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Abstract: This paper proposes a non-contact, online, rapid, and non-destructive measurement
method of Pinus densiflora S.et Z. (Pinus densiflora) dimension lumber based on an algorithm of
maximizing lumber recovery by minimizing the enclosure rectangle fitting area. The method takes
the full influence of multiple factors, such as the difficulty in measuring large-size dimension lumber,
conveying deflection, etc. into account. Image splicing, object and background segmentation, and
lumber size measurements are carried out. Compared to other current algorithms, it can decrease the
measurement errors and improve measurement efficiency. The problems of slow image segmentation,
large-size lumber measurement, and conveying deflection are solved. Through measurement tests
and error analysis, the measurement accuracy of the lumber size can reach 0.8 mm/m. This method
meets the requirements of high-speed lumber production and lays the foundation for the development
of a lumber detection and evaluation system.

Keywords: Pinus densiflora; lumber; outline size measurement; automatic vision system; dimensional
measurement algorithm; object and background segmentation; deflection angle

1. Introduction

Wood is mainly used as interior and exterior materials in residential and non-residential
buildings [1]. Pinus densiflora is an important lumber species extensively used in in struc-
tural applications due to its abundance, desirable physical properties and its wide range of
grades [2–5]. Therefore, the inspection requirements for Pinus densiflora dimension lumber
are also very high, and the size and defects of the lumber are often important factors
affecting the strength and performance of Pinus densiflora [6].

As one of the factors affecting the applications, the strength properties required in
dimension lumber depends on its characteristics [7,8]. In the detection, measurement
and grading of lumber, the use of the machine vision method has the advantages of high
efficiency and accuracy. It can directly measure the size of the lumber by developing an
algorithm with simple calculation and low hardware requirements. The size measurement
of the dimension lumber is the basic work of defect detection, the dimension manufacturing
process and material application [9]. Manual measurement using a steel tape, triangle ruler
and a vernier caliper is a common size measurement method for dimension lumber. A
Roller Measurement Instrument is installed for object length detection in some equipment,
increasing the cost of sawn timber detection and grading [10]. This proposed method not
only has accurate and stable detection results, but also has fewer restrictions, which is of
great significance to the application of lumber for construction [11–13].

A size measurement system for wood production based on optical imaging was
proposed. However, the research mainly dealt with the small size of images and focused on
the influence of parameters and the discussion of algorithms. There was no discussion of the
lighting, alignment, environmental conditions, and distortion effects [14]. Ergün et al. [15]
applied a close range photogrammetric system to measure the dimension and shape of a
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static object, but this operation was complex, the calculation was large, and the secondary
development of the system was difficult. It did not use samples to verify the accuracy of
the actual production and applications. The Harris algorithm is often used to detect the
corner points of a similar chessboard image. This algorithm is subject to many interference
points and is not suitable for dimension lumber because it is troublesome to deal with [16].
Sun et al. [17] compensated for the measurement results of the cylindrical gear profile by
establishing a nonlinear model of perspective projection error. However, with respect to
small-sized objects, as the size of the measuring object increases, the degree of lens distortion
becomes larger and larger, and the compensation for one side in the measurement process
alone cannot satisfy the accuracy requirement. The sheet measurement system consists of
four measurement processes: image acquisition, camera calibration, extraction, and edges
fitting. The total error of the system regarding the interference of the dimension lumber
and the environmental conditions in the detection process are not analyzed [18].

