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Abstract: Understanding terrestrial water storage (TWS) dynamics and associated drivers (e.g.,
climate variability, vegetation change, and human activities) across climate zones is essential for
designing water resources management strategies in a changing environment. This study estimated
TWS anomalies (TWSAs) based on the corrected Gravity Recovery and Climate Experiment (GRACE)
gravity satellite data and derived driving factors for 214 watersheds across six climate zones in
China. We evaluated the long-term trends and stationarities of TWSAs from 2004 to 2014 using the
Mann–Kendall trend test and Augmented Dickey-Fuller stationarity test, respectively, and identified
the key driving factors for TWSAs using the partial correlation analysis. The results indicated that
increased TWSAs were observed in watersheds in tropical and subtropical climate zones, while
decreased TWSAs were found in alpine and warm temperate watersheds. For tropical watersheds,
increases in TWS were caused by increasing water conservation capacity as a result of large-scale
plantations and the implementation of natural forest protection programs. For subtropical watersheds,
TWS increments were driven by increasing precipitation and forestation. The decreasing tendency
in TWS in warm temperate watersheds was related to intensive human activities. In the cold
temperate zone, increased precipitation and soil moisture resulting from accelerated and advanced
melting of frozen soils outweigh the above-ground evapotranspiration losses, which consequently
led to the upward tendency in TWS in some watersheds (e.g., Xiaoxing’anling mountains). In the
alpine climate zone, significant declines in TWS were caused by declined precipitation and soil
moisture and increased evapotranspiration and glacier retreats due to global warming, as well as
increased agriculture activities. These findings can provide critical scientific evidence and guidance
for policymakers to design adaptive strategies and plans for watershed-scale water resources and
forest management in different climate zones.

Keywords: terrestrial water storage; climate zones; forest change; climate variability; human activities;
GRACE satellite

1. Introduction

Terrestrial water storage (TWS) including surface water, groundwater, lakes, snow, and
ice has been viewed as an important indicator for assessing water resources [1]. However,
the estimations of TWS at larger spatial scales are rather challenging. The high-cost in situ
measurements can provide robust estimations of TWS but are only available for relatively
small watersheds. Early satellite observations can be used to estimate surface water and
shallow soil water but with a significant limitation in estimating deep soil moisture and
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groundwater. The Gravity Recovery and Climate Experiment (GRACE) satellite launched
in 2002 by the National Aeronautics and Space Administration (NASA) and German
Aerospace Center (DLR) has been identified as an effective tool to measure the mass
changes within the Earth system. Although the GRACE satellite cannot directly generate the
estimations of the absolute values of TWS, GRACE data can be further proceeded to retrieve
the TWS anomalies (TWSAs). The positive and negative values of TWSAs can be used to
indicate water surplus and water deficits, respectively [2]. Various studies have validated
the availability and accuracy of GRACE data over a large scale [3–6]. The estimations of
TWSAs by GRACE have greatly improved our understanding of spatial and temporal
variations of TWS changes at a large scale. As indicated by GRACE retrievals, significant
changes in TWS have been observed worldwide, where both significant decreasing and
increasing trends in TWS have been reported in different regions. For example, TWS
significantly decreased by 0.42 ± 0.12 cm/year in the Tianshan Mountains in Northwest
China from 2003 to 2013 [7]. Similar declines in TWS were also observed in Amazon and
Central Asia [8,9]. Contrarily, there were significant increases in TWS in North America,
even though there were extreme drought events from 1999 to 2005 [10]. Those changes in
TWS will inevitably threaten watershed and regional water supply and flood control [11].
Therefore, understanding TWS changes and associated regional differences is essential for
future water resource management.

