
Citation: Guo, W.; He, H.; Li, X.;

Zeng, W. Greater Greening Trend in

the Loess Plateau of China Inferred

from Long-Term Remote Sensing

Data: Patterns, Causes and

Implications. Forests 2022, 13, 1630.

https://doi.org/10.3390/f13101630

Academic Editor: Viacheslav

I. Kharuk

Received: 7 September 2022

Accepted: 30 September 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Greater Greening Trend in the Loess Plateau of China Inferred
from Long-Term Remote Sensing Data: Patterns, Causes and
Implications
Wei Guo 1,2,*, Hao He 1, Xiaoting Li 1 and Weigang Zeng 3

1 Department of Earth and Environmental Sciences, Xi’an Jiaotong University, Xi’an 710049, China
2 Institution of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China
3 Key & Core Technology Innovation Institute of The Greater Bay Area, Guangzhou 510670, China
* Correspondence: williamguo@xjtu.edu.cn

Abstract: The Loess Plateau (LP) of China, which is the pilot region of the “Grain to Green Project”
(GGP), has received worldwide attention due to its significant changes in the natural and social envi-
ronment. Investigation of vegetation variations in response to climate change and human activities is
vital for providing support for further ecological restoration planning. This paper aimed to monitor
vegetation dynamics of the LP with trend comparisons of various vegetation types, disentangle
the effects of climate variations and ecological programs on vegetation variations, and detect the
consistency of vegetation variations. More specifically, vegetation dynamics during 1982–2015 were
analyzed using the Global Inventory Modelling and Mapping System third-generation Normalized
Difference Vegetation Index (GIMMS NDVI3g) data with the application of Breaks for Additive
Season and Trend (BFAST) and Hurst Exponent. The results showed that: (1) Vegetation manifested a
significant greening trend (0.013 decade−1 p < 0.01) in the LP during 1982–2015, and a breakpoint
(BP) was detected in 1999, which was the beginning of the GGP. Interannual NDVI after the BP (ABP)
showed more than 3.5 times greening rates compared to the NDVI before the BP (BBP). (2) Human
activities dominated the vegetation variation (accounted for 59.46% of vegetation variation), among
which reforestation and land-use change with steep slopes (i.e., ≥15◦) lead to the greening after the
GGP implementation. (3) Future trends should be noticed in the Forest Zone and Forest-Grass Zone,
where the greening trends tend to slow down or even reverse in the southern LP. The long-term
GIMMS NDVI3g time series and multiple geospatial analyses of this study might facilitate a better
understanding of the mechanisms of vegetation variations for the assessment of the large restoration
programs in fragile ecosystems.

Keywords: vegetation dynamics; climate change; human activities; Loess Plateau

1. Introduction

Vegetation is one of the most fundamental components of the terrestrial ecosystem,
linking the matter and energy cycle among the hydrosphere, lithosphere, atmosphere,
and biosphere due to its significant effects on carbon neutrality and climate change [1–3].
Hence, vegetation has been regarded as an irreplaceable part of maintaining the stability
of regional and global ecosystems [4]. Meanwhile, over the past few decades, vegetation
has shown widespread and tremendous variations under climate change and intensified
anthropogenic intervention [5–7].

To address devastating land degradation and soil erosion, the Chinese government
has launched a series of ecological engineering programs for environmental restoration and
protection [8]. Many studies have shown that these programs have helped to increase vege-
tation cover and improve ecosystem services [9–11]. However, their environmental effects
have not yet been systematically evaluated. Therefore, a long-term and comprehensive
investigation of vegetation variation can help further study vegetation dynamics and assess
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the effectiveness arising from those ecological projects for better ecosystem management
and adaptation.

Remote sensing data provide broader ecological cues and make it possible to investi-
gate vegetation variability and responses to climate change at large scales [12]. The satellite-
based Normal Difference Vegetation Index (NDVI) has been most commonly used to detect
vegetation variations, including key characteristics such as greenness, phenology, and pro-
ductivity [13,14]. Many of the studies have been undertaken using long-term NDVI to
analyze the effects of climate change on vegetation variations at different spatiotemporal
scales, which reflected the availability of satellite-derived datasets at multiple resolutions
in both space and time [15–17]. In particular, the Global Inventory Modelling and Mapping
System third-generation Normalized Difference Vegetation Index (GIMMS NDVI3g) has
been the longest-term available NDVI dataset [18]. This dataset has proved good quality
and can provide more detailed vegetation dynamics without merging multi-source datasets
to achieve data consistency.