In recent years, many scholars consider that the image edge is one of the most fun-
damental features of the image, which can be used to determine the size. In a complex
recognition scene, it is important to accurately obtain the edge information of the target [19].
Roberts operator uses the local difference of the operator to find the image edge, and the
calculation is simple but cannot suppress the noise effectively. A Sobel operator can smooth
the noise, but the edge location accuracy is low [20]. The Canny operator performs non-
maximum suppression and morphological connection operation, and gives the operator a
strong denoising ability and a good edge detection effect, but the speed is very slow [21].
Wang et al. compared the performance of the previously mentioned algorithms, and the
experimental results showed that there is no absolute superiority detection algorithm [22].
Roberts, Sobel, and Canny operators are used for the first or second derivative operator to
locate the edge at the pixel level [23]. The improved detection algorithm can complete the
optimal threshold value selection and edge detection process at the same time. However,
the anti-noise performance, computational performance, and the real-time requirements
still need to be improved [24]. In the last few years, the detection accuracy requirement has
become higher and higher in the industry. The traditional pixel level edge detection cannot
meet the actual needs, and sub-pixel edge detection accuracy is increasing [25]. Some
scholars used the deep learning (DL) method to detect defects in wood products. To find
objects that have not been trained before, it is necessary to train the neural network, and
the adaptability of this method was poor [26]. The DL method is not suitable for large-size
image recognition, but the length of dimension lumber is usually greater than 2 m. In recent
years, although lots of 3D measurement methods have been proposed, many of them are
applied to special fields and have limitations, and most existing methods are designed to
measure small objects and are not suitable for large-size dimension lumber [27]. Optical
three-dimensional measurement technology has certain requirements for the color and
reflectivity of the object itself, the color of the object’s surface is close, and the reflectivity of
the object surface is uniform. However, a large number of objects with uneven absorption
and reflectivity bring great challenges to optical three-dimensional measurements [28–31].

As the dimensional lumber is used for structural applications, the sizes and defects
of the lumber are important factors affecting the strength properties. EN 14081-1 [32],
EN 1912 [33] DIN 4074-1 [34] and other standards have high measurement and detec-
tion requirements for dimension lumber. Manual visual inspection and other detection
technologies are gradually being replaced by machine vision technology. At present, the
methods proposed by some scholars have a large amount of calculation, complex operation
and difficult secondary development, and the measurement accuracy needs to be further
improved. Further, the anti-interference performance and calculation speed still need to be
improved [18]. In this study, the dimensional measurement of Pinus densiflora dimension
lumber is carried out based on machine vision technology, and the error, accuracy and effect
of the measurement are analyzed. It is desirable to find an algorithm that can extract the
edge according to the characteristics of wood. This algorithm is accurate, simple, efficient,
and low cost.
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The proposed method has the advantages of being noncontact and high speed, and
correlates well with linear scanning. This method can meet the high precision require-
ments of the dimension measurement of dimension lumber after being improved. With
the help of more powerful computers, higher quality cameras and more precise sensors,
measurement systems have the advantages of high measurement efficiency, low manual
skill requirements, high precision, and low cost when measuring large-size Pinus densiflora
dimension lumber, and it is expected that machine vision hardware and software will be
applied at an industrial scale.

2. Materials and Methods
2.1. Materials

The Pinus densiflora trees were obtained from North Europe. The logs were sawn
into lumber and all pieces of lumber were planed. We pre-selected sawn lumber without
major defects in shape, but the surfaces of the lumber still had defects. In the experiment,
the lumber length was 3985 mm, and the width was 150 mm. The surface of the lumber
was taken as an example, and this algorithm was also suitable for thickness measurements
of the lumber, and the moisture content of the tested dimension lumber was between
12%–15%. The factory application experiment was completed at Suzhou Crownhomes Co.,
LTD., Suzhou City, Jiangsu Province, China. The environment temperature of that day was
28 ◦C and the relative humidity was 63% (Figure 1).
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Figure 1. The tested dimension lumber. (a) Research Institute of Wood Industry, Chinese Academy of
Forestry (b) Dimension lumber.

2.2. Methods

A method for the measurement of lumber size was developed by C++ programming
language, and OpenCV libraries were used to process the image and calculate the size of
the lumber. The visual camera was used to scan the images of the lumber. The proposed
algorithm was used to process the scanned images to realize the size measurement of
the lumber.

2.2.1. The Image Splicing

In this study, the scan images of the pattern were grabbed by the line-scan camera
and cool LED illumination in the uniform rectilinear motion state. Therefore, the image
points were definitely matched with the space points on the pattern [35]. The Basler
raL2048-48 gm line-scan camera with 2048 pixel per line resolution and 51 kHz line-scan
rate was used. This camera was from the German Basler company, which was founded in
1988, has 30 years of experience in the field of vision technology, and is the world’s leading
computer vision expert. Because of the advantages of high resolution, high speed and
real-time data acquisition, the LCD line-scan inspection has an efficient vision system. The
exposure time of the line-scan camera can be controlled by making the exposure signal
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from the composite of the signal from the encoder relate to the conveyer belt speed. So,
the relative speed of the conveyor belt was detected by the speed sensor, and an online
measurement of the outline size of the lumber can be obtained by the algorithm [36].

