereas Ts did not affect PLFAs. Structural equation
modeling analysis of summer (Figure 7b) suggested elevation had a negative correlation
with Ts, pH, and CUE and had no significant effect on MN. Elevation also indirectly affected
PLFAs by affecting soil pH. Meanwhile, MN also had a significant positive effect on the
PLFAs.
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Figure 7. Structural equation model (SEM) was used to analyze the effects of environmental factors
on soil microbial community along the elevation gradient: (a) winter and (b) summer. The solid and
dotted arrows represent significant positive and negative pathways, respectively. Numbers at arrows
are standardized path coefficients, and arrow width is proportional to the strength of the relationship.
R2 values on top of response variables indicate the proportion of variation explained by relationships
with other variables. Ts, soil temperature; DOC, dissolved organic carbon; SM, soil moisture; MN,
mineral nitrogen; CUE, carbon use efficiency.
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4. Discussion

Soil microorganisms are the most active component of soil ecologies, and the number
of soil microorganisms is mainly affected by climate, soil texture, physical and chemical
properties, and vegetation types [45]. In this study, the soil MBC content at 700 m and
1200 m was shown to be significantly higher than that at 200 m, regardless of season.
This may be related to the higher soil organic matter (SOM) at 700 and 1200 m than at
200 m. The turnover rate of SOM is crucial to the carbon cycling process, and it is generally
believed that the turnover rate of SOC will accelerate with the increase in temperature [46].
Changes in climate and soil properties along the elevation gradient can also indirectly
affect the formation and accumulation of SOC through microbial decomposition and
turnover [28,47,48]. In our study, the low temperature conditions at the high elevation
made the turnover time long, which is more conductive to the accumulation of SOC.
Previous studies have shown that SOM is an important factor affecting soil microbial
biomass [49], and a higher SOM can provide more optimal material and energy sources for
microbial metabolism [2,50]. The higher the content of organic matter, the better material
and energy sources provided for microbial metabolism [51]. Soil microbial biomass was
closely related to the eco-environmental factors of the habitat. Kemmit et al. [52] reported
that the soil pH decreased with the increase in elevation, and the soil acidity gradually
increased, resulting in the reduction of the mineralization rate of hydrolyzed nitrogen,
which negatively affected the growth and reproduction of soil microorganisms. However,
in our study, there was a significant negative correlation between soil MBN and pH in
summer (Figure 6b). In addition, we observed that the soil MBC:MBN ratio increased
with elevation in winter. A deficiency of P has been reported to increase the MBC:MBN
ratio [53]. This can be supported by our finding of a significant and negative correlation
between the soil MBC:MBN and soil TP content (Figure 6a). Furthermore, high MBC:MBN
ratios often indicate poor P availability in the presence of high C availability [54], but other
nutrient deficiencies may also lead to high MBC:MBN ratios [55,56]. From the perspective
of season, soil MBC and MBN were significantly higher in summer than in winter (Figure 3).
Compared to winter, higher soil temperature and humidity in summer provided a good
metabolic environment for the reproduction of soil microorganisms, thus increasing soil
MBC and MBN.

Elevation influences the functional diversity and metabolic activity of soil micro-
bial communities by improving soil physicochemical properties and nutrient cycling pro-
cesses [57,58]. Consistent with our hypotheses, the variation trend of soil microbial commu-
nity composition along the elevation gradient was not completely consistent in winter and
summer. The distribution pattern of soil microorganisms in Cunninghamia lanceolata forest
at different elevations showed that the GN biomass and total PLFAs at the low elevation in
winter were significantly lower than other elevations and that the soil fungal community
increased with elevation (Figure 3). In forest soils, fungi can decompose more complex
organic matter than soil bacteria [59,60], and the C required to form fungal biomass is
more than bacteria [61], so substrates with high C:N ratio are more conducive for fungal
growth [33,62]. The soil C:N ratio increased with elevation, and the correlation analysis
showed that the soil fungal community had a significant positive correlation with the soil
C:N ratio (Figure 5a). In addition, studies have found that fungi tend to have higher CUE
than bacteria [63,64]. The growth of soil microorganisms depends directly on microbial
CUE [65]. In winter, the soil microbial CUE increased with increasing elevation (Figure 4),
which indicates that microbes may utilize much more C as their energy requirement to
face the low temperatures at high-elevation sites than at low-elevation sites. At the same
time, the redundancy analysis results showed that soil DOC is the main factor affecting soil
microbial community at different altitudes in winter (Figure 6a). As the most important
energy source for the growth of soil microorganisms, soil DOC can be directly absorbed and
utilized by microorganisms, while litter and root C-input (i.e., exudates) are the import C
sources of soil microbes [66–68]. In our study, the soil DOC content increased significantly
with altitude, while in winter, plant growth was slow, and the DOC content imported by
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root exudates was low. At the same time, the low temperature and low water content of
the soil reduces the effective carbon source and the mobility of nutrients. Compared to
the low elevation, the higher DOC content at the medium and high elevations provided
more energy support for microbial growth. Previous studies showed that in soil with low
nutrient availability, GP bacteria forming oligotrophic communities preferentially used the
recalcitrant C component, while GN bacteria were more popular in the soil with a high
nutrient content [69–72]. We believe that this may be the main reason why the GP:GN ratio
at the low elevation was significantly higher than that at the medium and high elevations
in winter.