Climate variability and change (e.g., global warming, El Niño, drought, and heat-
waves), vegetation change (e.g., deforestation, reforestation, and land-use change), and
extensive anthropogenic activities (e.g., groundwater exploitation, irrigation, mining, and
dam construction) can considerably affect TWS and the availability of water resources [12–15].
Climate variability is the major driver for TWS variations, which can directly affect the
water cycle by influencing precipitation and evapotranspiration (ET), resulting in variations
in TWS [16]. TWS variations associated with climate variability are often limited within a
natural range, which ensures a stable and predictable water supply for human beings [17].
However, climate change, vegetation change, and human disturbances have greatly al-
tered TWS and intensified its variability in recent years [18–20], especially in areas that
are sensitive to climate change (e.g., alpine regions) or experience frequent groundwater
extractions (e.g., arid and semiarid regions) [21,22]. For example, global warming-induced
glacial melting has been found to significantly decrease TWS in the Greenland Ice Sheet [23].
Increasing trends in drought frequency and severity due to climate change have posed sub-
stantial stress on TWS in the Yangtze, Pearl, Huaihe, Southeast, and Songhua River Basins
of China [24,25]. In addition, vegetation change either due to climate change or human
activities frequently alters the water cycle. The general perception is that deforestation (e.g.,
harvesting, urbanization, wildfire, and insect infestation) can significantly increase annual
runoff and alter peak flows [26–31], while forestation can decrease annual runoff and
reduce peak flows [32–35]. Furthermore, human activities such as dam construction have
often been found to affect TWS by increasing surface water bodies and altering natural flow
regimes [17,36]. Intensive human activities can also affect TWS downstream. For instance,
flow reductions were observed downstream of the Shiyang River Basin [37], resulting
from large-scale irrigation activities upstream. Obviously, it is of great necessity to study
how these drivers (climate, vegetation, and human activities) affect TWS for maintaining
sustainable water resources.

Variations in TWS actually differ among regions or watersheds due to their differences
in topography, climate, vegetation, and geology as well as in human activities and land
use change. Therefore, examining the variations in TWS and associated drivers must be
placed within an environmental context to understand the mechanism for TWS changes
and deceiving watershed or region-specific strategies for water resource management in
a changing environment. China covers a large span of climate gradients, which can be
classified into six climate zones. Each climate zone differs in climate variability and change,
vegetation change, and human activities, where watershed TWS may demonstrate different
change patterns and driving mechanisms. However, previous studies have generally
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assessed the TWS dynamics in single watersheds [38–40]. There is still a lack of studies
investigating the changes in watershed TWS and associated driving mechanisms (e.g.,
climate, vegetation change, and human activities) across climate gradients, which impedes
the design of water resource management and forest restoration to adapt TWS variations
in watersheds across climate zones. To address these issues, this study aims to detect the
change trends and stationarities of TWS and identify the relationships between TWS with
its driving factors in watersheds located in six climate zones in China. The findings from
this study could provide critical information to design adaptive strategies and plans for
watershed-scale water resources and forest management in different climate zones.

2. Materials and Methods
2.1. Study Area

China (3◦51′ N–53◦33′ N, 73◦33′ E–135◦05′ E) has complex river networks, which can
be classified into 214 third-order watersheds with areas ranging from 24.89 to 7.92× 105 km2

according to the watershed classification criteria provided by the Institute of Geographical
Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS). Detailed
information about the watershed size and climate conditions for 214 watersheds is listed in
Table A1. There are six climate zones in China, including tropical monsoon (T), subtropical
monsoon (ST), warm temperate (W), mild temperate (M), cold temperate (C), and alpine
climate (A) zones (Figure 1). Given that only four watersheds are located in the cold
temperate zone, we combined the mild and cold temperate zones into the ‘mild-cold
temperate zone (MC)’ in the analysis. China is characterized by distinct spatial patterns of
temperature and precipitation where annual precipitation and mean temperature increase
from the north (e.g., 238.17 mm and −11 ◦C in the Chip Chap River watershed) to the
south (e.g., 2000.36 mm and 23 ◦C in Hainan Island) (Table A1 and Figure A1). China
also covers a wide variety of vegetation types including shrubs, grasses, broadleaf forests,
coniferous forests, and tropical forests (Figure A2). Watersheds in tropical and subtropical
climate zones are mainly dominated by forests while those in warm temperate, mild-cold
temperate, and alpine climate zones are mostly covered by grass (Figure 2 and Table 1).
The average forest coverage for watersheds in tropical, subtropical, warm temperate,
mild-cold temperate, and alpine climate zones are 73.31, 60.88, 10.77, 26.13, and 1.36%,
respectively. Human disturbances (e.g., industry, agriculture, hydropower development,
and urbanization) are widespread across China, especially in southern, central, and eastern
China. Water shortage is a common problem in most cities with low water resource capacity
for economic development in northern China, which rely on the South-to-North Water
Diversion Project to sustain water use by growing populations [41].
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Table 1. The vegetation coverage across six climate zones in China.