When the dimension lumber was measured using machine vision, the single picture
taken by the line-scan camera only covered part of the lumber. It was necessary to stitch
together multiple original pictures to restore the image of large-sized lumber. In view
of the camera’s short sampling time, a mismatch could occur as a result of the variance
in adjacent image stitching data and the accumulation of errors [37]. Based on the area
matching algorithm, an image splicing module was designed, which was fast, easy to
implement, and highly applicable. The module included local image sampling→image
sorting→coordinate mapping→image connection→image fusion.

The equation of positive relationship between the upper left corner and the lower left
corner of the horizontal coordinate of the automatic splicing and fusion image is given
in Equation (1):

R1(i + 1) = L1(i) + W(i + 1) i = 1, 2, 3 . . . n (1)

The equations of positive relationship between the upper left corner and the lower left
corner of the vertical coordinates of the automatic splicing and fusion image are given in
Equations (2) and (3):

L2(j + 1) = L2(j) + H(j + 1) j = 1, 2, 3 . . . n (2)

R2(j + 1) = R2(j) + H(j + 1) j = 1, 2, 3 . . . n (3)

L1 is the upper left horizontal coordinate of the lumber; R1 is the upper right horizontal
coordinate of the lumber; L2 is the horizontal coordinate in the upper left corner of the
current splicing image from top to bottom as the number of splices increases; R2 is the
vertical coordinates in the upper left corner of the current splicing from top to bottom as
the number of splices increases; W is the pixel length of the splicing image; H is the pixel
width of the splicing image; i is the sequence number of the splicing image in the horizontal
direction. j is the sequence number of the splicing image in the vertical direction; n is the
total number of images of the whole lumber.

The global splicing method worked as follows: Based on the upper and lower image
registration algorithm, it was established that the displacement parameters i = 0 and j = 0.
The vertical coordinate splicing was completed by mapping the column images from top
to bottom onto the new coordinate of the image. The horizontal splicing was completed
by mapping the row images from left to right onto the new coordinates. Based on the
way the image was shot, only vertical splicing was needed, and the values of L1, R1
and W were fixed. The splicing was completed after the new vertical coordinates were
mapped on (Figure 2).
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Figure 2. Process of automatic seamless splicing.

Manual splicing was not only time-consuming, but also prone to cause gaps in the
splicing pictures, which led to inaccurate identification of the measurement of the lumber.
Automatic splicing can solve the above two problems. It can accurately match the horizontal
and vertical coordinates, and improve the recognition accuracy of lumber images.

2.2.2. Object and Background Segmentation Algorithm

A light source device was designed, which can automatically adjust the height and
brightness. The device had a wide transverse radiation range and high brightness to
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distinguish the object from the background better, reduce the error from the lumber edge
detection, and improve the speed of image processing, which can overcome the influence
of the environment on the capture of objects, and meet the requirements of high speed
and large-format testing (Figure 3). By adjusting the appropriate light source, the surface
and edge characteristics of the lumber can be clearly captured, which is conducive to the
processing and analysis of the grayscale images [38]. The threshold segmentation of the
lumber images before the application of the automatic adjusting light source device had a
poor effect, and there was no good feature extraction for the lumber contour (Figure 4a).
After the application of the automatic adjusting light source device, the threshold of the
lumber and the background image was clearly segmented, which can characterize the edge
characteristics of the lumber and improve the detection accuracy [39] (Figure 4b).
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Figure 4. The image of threshold segmentation by applying the automatic adjusting light source
device. (a) The image of threshold segmentation before applying the automatic adjusting light source
device; (b) The image of threshold segmentation through applying the automatic adjusting light
source device; (c) The lumber and background segmentation.