Since the 1980s in the last century, widespread greening trends occurred globally [18,19].
Numerous examples of research have shown heterogeneity and mechanisms of greening,
especially in the northern hemisphere [20–22]. Greening trends in northwestern China,
especially in the fragile Loess Plateau (LP), have been widely concerned since severe water
and soil erosion in the LP were caused by climate and land use changes over the past few
decades [23]. In addition, LP is always the pilot region of an ecological restoration project in
China. Approximately $8.7 billion has been invested to convert the previous way of land
use due to the implementation of the GGP in the year of 1999 [24]. Therefore, balancing the
economic efficiency of eco-project and ecological goals is, thus, a great challenge [25].

Distinguishing the quantitative contribution of climate and human factors to vege-
tation variations is important for ecological restoration management. Although previous
studies focused on detecting and assessing the effects of climate and non-climate factors
on ecosystems [26,27], few detailed and systemic evaluations of responses of vegetation
variations to climate change and anthropogenic intervention together in the LP. The contri-
butions of factors to vegetation variations still remained unclear. In general, the causes of
the vegetation dynamics are still not understood properly. This is due to multiple factors,
including the lack of long-term monitoring and the absence of studies on driving forces
and their contribution with multiple scales in space and time.

Global warming and excessive human activities in recent years have exacerbated a
series of ecological issues (i.e., vegetation degradation, land desertification, soil erosion),
leading to warming–drying trends with a higher frequency of droughts frequency in the
LP [11,28]. Thus, accurate knowledge of vegetation variations and their responses to cli-
mate change and anthropogenic intervention could help in regulating ecological restoration
planning and developing a sustainable ecosystem in the LP under projected climate change.
A key question for this area is how the vegetation varies in the context of both climate
change and anthropogenic intervention. Thus, the objectives of our research are to (1) detect
the spatial-temporal patterns of vegetation variations and recognize significant greening
and browning; (2) analyze the influences of climate changes on vegetation variations; (3) dis-
entangle the influences of climate change and human activities on vegetation variations.

2. Materials and Methods
2.1. Study Area

The LP, located in the middle reach of the Yellow River (33◦41′–41◦16′ N, 100◦52′–
114◦33′ E), with a total area of about 6.2× 104 km2, is the world’s largest, most concentrated,
and typical loess landform unit as well as a key area for severe water shortage and soil
erosion in China. The mean annual temperature is 8.0 ◦C, and the annual precipitation is
439 mm. According to the zonal distribution of climate [29], the study region was divided
into five zones from southeast to northwest as follows: Forest Zone, Forest-Grass Zone,
Grass Zone, Grass-Desert Zone, and Desert Zone (Figure 1).
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Figure 1. Map of the Loess Plateau (LP) and its bioclimatic zone division.

The region has sparse vegetation with a surface layer of wind-deposited fine-grained
yellowish alluvium loess, which is particularly susceptible to erosion by water and heavy
precipitation. Approximately 90% of the Yellow River’s sediment is dominated by the
characteristic of soil erosion in LP [30]. In addition, soil erosion causes the huge loss of
vegetation nutrients, further reducing crop yield and vegetation primary productivity. Due
to the fragile ecosystem and serious environmental problems, LP was selected as a GGP
pilot area in 1999, focusing on returning steep cropland to forest and grassland. As a result,
the spatiotemporal characteristics of land use have greatly changed.