Climate Zone Area (km2) P (mm) Tave (◦C) FC (%) SC (%) GC (%)

All (n = 214) 9.84 × 106 862.15 10.40 36.31 0.14 21.73
Tropical monsoon (n = 11) 3.62 × 105 1445.57 18.21 73.31 0.01 4.22

Subtropical monsoon (n = 88) 30.23 × 105 1296.02 14.85 60.88 0.03 6.44
Warm temperate (n = 50) 16.30 × 105 541.54 10.32 10.77 0.30 25.89

Mild-cold temperate (n = 39) 20.69 × 105 483.49 4.07 26.13 0.29 38.93
Alpine climate (n = 26) 27.62 × 105 331.43 1.68 1.36 0.13 47.16

Note: P, Tave, FC, SC, GC denote precipitation, average temperature, forest coverage, shrub coverage, and
grassland coverage, respectively.

2.2. Data

The GRACE Level-2 products provided by the Centre for Space Research (CSR) at
the University of Texas (UTCSR: http://www.csr.utexas.edu/datasets/) (accessed on
1 December 2020) were used to extract GRACE data covering China from 2004 to 2014
in this study. The existing C20 term, an index to express gravitational variations, was re-
placed by the C20 term obtained by Satellite Laser Ranging (SLR) to improve the accuracy of
the estimations [42,43]. Given that the correlations between spherical harmonic coefficients
of different orders in the GRACE products would lead to bandings in images, decorrelation
was applied first to remove north–south stripes. Then, the Gaussian smoothing filter was
used to reduce errors from high orders. Finally, we applied the method recommended by
Wahr et al., 1998 to generate the 0.25◦ × 0.25◦ TWSAs images, where TWSAs in watersheds
across six climate zones in China from 2004 to 2014 can be derived to perform the following
analyses [44]. We applied high-frequency filtering and de-striping algorithms to reduce
the noise level of GRACE data, which have been proven to be effective but would weaken
the effective signal of the model [45–47]. The signal in the target region may leak into
the surrounding areas and cause amplitude damping in the region (leakage-out). The
signal from the surrounding areas may also leak into the target region (leakage-in). To
address this issue, we used the signal leakage algorithm and applied the GRACE Matlab
Toolbox (GRAMAT) to mitigate the effect of signal leakage. The toolbox was developed on
the MacOSX operating systems with the Matlab software (version R2014a) by Feng Wei
(Wuhan, China) [47]. Then, we applied the scaling method to downscale the resolution,
which optimizes the basin shape descriptions. Existing studies [47–49] have indicated this
method is suitable for retrieving TWS for small basins.

http://www.csr.utexas.edu/datasets/
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Monthly climate data with a spatial resolution of 0.5◦, including precipitation, evapo-
transpiration, and mean temperature, were collected from Chinese Surface Climate Informa-
tion of the National Meteorological Information Center (http://www.nmic.cn/) (accessed
on 1 February 2021). Effective precipitation (PE), which refers to the precipitation that
is available for the generation of surface water, was calculated as the difference between
precipitation (P) and evapotranspiration (ET) by Equation (1) [50].