In terms of the software processing, binarization threshold segmentation and a median
filtering algorithm were used to separate the lumber from the background. In consider-
ation of the strong contrast between the lumber and the background and the grayscale
characteristics of the image, median filtering and binarization processing were carried out,
respectively [40]. Median filtering, a nonlinear filtering method, can remove impulse noise
and small defects, and better retain the basic edge information of the image. In this experi-
ment, the shape and size (nkernelSize) of the two-dimensional filtering window were set as
3. After the median filtering, the two-dimensional image matrix was outputted as 3 × 3 to
prove A. The center points xi,j were assigned the median of the nine pixel points. The local
image (Figure 5) (pixel coordinates: 957 ≤ x ≤ 961, 329 ≤ y ≤ 333) of the digital matrix
changes (Figure 5a) during the image processing. The central point xi,j (pixel coordinates
x = 959, y = 331) was assigned 180 (Figure 5b). Finally, an appropriate threshold e was
selected to divide the image pixels into groups. The image of the lumber segmented by
binarization threshold was clear in the contour and defect, and a certain sharpness of the
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edge was maintained to a certain extent. The digital matrix and the central point, A and xi,j,
are defined by Equations (4)–(6), respectively.

A =

xi−1,j−1 xi−1,j xi−1,j+1
xi,j−1 xi,j xi,j+1

xi+1,j−1 xi+1,j xi+1,j+1

 (4)

xi,j = h (5)

h =
xi−1,j−1 + xi−1,j + xi−1,j+1 + xi,j−1 + xi,j + xi,j+1 + xi+1,j−1 + xi+1,j + xi+1,j+1

3 × 3
(6)
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2.2.3. Dimensional Measurement Algorithm

As the edges of the contour images are not fully connected, it is necessary to assume
that every internally connected segment in the image matrix is fully connected to identify
the minimizing enclosure rectangle area. After that, the segments should be divided
again. If there are disconnected parts, they should be marked as “connected”, using as
few pixels as possible. Finally, the minimum distance and area of the connected region
were calculated [41].

During the image acquisition, the running direction of the lumber can be controlled
by setting an automatic adjustment baffle for the width of the lumber on the roller table.
However, both the operation of the lumber on the roller table and the image acquisition by
the line-scan would be affected when the width is too short. This would lead to a deviation
in image acquisition, and then further affect the fitting accuracy of the dimension. The min-
imum enclosure rectangle boundary rotation algorithm can not only meet the measurement
requirements, but also improve the accuracy of length and width measurements, as well as
accelerate the calculation.

The upper left corner of the image was taken as the origin of coordinates, and then the
boundary endpoints of the minimum enclosure rectangle p [0], p [1], p [2] and p [3], and its
length and width were determined (Figure 6). In this way, the length, width, circumference,
and area of all the minimum enclosure rectangles in the segmented images can be calculated.
The point with the maximum value on the y-axis of the minimum enclosure rectangle is
p [0], and the distance between p [1], p [2] and p [3] is determined clockwise. The distance
between p [0] and p [3] is determined as the length, and the distance between p [0] and
p [2] is determined as the width.
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The center point of the minimum enclosure rectangle was taken as the rotation coordi-
nate point, and the coordinate was set as (xi, yi). The coordinate of p[j] (j-th point on the
boundary of the minimum enclosure rectangle) was set as (xj, yj). Hence the equation of the
rotation angle ϕj (calculate as the included angle between the boundary of the minimum
enclosure rectangle and the X-axis counterclockwise) is given in Equation (7):

ϕj= arctan

(
yj − yi
xj − xi

)
(7)

Affine transformation mainly includes translation, scale, flip, rotation, and shear.
Rotation transformation in the affine transformation is mainly used to reduce conveying
defection error in the measurement of lumber. The center point of the minimum enclosure
rectangle was set as the rotation coordinate point p[i] and rotated clockwise by the angle
of ϕj around the rotation point p[i] successively. Based on the spatial affine rotation
transformation, the transformation matrix and transformation inverse matrix are defined
by Equations (8) and (9), respectively.

M =

 cos ϕj sin ϕj 0
−sin ϕj

0
cos ϕj

0
0
1

 (8)

M−1 =

 cos ϕj −sin ϕj 0
sin ϕj

0
cos ϕj

0
0
1

 (9)

Assume that the coordinates of the minimum enclosure rectangle boundary point
p[j] are (xj, yj), and after the rotation, the coordinates turn into

(→
xj,
→
yj

)
. The equation of

rotation is given in Equation (10):[→
xj
→
yj

]
=

[
cos ϕj sin ϕj
− sin ϕj cos ϕj

][
xj
yj

]
(10)

The equation of reverse rotation is given in Equation (11):