2.2. Remote Sensing and GIS Data

The GIMMS NDVI3g data, provided by NASA’s Global Inventory Monitoring and
Modeling Studies (https://ecocast.arc.nasa.gov/data/pub/gimms/, accessed on 1 June
2021), with the longest period (from 1982 to 2015) at 1/12◦ spatial resolution and 15-day
temporal resolution, was selected to monitor vegetation dynamics from 1982 to 2015 in this
study. The features improved data quality by accounting for biases such as calibration loss,
orbital drift, and volcanic eruptions, and it has been previously shown to represent the real
response of vegetation to climate change [31]. The NDVI dataset of LP from 1982 to 2015
was obtained through format transformation, projection conversion, cropping, and outlier
elimination based on the ArcGIS platform. The maximum synthesis method is used to
acquire the monthly NDVI data, which can effectively eliminate the effect of errors caused
by clouds and atmospheric and solar altitude angles [15].

https://ecocast.arc.nasa.gov/data/pub/gimms/
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Three-hourly gridded near-surface temperature, precipitation, and solar radiation data
at 0.1◦ spatial resolution from the China Meteorological Forcing Dataset (CMFD), provided
by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 15 August
2021), was used to identify the correlation with vegetation variations during 1982–2015.
The mean temperature, accumulated precipitation, and accumulated solar radiation for
monthly and annual were calculated using the ArcPy package in Python. Then, the climate
data were resampled to 1/12◦ spatial resolution to match the NDVI dataset.

The land use data were obtained from the China Resources and Environment Science
Data Center with a spatial resolution of 1 km and a period from 2000 to 2015 in a 5-year in-
terval. The land use types in the LP include cropland, forest, grassland, water, construction
land, and unutilized land.

2.3. Geostatistical Analyses
2.3.1. Trend Analysis Methods

The Theil-Sen Median trend analysis (Sen) is a robust non-parametric trend statistical
method. It characterizes the trend of the period by calculating the median slopes between
any pair of combinations of the time series data, which can help reduce the influence of
missing values or outliers [32].

SNDVI = Median
(NDVIj−NDVIi

j−i

)
, j > i (1)

where SNDVI is the NDVI trend; NDVIi and NDVIj, respectively, are the NDVI value at
years i and j. SNDVI > 0 indicates that vegetation manifests a greening trend otherwise
manifests a browning trend.

The Mann-Kendall statistical test was applied to test the significance of the NDVI trend.
It is a non-parametric test method with superiorities in effectively eliminating the effect of
outliers and not requiring the sample to obey a specific distribution [32]. The statistic Z can
be calculated with Equation (2):

Z =


S−1√
Var(S)

, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
(2)

where the statistic S is the size relationship of all n(n − 1)/2 pair combinations and the
Var(S) is its variance. When the size of the sample is greater than 10, S approximates
standard normal distribution and the Var(S) is estimated as follows:

Var(S) =
n(n− 1)(2n + 5)−

m
∑

i=1
ti(ti − 1)(2ti + 5)

18
(3)

where m is the number of repeated datasets in the sequence; ti is the number of the ith set
of repeated data; n is the sample size.

At the given significance level α, the threshold of the normal distribution is Z1−α/2.
If |Z| > Z1−α/2, the NDVI trend is significant on the level α. In this study, we choose
α = 0.05 (Z = ±1.96) and α = 0.01 (Z = ±2.58) to test the significance of gridded NDVI trend.

http://data.tpdc.ac.cn
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2.3.2. Hurst Exponent

The Hurst exponent, proposed by Hurst (1951), is widely used to distinguish the
sustainability of long-term time series. The Hurst exponent can be calculated with Equation
(4) [28]:

R(τ)
S(τ)

= (cτ)H (4)

where R(τ) is the extreme deviation sequence; S(τ) is the standard deviation sequence; H is
the Hurst exponent ranging from 0 to 1. When H < 0.5, it means that the trend of NDVI
series in the future would be opposite to the present; when H = 0.5, it means that the trend
of NDVI series in the future would be independent of the study period; when H > 0.5,
it means that the trend of NDVI series in the future would continue with the present trend.

2.3.3. Breaks for Additive Season and Trend (BFAST)

BFAST is a method to quantify the trends and breakpoints (BPs) of time series, which
typically have a periodic pattern [33]. It is an additive decomposition model that iteratively
fits a piecewise linear trend and seasonal model of the time series [34] and detects and
characterizes BPs in the trend and seasonal components according to specific methods.
The general form of the model is [35–37]:

Yt = Tt + St + et, t = 1, 2, ..., n (5)

where Yt is the NDVI value at time t; Tt is the trend component; St is the seasonal com-
ponent; et is the remainder component, which is the variation component other than the
trend component and seasonal component. The intercept and slope of the trend compo-
nent model are used to derive the magnitude and direction of abrupt change. This study
was based on the BFAST package in R x64 4.0.2 and RStudio (http://www.r-project.org/,
accessed on 15 September 2021) to detect the dynamic change of vegetation.