PE = P − ET (1)

Three types of vegetation data including the leaf area index (LAI), normalized dif-
ference vegetation index (NDVI), and vegetation fraction coverage (VFC) were used to
describe vegetation conditions. LAI data were derived from the Global Land Surface Satel-
lite LAI (GLASS LAI) product provided by the National Earth System Science Data Center
(http://www.geodata.cn) (accessed on 5 February 2021), with a spatial resolution of 0.05◦.
NDVI was obtained from the Global Inventory Modelling and Mapping Studies (GIMMS)
NDVI 3 g dataset at a temporal resolution of 15 days and a spatial resolution of 1/12◦

(http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/) (accessed on
5 February 2021). VFC was calculated based on NDVI (Equation (2)).

VFC = (NDVI − NDVImin)/(NDVImax − NDVImin) (2)

To describe watershed characteristics, we also used soil moisture and land cover
data. The soil moisture data were derived from the Global Land Data Assimilation System
(GLDAS) dataset with a spatial resolution of 500 m (https://ldas.gsfc.nasa.gov/gldas)
(accessed on 10 February 2021). Land cover data were derived from the MODIS Land Cover
Type Product (MCD12Q1) with a spatial resolution of 500 m (https://ladsweb.modaps.
eosdis.nasa.gov/) (accessed on 10 February 2021).

Human activities data were derived from the China National Bureau of Statistics (http://
www.stats.gov.cn/) (accessed on 1 March 2021) and WorldPop (https://www.worldpop.org/)
(accessed on 5 March 2021). The former dataset provided human activities data of each
province including the Gross Domestic Product (GDP), per capita GDP, irrigated area,
water consumption for industrial, agricultural, and domestic activities, and total water
consumption, while the latter had annual population density data with a spatial resolution
of 1km. To calculate watershed-scale human activity data, we firstly derived gridded-based
population density at the watershed and province scale from WorldPop, respectively, to
calculate the population density ratio (pi) for each watershed (Equation (3)). Then, we
calculated human activity data for each watershed (Ai) according to human activity data at
the province scale (A) and pi (Equation (4)).

pi = PDi/PD (3)

Ai = pi × A (4)

where pi, PDi, PD, Ai, and A denote the population density ratio, population density at
the watershed scale, population density at the province scale, human activity data at the
watershed scale, and human activity data at the province scale, respectively.

2.3. Methods

This study was designed to identify TWS dynamics and associated driving factors in
watersheds across six climate zones in China (Figure 3). Firstly, the potential driving factors
for watershed TWS were classified into three types: Climate, watershed characteristics, and
human activities, which were widely used in existing studies [51–59]. The selected climate
factors include annual precipitation (P), effective precipitation (PE), evapotranspiration
(ET), and annual mean temperature (Tave). Soil moisture (SM) and vegetation indices
including LAI, NDVI, and VFC were selected to represent watershed characteristics for
TWS variations, while factors such as water use by agriculture, industry, and domestic

http://www.nmic.cn/
http://www.geodata.cn
http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
https://ldas.gsfc.nasa.gov/gldas
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
https://www.worldpop.org/
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activities, population density, and GDP were selected to express human influences. Detailed
information on drivers can be found in Table 2.
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Table 2. The summary of driving factors for watershed TWS.