[
xj
yj

]
=

[
cos ϕj − sin ϕj
sin ϕj cos ϕj

][→
xj
→
yj

]
(11)
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After noting down the area of the current lumber, it was compared with the previous
one. If it is greater than the previous value, the previous value remains; if it is smaller, the
previous one is replaced by the current area of the minimum enclosure rectangle (Figure 7a).
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However, because of the interference of other factors, such as the surface defects of
the dimension lumber, the sawn edge, and the excessive exposure to light (Figure 8), the
minimum enclosure rectangle on the image contains more than the result of the size of
the lumber. Hence, it is necessary to adopt the search method of maximum size value to
remove all the other irrelevant values of the minimum enclosure rectangle [42]. The image
object collected by the system is the lumber, and it is the largest enclosure rectangle in the
image. This study improved the minimum enclosure rectangle algorithm and selected the
maximum length and width in all the identified rectangles, namely the length and width of
the lumber (Figure 7b). i is the i-th identified minimum enclosure rectangle, and n is the
total number of the identified minimum enclosure rectangles in the image.
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knot; (f) type: end knot; (g) type: rough saw cut; (h) type: rough saw cut.
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2.2.4. The Size of Calibration

The system uses different methods to convert pixels into dimensions in the transverse
and longitudinal directions, and the minimum unit of the output size is 0.01 mm. According
to the triangular projection relation, the actual size of the lumber corresponding to the
transverse pixels of the image is related to its optical path position. Therefore, to achieve the
highest accuracy with dimension measurement, it is necessary to use piecewise functions to
obtain the corresponding dimensions of each horizontal feature pixel, Wx, which is defined
by Equation (12) [43].

Wx = Q(Dx) − Q(D0) = K1 × Px (12)

Dx is the horizontal pixel position on the right of the lumber to be measured. D0 is the
horizontal pixel position of the original point.

Suppose Dx is the pixel position of the n-th segment, the transverse interval piecewise
function, Q(Dx), is defined by Equation (13).

Q(Dx) =
n−1

∑
i=0

w(i) + f (n, Dx) (13)

The linear speed transmitted by the roller table of this system is accurately measured
through the pulse number of the encoder, and the scanning speed of the camera is controlled
by the pulse excitation of the encoder. When it comes to the longitudinal dimension
calibration, K2 is the ratio of the length of the feature pixel points to the actual length of the
lumber; the longitudinal dimension of the lumber, Hy, is defined by Equation (14).

Hy = Q(Dy) − Q(D0) (14)

Dy is the vertical pixel position on the left bottom of the lumber that is to be measured;
D0 is the longitudinal pixel position of the original point.

Suppose Dy is the pixel position of the n-th segment, the longitudinal interval piece-
wise function, Q(Dx), is defined by Equation (15):

Q(Dy) =
n − 1

∑
i=0

h(i)+ f (n, Dy) (15)

In the actual measurement, the length and width of the lumber are not completely
aligned with the horizontal and vertical axis due to conveying deflection during the image
acquisition. When the lumber is affected by conveying deflection, the main axis of the object
should be determined firstly, and then the length and width of the object (the enclosure
rectangle) along the main axis direction should be identified to identify the minimum area
of the enclosure rectangle. Suppose the horizontal coordinates of the rectangles are Dx(x1,
y1) and D0(x0, y0), respectively. After image splicing, the target object is identified by the
minimum enclosure rectangle. The corresponding size of the width feature pixel WMERx is
defined by Equation (16).

WMERx = K1

√
(y1 − y0)2 + (x1 − x0)

2 (16)

K1 is the ratio of the width of the feature pixels to the actual width of the lumber.
It is assumed that the ordinates of the lumber are Dy(x2, y2) and D0(x0, y0), respectively.

After image splicing, the minimum enclosure rectangle was identified on the target object.
The corresponding size of the width feature pixel HMERy is defined by Equation (17).

WMERx = K2

√
(y1 − y0)

2 + (x1 − x0)2 (17)

K2 is the ratio of the length of the feature pixels to the actual length of the lumber.
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The camera’s intrinsic and extrinsic parameters were evaluated by utilizing a piece
of 18 × 22 checkerboard to calibrate the camera, and the camera lens distortion was also
considered to ensure the accuracy of the dimensional measurements. The checkerboard
image was used to calibrate the ratio (K1 K2) of the length of the lumber to its width.
Excluding the influence of other factors, the smaller the rotation angle, the more accurate
the measurement results. The experiment results showed that K1 = 19.608, and K2 = 8.529.
Equipped with a length roller measurement instrument in the length measurement direc-
tion, when the results differ greatly from the machine vision results, the system would
suggest re-measurement.