2.3.4. Quantitative Contribution Method

The Pearson correlation method was applied to characterize the responses of vegeta-
tion to climate change. Furthermore, since vegetation variations have been considered a
function of climate variability and anthropogenic activities, the contributions of climatic
and anthropogenic factors to vegetation variations can be effectively quantified by the
Residual trend method [14]. Specifically, we split the NDVI time series into subperiods t1
(climatic domination) and subperiods t2 (anthropogenic domination). The predicted NDVI
value was generated by climate over subperiod t2 based on the regression equation of
NDVI response to climate constructed over subperiod t1. Then the residual of the simulated
and observed NDVI was the contributions of each factor [26].

3. Results
3.1. Temporal Variability of NDVI Trend at Regional Scales

During the study period, NDVI values highlighted some temporal fluctuations in
greenness across the whole plateau from 1982–2015. Vegetation activity in the LP generally
increased with a statistically significant overall uptrend at the rate of 0.013 decade−1

(p < 0.01) through linear regression analysis (Figure 2a). In detail, the annual average NDVI
of the whole plateau showed a substantial decline in the year 1999, after then the upward
trend continued reaching maximums in 2013.

http://www.r-project.org/
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Figure 2. (a) Inter-annual variability of regionally averaged NDVI in the LP and (b) original NDVI
time series, (c) seasonal, (d) trend, and (e) residual components of the NDVI time series decomposed
by Breaks for Additive Season and Trend (BFAST). The breakpoint (BP) are black dashed lines and
the confidence interval on the 0.05 level is grey-inked in the trend component.

In order to fit piecewise linear trends and detect vegetation abrupt changes, this study
employed the BFAST method to monitor vegetation dynamics. The results indicated that
no seasonal or phenological changes have been identified in the LP during 1982–2015 given
the consistent seasonal components of the NDVI time series in the past three decades
(Figure 2c). There was a significant BP in the NDVI trend components (Figure 2d). The BP
of NDVI across the plateau occurred mainly in 1999. In addition, 1999 was also the starting
year of the GGP implementation. Therefore, we treated the year 1999 as the BP year and
split the study periods into the before BP (BBP, 1982–1999) and after BP (ABP, 2000–2015).

3.2. NDVI Variability Comparison
3.2.1. NDVI Change in Regional Scales

In general, vegetation on the whole plateau showed increasing trends of both BBP
and ABP among interannual and intra-annual scales. More importantly, the increasing rate
of NDVI in ABP was much higher than that of NDVI in BBP on all time scales. Specifi-
cally, in BBP, NDVI increased at a rate of 0.009 decade−1, 0.013 decade−1, 0.008 decade−1,
and 0.009 decade−1 in the interannual, spring, summer, and autumn periods, respec-
tively (Figure 3). However, NDVI increased sharply in ABP at the rate of 0.031 decade−1,
0.027 decade−1, 0.055 decade−1, and 0.028 decade−1 in the interannual, spring, summer,
and autumn (p < 0.01), approximately 3.5, 2, 7, and 3 times of the BBP changes.
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Figure 3. Interannual variations in NDVI of (a) interannual scale, (b) spring, (c) summer, and (d)
autumn in the LP from 1982 to 2015. The lines in red and blue represent the NDVI trend before the
BP (BBP, 1982–1999) and after the BP (ABP, 2000–2015), respectively.

The temporal trend of NDVI in BBP and ABP indicated an overall increasing trend
in different periods across the LP (Figure 4a–c). From 1982 to 2015, the vegetation was
characterized by a significant increase in the NDVI which covered approximately 95.1% of
the plateau, whereas only 4.9% of the vegetation experienced negative trends (Figure 4a).
In the area of vegetation improvement, the extremely significantly (p < 0.01) increased
area accounted for 73.2%, mainly distributed in forest and grass areas. In the vegetation
degradation area, 3.7% of the area was reduced (p < 0.01), and the significantly reduced
areas accounted for 1.2%, which are mainly distributed in densely populated areas such as
the urban areas in the northwest of the LP.
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(b) 1982–1999 (BBP); (c) 2000–2015 (ABP).