Type of Factors Index Symbol Unit

Climate

Precipitation P mm
Effective precipitation PE mm

Evapotranspiration ET mm
Temperature Tave

◦C

Watershed
characteristics

Leaf area index LAI m2/m2

Normalized difference
vegetation index NDVI -

Vegetation fraction coverage VFC %
Soil moisture SM %

Human
activities

Industrial water use IND mm
Agricultural water use AGR mm

Domestic water use DW mm
Total water use WT mm
Irrigated area IRR 103 hm

Population density PD persons/km2

Gross domestic product GDP RMB
Per capita GDP PERGDP RMB

The augmented unit root test (ADF test) proposed by Dickey and Fuller was then
used to test the stationarity of each time series of data, which can indicate the inter-annual
variations of TWS [60,61]. In the ADF test, the stationarity is evaluated based on the
absolute value of the characteristic roots [60,62]. If the t statistic is less than that of a given
percentage level (e.g., 10% level) and the probability is greater than 0.10, the time series
is non-stationary [63]. The non-parametric Mann–Kendall (MK) trend test was applied
to detect the statistical significance of trends in data series, e.g., TWSAs for each study
watershed from 2004 to 2014 with a significance level of 0.05 [64–66]. The partial correlation
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analysis was finally adopted in this study to detect the correlations between TWSAs and
driving factors at a statistically significant 0.05 level, which can indicate the key factors for
TWS variations, as well as the associated driving mechanisms [51].

3. Results
3.1. TWSAs and Driving Factors: Trend and Stationarity
3.1.1. Trends and Stationarities of TWSAs

As suggested by ADF and MK tests (Tables 3 and 4), TWSAs for 214 watersheds from
2004 to 2014 are non-stationary (t = −2.59 and Prob. > 0.10) with a significant downward
trend (Z = −3.62 and p < 0.05). Although the time series of TWSAs are non-stationary in
watersheds from all climate zones, the change patterns of TWSAs differ among climate
zones. From 2004 to 2014, there are significant increasing trends (p < 0.05) in TWSAs in
tropical and subtropical watersheds, and significant decreases in TWSAs (p < 0.05) in warm
temperate and alpine watersheds. An insignificant trend is detected in watersheds from
the mild-cold temperate zone.

Table 3. Results of trends in TWSAs from 2004 to 2014.

Climate Zone
MK Test

Z tau Value p Value

All (n= 214) −3.62 * −0.05 0.000
Tropical monsoon zone (n = 11) 3.42 ** 0.18 0.000

Subtropical monsoon zone (n = 88) 10.61 ** 0.23 0.000
Warm temperate zone (n = 50) −20.74 ** −0.59 0.000
Alpine climate zone (n = 26) −6.16 ** −0.24 0.000

Mild-cold temperate zone (n = 39) 1.32 0.04 0.187
Note: ** α = 0.05, * α = 0.10.

Table 4. Results of stationarity tests in TWSAs.

Climate Zone
Augmented Dicken-Fuller Test Statistic

t-Statistic 1% Level 5% Level 10% Level Prob. * Stationary

All (n = 214) −2.59 −4.42 −3.26 −3.26 0.13 No
Tropical monsoon zone (n = 11) −2.59 −4.42 −3.26 −2.77 0.13 No

Subtropical monsoon zone (n = 88) −0.18 −4.42 −3.26 −2.77 0.35 No
Warm temperate zone (n = 50) −1.35 −4.30 −3.21 −2.75 0.56 No

Mild-cold temperate zone (n = 39) −1.74 −4.30 −3.21 −2.75 0.38 No
Alpine climate zone (n = 26) −1.16 −4.30 −3.21 −2.75 0.65 No

Note: * α = 0.10.

3.1.2. Trends of Driving Factors

Figure 4 exhibits the results of trend tests for driving factors from 2004 to 2014. Sig-
nificant increasing trends are detected in NDVI, GDP, PERGDP, WT, and IRR (p < 0.05)
for all watersheds. Specifically, ET, LAI, NDVI, VFC, IND, GDP, PERGDP, IRR, and PD
significantly increase in tropical watersheds. For subtropical watersheds, there are signifi-
cant increments in ten driving factors (i.e., P, PE, ET, Tave, LAI, NDVI, VFC, DW, GDP, and
PERGDP). Significant increments are found in the AGR, WT, GDP, PERGDP, and IRR in
watersheds in the mild-cold temperate climate zone. Similarly, significant upward trends
are detected in AGR, GDP, PERGDP, and IRR in watersheds in the alpine climate zone. Ad-
ditionally, a significant decreasing trend is observed in soil moisture (SM), while significant
increasing trends are tested in GDP and PERGDP in the warm temperate watersheds.
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3.2. Spatial Variations of TWSAs