2.2.5. Statistical Analysis

In order to verify the feasibility of the dimensional measurement technology, the
measured length and width of the lumber was compared to the actual measurements.
The actual data of the lumber measured using a steel tape (accuracy of 1 mm), triangle
ruler (accuracy of 1 mm) and a vernier caliper (accuracy of 0.01 mm) was taken as the
reference standard value. So as to evaluate the measurement accuracy and measurement
error, Bias, relative Bias, root mean square error (RMSE) and relative mean square error
(rRMSE) were used to evaluate the measurement accuracy of the algorithm based on the
machine vision [44].

Bias =
1
n

n

∑
i=1

ei =
1
n

n

∑
i=1

(y i − yri) (18)

rBias =
|Bias|

yr
× 100% (19)

rBias =
Bias
yr
×100% (20)

RMSE =

√
∑ (y i − yri)

2

n
(21)

rRMSE =
RMSE

yr
×100% (22)

where yi is the measured value based on machine vision, yir is the actual reference standard
value, n is the number of samples, and yr is the actual measured mean; the above four
evaluation indexes were used to evaluate the measurement accuracy.

3. Results
3.1. Deflection Angle and Error

The green rectangle is the initial minimum enclosure rectangle. The dimension lumber
is rotated around the center point to the horizontal position to identify the enclosure
rectangle. Then, the dimension lumber is rotated back to the initial position. The minimum
enclosure rectangle is shown as the red rectangle in Figure 9. The identification of the
minimum enclosure rectangle of the lumber in different angles (0.28◦–5.44◦) is shown in
Figure 9. From the perspective of area compensation, the greater the deflection angle, the
greater the rectangle identification area to be corrected.

Compare the length and width of the minimum enclosure rectangle without the rota-
tion algorithm with that of the improved rotation algorithm (the actual length of 458.50 mm
and the width of 48.00 mm), the inaccuracy of the length decreased by 0.188%–0.469%,
and the inaccuracy of the width decreased by 15.450%–191.522% (Table 1). Eventually, the
length, width, circumference, and area of the lumber can be measured. The error of the
measurement result can be narrowed within 0.8 mm per meter (Table 2). It can be concluded
that this algorithm can solve the problem of conveying deflection well, improve the fitting
accuracy of the lumber, and minimize the deviation caused by conveying deflection.
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Figure 9. Fitting of the minimum enclosing rectangle before and after the rotation of the dimension
lumber with different conveying deflection angles. (a) deflection angle ϕj = 0.28◦; (b) deflection angle
ϕj = 1.27◦; (c) deflection angle ϕj = 2.29◦; (d) deflection angle ϕj = 3.10◦; (e) deflection angle ϕj = 4.15◦;
(f) deflection angle ϕj = 5.44◦.

Table 1. Dimensional measurement of dimension lumber in different conveying deflection angles.

Deflection
Angle/◦

Measured
Length/mm

Measured
Width/mm

Measured
Circumference/mm

Measured
Area/mm2

0.28 460.011 50.004 1033.770 22,835.733
1.27 460.104 50.007 1030.701 22,798.58
2.29 460.155 50.009 1051.271 23,038.381
3.10 460.207 50.012 1047.036 22,681.396
4.15 460.258 50.018 1041.482 22,663.985
5.44 460.309 50.023 1060.413 22,861.272

As can be seen from the data in Table 2, the percent error of the width measurement
was significantly reduced, and that of the length measurement was also reduced to a
certain extent. This means that the improved algorithm can accurately identify the rotating
rectangle and reduce the error, so as to improve measurement accuracy.