The averaged trend of NDVI change in BBP was 0.0094 decade−1 spatially, and the
areas showing increasing and decreasing trends accounted for 88.6% and 11.4%, respectively
(Figure 4b). However, the trend of NDVI change in ABP was 0.031 decade−1 spatially,
nearly 3 times of the BBP changes. The proportion of areas with an extremely significant
increasing trend rose obviously from 19.2% in BBP to 60.3% in ABP, and they were detected
mainly in the central LP where the GGP occurred (Figure 4b,c).
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3.2.2. NDVI Change among Bioclimatic Zones

Five bioclimatic zones had the same increasing temporal trend as the LP (whole
region), among which the change rate of the Forest-Grass Zone and Grass Zone in ABP were
even greater than those of LP, reaching 0.048 decade−1 and 0.037 decade−1, respectively
(Figure 5a). In addition, the highest proportion of areas with significantly increasing trends
was found in Forest-Grass Zone (90.21%) and Grass Zone (89.08%) NDVI in ABP, and the
proportion increased sharply compared to the NDVI trends in BBP (Figure 5b). The results
were consistent with Li et al. [38] and Fu et al. [39], indicating that the GGP had achieved an
overall restoration of forests and grasslands, which showed an extensive spatial distribution
in the LP as shown in Figure 4. The restored forests and grasslands were mostly located
in the central Loess hilly and gully area. Specifically, the Forest-Grass Zone achieved the
highest restoration (15.57 × 104 km2), followed by the Grass Zone (16.82 × 104 km2) owing
to the suitable natural conditions.
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Figure 5. Trends of NDVI variation in five bioclimatic zones over different periods. (a) Average
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3.2.3. The Sustainability of NDVI Change

The sustainability of vegetation dynamics trends was assessed by using the Hurst
method. As shown in Figure 6, the results were divided into 4 categories: strong persistent
(0.6–1), weak persistent (0.5–0.6), weak anti-persistent (0.4–0.5), and strong anti-persistent
(0–0.4). The Hurst exponent of the LP is 0.47 on average. The sustainable area, accounted
for 39.46%, mainly concentrated in the Grass Zone of the central LP. The area with anti-
persistent trends accounted for 60.54% and is mainly distributed in the cities where human
activities are intensive.
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3.3. Vegetation Change and Climatic Factors
3.3.1. Climatic Variability Trends from 1982–2015

NDVI and climatic factors showed similar spatial patterns. An increased tendency of
NDVI extended horizontally from northwest to southeast, which was strongly related to
the increasing tendency in temperature, precipitation, and solar radiation (Figure 7). These
suggested that the spatial patterns in NDVI are closely related to climatic factors.
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solar radiation in the LP.

The climate of the LP has changed over the past few decades. The temperature in
the LP showed an increasing overall trend (0.41 ◦C decade−1) (Figure 8b). To be pre-
cise, it increased in the years before 1999 (0.63 ◦C decade−1) then increased at a much
gentler rate (0.13 ◦C decade−1) afterwards. The precipitation also showed an increas-
ing trend (20.2 mm decade−1) in the recent 34 years, with a smaller ABP increasing rate
(11.1 mm decade−1) (Figure 8c). Unlike the temperature and precipitation trend, radiation
showed a decreasing overall trend change during 1982–2015. Specifically, radiation showed
a greater decreasing trend (−27.8 MJ decade−1) before 1999 but a slightly decreasing trend
afterwards (Figure 8d). Overall, the change of rate of climatic factors in the LP was greater
in BBP than in ABP.
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3.3.2. Correlation between NDVI and Climatic Factors

The correlations between NDVI and climatic factors were spatially varied (Figure 9).
The correlations between NDVI and temperature were positive in 90.22% of areas whereas
only 9.78% of urban areas had a negative NDVI-temperature relationship. For the rela-
tionship of NDVI-precipitation, 84.54% of the regions showed positive correlation, mostly
distributed in the central and north of the LP, whereas negative correlations mainly oc-
curred in the south of the LP accounting for 18.45%. The correlation between NDVI and
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radiation was mostly positive in the south and negative in the northwest and east of the LP
from 1982 to 2015, and the area fractions were 37.87% and 62.13%, respectively.