In our study, we found that bacteria, AMF, and total PLFAs were significantly higher at
the medium elevation in summer (Figure 3). The results of the redundancy analysis showed
that soil N availability was an important factor affecting the composition of the microbial
community and had significant positive effects on all of the soil microbial communities,
except for fungi (Figure 6b). Soil-soluble nutrients are more readily available for uptake by
microorganisms and are sensitive to seasonal changes [73,74]. The high temperature and
rainy climate conditions in the subtropical region in summer accelerate the decomposition
and leaching of litter, thus promoting an increase in soil carbon, especially in the active
carbon source [67,68]. Summer is the peak period of plant growth, and the large demands
of plants for soil nutrients limit the availability of soil nutrients by soil microorganisms,
forming a competitive relationship [75]. Due to the high dependence of GP and GN bacteria
on soil inorganic nitrogen, they speed up the growing rate, increase microbial biomass, and
alter community proportions at medium elevations, where available nitrogen levels are
high [76]. In addition, we observed a similar response of soil fungal biomass to changes
in elevation as in winter (i.e., an increase with elevation; Figure 5b), which was probably
affected by the soil’s pH value. A lower pH can increase the solubility of soil organic
matter and change the composition of dissolved organic matter [77], which could affect
the soil fungal community. Many studies indicate that the change in soil pH drives the
dominant bacterial and fungal communities [78,79]. Generally, bacterial groups are suitable
for growth under slightly alkaline conditions, while fungi are more resistant to acid soil
environment [80,81], which was consistent with our result that soil pH was a significant
factor influencing microbial community structure in summer according to the RDA data.
The pH value tends to be lower at high elevations, which leads to an increase in soil
F:B. Generally, we found that the impact of the input source of carbon substrates on the
proportion of microbial groups is more influential in winter than in summer.

5. Conclusions

Using an elevation gradient with similar annual precipitation but a clear temperature
gradient, we demonstrated how rising temperatures affect the soil microbial communities
in Cunninghamia lanceolata forests. The results indicate that most of the edaphic properties
vary with seasonal changes and influence the composition and structure of soil micro-
bial communities along the elevation gradient. The variation trend of the soil microbial
community along the elevation gradient varied between winter and summer. In winter,
the Gram-negative bacteria and total PLFAs were the lowest at 200 m and fungi biomass
increased with increasing elevation, with soil DOC being the main factor controlling micro-
bial community composition. In summer, with the exception of ACT and fungi, the biomass
of other microbial communities was the highest at the medium elevation, with soil N
availability being the most important factor driving the change in the microbial community
across the elevation gradient. Moreover, in summer, microbial carbon use efficiency (CUE)
increased with increasing elevation, whereas an opposite trend was observed in winter.
Taken together, our results suggest that N and C availability drive the seasonal variation in
soil microbial community composition across a subtropical elevation gradient. Our findings
will help us to better understand the role of subtropical forest microbial communities in
providing ecosystem services and the interactions between plants and microbes under the
background of global climate change.
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Appendix A

Table A1. Correlations between environmental parameters and RDA ordination of PLFAs at different
elevations. Significant differences are indicated by bold-face p values, and italics indicate marginal
significance.

Environment Parameters Explains % Pseudo-F p

Winter
DOC 35.5 5.5 0.020
Ts 15.9 3.0 0.096
SM 8.6 1.7 0.218

Summer
MN 48.9 9.6 0.002
pH 24.3 8.2 0.006
SM 12.4 6.9 0.002
Ts 3.7 2.5 0.100

DON 2.4 1.7 0.176
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Figure A2. A priori model showing the rationale behind the direct and indirect associations from
elevation, soil temperature and moisture, soil pH, C and N availability, and CUE with PLFAs:
(a) winter and (b) summer.

Table A2. Basic rationale and related references for prior models.

# Rationale References

1, 3 Changes in elevation affect soil temperature and moisture. [16,82]

2, 10 Soil nutrient availability and spatial heterogeneity were significantly
affected by elevation. [14]

4 Warming will change the composition of the soil microbial community. [83,84]

5, 13 Soil DOC is an important carbon source for microbial growth. Soil N
availability affects the microbial community structure. [66,85]

6 Soil moisture is the major factor influencing microbial community
structure. [86]

7, 12 Soil microbial CUE will increase with nutrient availability. [87]
8 The growth of soil microorganisms directly depends on microbial CUE. [65]
9 Elevation has a significant effect on soil pH. [81]

11 Soil microbial carbon use efficiency was significantly different at different
altitudes. [88]

14 It is well-known that soil pH is an important factor affecting microbial
community composition. [79]
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