The linear function fitting deflection angle and percentage reduction in width detection
error is y = 32.527x + 3.728, R2 = 0.9982 (Figure 10a). The linear function fitting deflection
angle and percentage reduction in the length detection error before 1 degree (deflection
angle, x axis) is y = 0.166x + 0.144, R2 = 0.9546; The linear function fitting deflection angle
and percentage reduction in the length detection error after 1 degree (deflection angle,
x-axis) is y = 0.049x − 0.235, R2 = 0.8859 (Figure 10b). As the deflection angle increases, the
percent error of the length and width measurements increase. The structural sawn timber
can effectively reduce the deflection detection error of the large-size dimension lumber
within the above deflection angle range, thereby increasing measurement accuracy. In
practice, the general conveying deflection angle is within 5◦, and a greater than 5◦ has no
research significance, and is usually not discussed.
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Table 2. Comparison between the measurements based on machine vision and the actual measure-
ments.

Deflection
Angle/◦ Size rBias (before

Rotation)/%
rBias (after
Rotation)/%

rRMSE (before
Rotation)/%

rRMSE (after
Rotation)/%

Percentage Reduction
in Error/%

0.28
length 0.190 0.002 0.134 0.002 0.188
width 15.457 0.007 10.930 0.005 15.450

1.27
length 0.358 0.023 0.253 0.016 0.335
width 49.415 0.014 34.941 0.010 49.400

2.29
length 0.413 0.034 0.292 0.024 0.380
width 85.480 0.019 60.444 0.013 85.461

3.10
length 0.436 0.045 0.308 0.032 0.390
width 127.400 0.023 90.086 0.017 127.377

4.15
length 0.492 0.056 0.348 0.040 0.436
width 157.611 0.035 111.448 0.025 157.576

5.44
length 0.536 0.067 0.379 0.048 0.469
width 191.569 0.047 135.460 0.033 191.522
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3.2. Numerical Analyses

The length and width were measured at different positions on the dimension lumber,
and the average values were taken as the actual dimensions of the lumber. The average
size of the six test samples were 3985.333 mm × 149.667 mm, 3986.167 mm × 149.667 mm,
3985.167 mm × 150.500 mm, 3985.167 mm × 150.000 mm, 3985.667 mm × 150.833 mm, and
3985.500 mm × 150.333 mm. The scanning and measurements were carried out six times for
the lumber, and the average value of the six measurements was used for further calculations.

In the industrial experiments, the length, width, circumference, and area of the dimen-
sion lumber were measured based on machine vision. It can be seen in Table 3 that the
measured value is similar to the actual size, and that the size of the lumber can be accurately
identified within the allowable error range. As can be seen in Table 4, the range of length
Bias is −0.421 mm–2.016 mm; the range of width Bias is −0.034 mm–0.101 mm; the range
of length rBias is 0.011%–0.051%; the range of width rBias is 0.004%–0.067%; the length
RMSE range is 0.297 mm–1.425 mm; the width RMSE range is 0.004 mm–0.071 mm; the
length rRMSE range is 0.007%–0.036%; and the width rRMSE range is 0.003%–0.047%. The
results show that the measured value is reliable and can meet the precision requirements of
dimensional measurement of large-size dimension lumber.
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Table 3. Dimensional measurement of Pinus densiflora the dimension lumber.

Samples Measured
Length/mm

Measured
Width/mm

Measured
Circumference/mm

Measured
Area/mm2

1 3987.349 149.659 8992.908 566,763.835
2 3985.543 149.725 8738.467 565,252.826
3 3984.150 150.601 8625.958 566,452.072
4 3984.746 150.083 8622.971 563,868.548
5 3984.135 150.799 8674.624 564,118.942
6 3983.736 150.327 8958.893 569,050.205

Table 4. The error analysis of the dimensional measurement of the lumber.

Samples Size Bias/mm rBias/% RMSE/mm rRMSE/%

1
length 2.016 0.051 1.425 0.036
width 0.008 0.005 0.005 0.004

2
length 0.623 0.016 0.441 0.011
width 0.058 0.039 0.041 0.028

3
length 1.017 0.026 0.719 0.018
width 0.101 0.067 0.071 0.047

4
length 0.421 0.011 0.297 0.007
width 0.083 0.055 0.058 0.039

5
length 1.532 0.038 1.083 0.027
width −0.034 0.023 0.024 0.016

6
length 1.764 0.044 1.247 0.031
width −0.007 0.004 0.004 0.003

The experiments show that the precision of the measuring system can be controlled
within 0.8 mm per meter, as shown in Table 4, which satisfies the accuracy of dimensional
measurement of large-size dimension lumber in the industry, which have high application
value as building materials. Due to the tolerance in sawing and shrinkage variation of
the lumber affecting the measurement results, the lumber is not a completely regular
rectangular circumference and area. In some saw mills, lumber size is often calculated
by its length and width, which is not accurate. In this paper, a method of measuring the
circumference and area of the dimension lumber based on the pixel proportion algorithm
is proposed, which can effectively, conveniently, and accurately measure the circumference
and area of Pinus densiflora dimension lumber.