Forests 2022, 13, 1630 12 of 18 
 

 

 

Figure 9. Spatial distributions of response relationships between NDVI and (a) temperature, (b) 

precipitation, and (c) solar radiation. The absolute values of R greater than 0.339 represent signifi-

cant correlations (p < 0.05). 

However, the NDVI-climate relationship varied in different periods (Table 1). Spe-

cifically, over BBP, the correlation coefficients of temperature and precipitation versus 

NDVI were 0.58 and 0.41, respectively, while they were 0.16 and 0.30 for ABP. The corre-

lation coefficients between radiation and NDVI changed from −0.01 for BBP to −0.18 for 

ABP. Furthermore, compared with BBP, the change rate of NDVI over ABP are 3.5 times 

of those in BBP and significantly increased during ABP. These results suggested that cli-

mate change dominated the NDVI variations in BBP, whereas it was more subject to other 

factors (e.g., human activities) in ABP. Therefore, we speculated that recent large-scale 

ecological restoration, especially the GGP project, dominated vegetation coverage in-

crease. 

Table 1. Correlation between NDVI and climate factors. 

Climate Factors 
Correlation Coefficients 

1982–2015 BBP ABP 

Temperature 0.61 ** 0.58 * 0.16 

Precipitation 0.50 ** 0.41 0.30 

Solar Radiation −0.19 −0.01 −0.18 

Note: * and ** represent significance at p < 0.05 and p < 0.01. 

3.3.3. Contribution of Ecological Restoration Project 

Evidence from land-use change in the LP showed that the area of croplands was de-

creasing while the area of forests was increasing after 2000 as the increased impacts of 

human activities (Figure 10b,c). Overall, vegetation coverage in terms of NDVI was the 

Figure 9. Spatial distributions of response relationships between NDVI and (a) temperature, (b) pre-
cipitation, and (c) solar radiation. The absolute values of R greater than 0.339 represent significant
correlations (p < 0.05).

However, the NDVI-climate relationship varied in different periods (Table 1). Specifi-
cally, over BBP, the correlation coefficients of temperature and precipitation versus NDVI
were 0.58 and 0.41, respectively, while they were 0.16 and 0.30 for ABP. The correlation
coefficients between radiation and NDVI changed from −0.01 for BBP to −0.18 for ABP.
Furthermore, compared with BBP, the change rate of NDVI over ABP are 3.5 times of
those in BBP and significantly increased during ABP. These results suggested that climate
change dominated the NDVI variations in BBP, whereas it was more subject to other factors
(e.g., human activities) in ABP. Therefore, we speculated that recent large-scale ecological
restoration, especially the GGP project, dominated vegetation coverage increase.

Table 1. Correlation between NDVI and climate factors.

Climate Factors
Correlation Coefficients

1982–2015 BBP ABP

Temperature 0.61 ** 0.58 * 0.16
Precipitation 0.50 ** 0.41 0.30

Solar Radiation −0.19 −0.01 −0.18
Note: * and ** represent significance at p < 0.05 and p < 0.01.
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3.3.3. Contribution of Ecological Restoration Project

Evidence from land-use change in the LP showed that the area of croplands was
decreasing while the area of forests was increasing after 2000 as the increased impacts of
human activities (Figure 10b,c). Overall, vegetation coverage in terms of NDVI was the
highest for forests, intermediate for grassland, and lowest for shrubs and sparse vegetation.
In ABP, the area of croplands and grasslands decreased by 5620.03 km2 and 1776.27 km2,
while the area of forests and construction land increased by 2608.23 km2 and 5169.76 km2

(Figure 10a). In addition, the decrease in croplands was greater at higher elevations
and steeper slopes (15–25◦), where forests tended to substitute croplands (Figure 11).
Therefore, the NDVI increase for forests and grasslands was probably due to the sustainable
afforestation in higher and steeper regions.
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Figure 11. (a) Slope map of the LP, and (b) NDVI variation trends in different slopes.

The impact of human activities on vegetation change in ABP was more important than
climate change, and the contributions of human activities and climate change accounted for
59.46% and 40.54%, respectively (Table 2). In the five bioclimatic zones, human activities
had a greater impact on vegetation in Forest Zone, Forest-Grass Zone, and Grass Zone,
whereas the characteristic was opposite in the Desert-Grass Zone and Desert Zone. More
specifically, the vegetation changes in Desert-Grass Zone and Desert Zone, where the soil
foundation condition is severe, were affected by climate change, accounting for 51.32% and
55.88%, respectively. However, human activities in the remaining bioclimatic zones were



Forests 2022, 13, 1630 14 of 18

the main factor leading to vegetation changes, with contributions exceeding 50%, reaching
the top in the Grass (77.14%), and this was obviously due to the impact of the GGP in the
forest and grass area with higher vegetation coverage.

Table 2. The contribution of climate driving forces and human activities for vegetation variations.

Region
NDVI Changes Contribution (%)

BBP ABP Total Climate Human

LP 0.2982 0.3186 0.0204 40.54 59.46
Forest 0.4428 0.4658 0.0230 41.76 58.24

Forest-Grass 0.3677 0.3972 0.0295 45.73 54.27
Grass 0.2309 0.2537 0.0228 28.86 77.14

Desert-Grass 0.2130 0.2232 0.0102 51.32 48.68
Desert 0.1639 0.1706 0.0067 55.88 44.12

Note: The monthly temperature and precipitation were selected as climatic factors to construct a regression
equation due to their higher significant correlation with the NDVI (Table 1).

4. Discussion
4.1. Time Series Detection

Vegetation variations are complex and are driven by multiple eco-physiological pro-
cesses and exert strong feedback on the Earth’s systems. Therefore, continuous monitoring
plays an irreplaceable role in global change research and ecological protection. Since the
1980s, vegetated lands have experienced widespread change. Strong evidence of vegeta-
tion “greening” at various scales was provided with the development of remote sensing
technologies [15,19,20,40]. To understand the vegetation dynamics and potentially abrupt
changes from 1982–2015 in the LP, the present study analyzed the spatiotemporal variability
of vegetation using the long times series of satellite-derived GIMMS NDVI3g datasets.

Warming-induced increases in NDVI have been observed in most Northern Hemi-
sphere regions, suggesting a persistent and gradual change in interannual time scales [41,42].
However, there has been little discussion about the abrupt change in the NDVI time series.
The latter is considered essential for understanding and predicting ecosystem responses
to changing climates. Therefore, the relationship between vegetation and climate change
must be investigated at multiple spatiotemporal scales, including seasonal, interannual,
and interdecadal timescales, as well as from regional to bioclimatic zone and pixel-level in
space scales and their combinations.

The BFAST method was found to be helpful for detecting features of vegetation
dynamics [37]. With the establishment of a long-term dynamic detection and regular
assessment system especially for the regions with vulnerable ecosystems, the policy makers
can properly adjust and prioritize restoration measures specifically tailored to the local
changing environment. And our findings showed that the GIMMS NDVI3g time series and
multiple time scales analysis might facilitate a better understanding of the mechanisms
of NDVI variations for ongoing ecosystem monitoring and assessment of the vegetation
dynamics in fragile ecosystems.

4.2. Vegetation Change Causes

Hydrothermal conditions in the climatic environment are the primary natural factor
controlling vegetation growth. Vegetation dynamics and their correlations with climate
change constitute an essential dimension of global change research. Previous studies
have shown that climatic factors such as rainfall, air temperature, and solar radiation
are the main factors affecting vegetation greenness and production in arid and semi-
arid regions [7,43]. Meanwhile, the impact of changes in human activities on vegetation
dynamics is well recognized in extensive research [44,45]. Our results also indicated that
vegetation change could not be fully explained by climatic factors in the LP, especially
after the BP year of 1999. Evidence has shown that the ecological restoration projects have
significantly increased vegetation cover, despite the relative warm-dry climate condition
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across the whole plateau after the BP year of 1999. Furthermore, the LUCC changes mainly
demonstrated that croplands contraction and forests expansion during 2000–2015 in the LP,
which was consistent with the implementation of GGP. In addition, extremely significant
(R2 > 0.661) accelerated greening after 2000 mainly occurred in the central plateau with
steep slopes (i.e., ≥15◦), which demonstrated returning sloping croplands to forests or
grasslands to restore vegetation cover according to the white paper, “Twenty Years of
Converting Farmland to Forest and Grass in China”.