4. Discussion

A scan image of Pinus densiflora dimension lumber is grabbed by the Basler line-scan
camera, analyzed by the improved algorithm, and uses an automatic adjusting light source
device. The advanced algorithm effectively improves the detection efficiency and detection
accuracy. This noncontact and nondestructive testing measurement system meets the needs
of the sawmills.

High accuracy 3D measurements based on the 2D sensor platform within the scope
of the cost should be addressed in future work [45]. Combined with the multi-sensor
technology, it solves the problems existing in current 3D measurement technology in the
measurement of dimension lumber, and integrates laser and CMOS (Complementary Metal-
Oxide-Semiconductor) technology to achieve a high precision dimension measurement.
The detection system can not only be used for both longitudinal and transversal sawing
lines, but may also be seamlessly integrated into any existing production line [46].

The main advantage of this system using a 2D measurement, is that the dimension
lumber is fully scanned. Movements of the lumber would not have any influence on the di-
mensional measurement, which could generate more secure measurements and more stable
signals as compared to older systems based on the 1D measurement technique. The whole
system reduces moving parts, reduces mechanical wear, and has durable vision, being easy
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to install in new and existing production lines [47]. The system can be equipped with the
advanced technology that allows bent and twisted lumber with different thicknesses to be
reliably measured.

Dimension lumber distortion following changing moisture content may lead to a
high rejection rate in lumber grading and construction applications. In the future, this
method, based on machine vision, will be able to provide full field measurements with
high resolution. The method can identify the slight shrinkage changes of lumber and judge
the shrinkage of wood over a certain range. This method can be used to measure shrinkage
properties of softwood species [48].

The measurement of structural lumber using machine vision is a cutting-edge technol-
ogy in the application of the wood processing industry. In future, it is expected that further
research will be carried out on wood defect identification, optimal production, quality
evaluation and the applications of Pinus densiflora structural lumber [49].

A self-triggering function to start the measurement should also be addressed in
future work. This system has a range masking feature, which eliminates measurement
deterioration due to reflections from surrounding equipment. A measurement algorithm
that can distinguish between object and background and has a high measurement rate will
secure a high turning efficiency [50].

5. Conclusions

By adding the automatic adjusting light source device, the scan image can be flexibly
adjusted and adapted to the illumination conditions influenced by the detection environ-
ment, allowing for the Pinus densiflora lumber surface color, texture, and other properties to
be identified.

The fusion image splicing algorithm is developed for the identification of large-size
Pinus densiflora dimension lumber, which can reduce identification error, save manual
splicing time, speed up image processing, and solve the problems of misidentification. This
will be well regarded by engineers and builders, especially for structural components and
heavy timber applications.

The feature extraction of the dimension lumber can be effectively realized, and the
inaccuracy of edge recognition caused by interferences can be solved. After different
processing images and digital matrixes are compared, it has been proven that the algorithm
can achieve a good segmentation effect of the object and background.

The improved minimum enclosure rectangle algorithm can solve the problem of the
deflection error of the dimension lumber affecting the fitting accuracy. Through the experi-
ments, the linear relationship between the deflection angle and the percentage decrease
in length and width measurement errors are proved in the deflection angle range of 5◦.
The results show that the identification error can be reduced using the minimum enclosure
rectangle rotation algorithm. When the minimum enclosure rectangle of identification
error appears in the image, combined with the maximum search method, the length, width,
circumference, and area of the dimension lumber are output, and other misidentification
interferences are eliminated. Using the pixel proportion method to obtain the circumference
and area values of the dimension lumber can accurately measure the size of the dimension
lumber. The algorithm is simple, fast, and accurate, which can solve the existing problems.
It has important application significance in sawmills and building materials. This study
verifies the reliability and stability of the system through the factory test and data analysis,
which has important production and application values.
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