Quantitatively distinguishing the relative impact of climate change and human activity
is vital for understanding vegetation dynamics [46]. Thus, we explored the relationship
between climate and NDVI in BBP to reconstruct NDVI in ABP. The well-developed
equations between climatic factors and NDVI suggested that the method performed well
in reconstructing vegetation under natural conditions. The results showed that human
activities, such as reforestation and land-use change were the major drivers, even greater
than climatic factors in ABP after the GGP implementation. This means the vegetation
greening trend could be attributed to the implementation of the GGP. More importantly,
the quantitative contributions of climate and human activities were 40.54% and 59.46%,
respectively. However, human activities imposed both positive (e.g., afforestation) and
negative (e.g., forest destruction and urbanization) effects. These findings have shed light on
the mechanics of NDVI variations in the periods before and after the GGP implementation.

4.3. Ecological Management Implications

Long-term trends of vegetation variations can not only reveal the current process but
also indicate potential changing directions of ecosystems. And the latter was particularly
important for the ecological program planning and implementation. Our results showed
that grasslands are more sustainable than forests, shrub lands, and sparsely vegetated areas.
The strong anti-persistent trend in the Forest Zone and Forest-Grass Zone of the southern
LP should be noticed, which suggests a browning trend in the coming years. This should
be carefully considered in natural resource management.

The major reason behind this reversing trend may be attributed to shortages in the
water supply. Water is crucial to sustain the greening. The LP is viewed as a typical
arid and semi-arid area in northern China. Ecological restoration projects may result in
potential conflicts between water use for the ecological environment and socioeconomic
development in those water-limited regions [47]. The water demand from rapid urbaniza-
tion and agricultural and industrial development has increased sharply over the same time
as new planting areas have substantially expanded [25]. In such a situation, a restoration
project without consideration of hydrological balance will aggravate the ecological conflict,
especially in water-limited areas. For example, the newly planted trees have been found to
consume excessive soil water, which in turn greatly affects the water balance of the entire
plateau. However, it is worth noting that the survival rate of the planting of a large amount
of non-native species is less than 20% based on the China Forest Resource Report [48,49].
Therefore, for the ecologically sustainable development of the LP, a large-scale restoration
program should select suitable vegetation types to local conditions. In the future, deter-
mining the regional threshold of vegetation cover is a prerequisite for realizing large-scale
revegetation projects are socially and ecologically sustainable.

5. Conclusions

The present study analyzed the vegetation dynamics and their relationships with cli-
matic factors and anthropogenic effects in the LP from 1982–2015. Vegetation observed by
GIMMS NDVI3g showed a greening trend in the LP over the past three decades. The green-
ing vegetation effectively improved the regional ecosystem. In addition, abrupt change in
the decomposed NDVI time series was found in the year 1999: BBP, the uptrend of NDVI
was restrained into a relatively positive trend (0.009 decade−1, p < 0.01); ABP; however,
NDVI exhibited a sharper uptrend with a rate of 0.031 decade−1 (p < 0.01). Results showed
that vegetation greenness was associated with climatic gradients across the platform and
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both were spatially varied with great heterogeneity. Accelerated greening after BP year of
indicated vegetation variation was strongly linked with the GGP implementation. Specif-
ically, the quantitative contributions of climate and human activities were 40.54% and
59.46%, respectively. In addition, climate change and human intensity in the LP will exac-
erbate the water conflict between humans and ecosystems. Hence, ecological restoration
projects should take into account the regional water cycle and balance. More importantly,
long-term monitoring and periodic evaluation should be established in the large-scale
revegetation programs to provide useful information to the plan in a fragile ecosystem.
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