The spatial pattern of trends in TWS is distinct across climate zones. Significant
upward (p < 0.05) trends in TWSAs mostly appear in watersheds located in the tropical
monsoon, subtropical monsoon, and northern alpine climate zones, while significant
downward trends of TWSAs are often found in watersheds in the warm temperate, southern
alpine, and western mild-cold temperate climate zones (Figure 5).
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Figure 5. TWSAs trends from 2004 to 2014 in 214 watersheds in China (p < 0.05).

3.3. Spatial Variations of Vegetation Change

Changes in forest and grassland are widespread from 2004 to 2014 in China. According
to Figure 6a, significant upward trends (p < 0.05) in forest coverage are mainly found in
tropical, western subtropical, central warm temperate, and eastern mild-cold temperate
watersheds, while significant declines (p < 0.05) are found in watersheds located in the
eastern subtropical climate zones. Grassland coverage shows significant and rising tenden-
cies (p < 0.05) in watersheds located in the western warm or mild temperate (e.g., Tarim
Basin), northern alpine, and the eastern subtropical climate zones, whereas significant and
decreasing tendencies (p < 0.05) are shown in the eastern alpine (e.g., Qaidam Basin and
headwater sources of the Yangtze and Yellow Rivers), southwestern subtropical, central
warm temperate (particularly the Loess Plateau), and the cold temperate climate zones
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(Figure 6b). Changes in shrubland were generally limited across six climate zones without
a distinct pattern (Figure 6c).
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coverage trends from 2004 to 2014 in 214 watersheds in China (p < 0.05); (c) shrub coverage trends
from 2004 to 2014 in 214 watersheds in China (p < 0.05).

3.4. Key Driving Factors for TWSAs in Different Climate Zones

Climate, watershed characteristics, and human activities can significantly affect TWSAs
(Figure 7). As suggested by partial correlation analysis, for 214 watersheds in China, signifi-
cant positive correlations are observed between TWSAs and P, PE, NDVI, and SM, whereas
significant negative correlations are found between TWSAs and ET, Tave, IRR, AGR, DW,
and WT (p < 0.05). Watersheds from each climate zone feature different key driving fac-
tors for TWSAs. In tropical monsoon watersheds, significant positive relationships are
observed between TWSAs and P, NDVI, and SM while significant negative relationships
between TWSAs and ET, Tave, and WT are identified. In subtropical watersheds, TWSAs
significantly increase with increasing P, PE, NDVI, and SM, but decrease with increasing
ET, Tave, AGR, and WT. In warm temperate watersheds, TWSAs are positively correlated
with P, LAI, NDVI, and SM, but negatively correlated with ET, Tave, and human activities
(i.e., IRR, IND, AGR, WT, GDP, and PERGDP). For watersheds in the mild-cold temperate
zone, there are significant and positive relationships between TWSAs and P, PE, NDVI,
and SM but significant and negative relationships between TWSAs and ET, Tave, LAI, VFC,
IND, AGR, WT, and GDP. In addition, TWSAs are positively related to P, PE, NDVI, and
SM, but negatively correlated with ET, Tave, IRR, AGR, and WT in alpine watersheds.
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4. Discussion
4.1. The Dynamics of Terrestrial Water Storage and Their Driving Factors across Climate Zones

Our study clearly indicates that TWS in China was non-stationary and significantly
changed (Tables 3 and 4 and Figure 5) by climate variability, vegetation change, and an-
thropogenic activities from 2004 to 2014 (Figures 7 and A3–A5). Overall, TWSAs show
significant downward trends mostly in watersheds in warm temperate, southern alpine,
and western mild-cold temperate climate zones during the study period (Figure 5), mainly
resulting from intense human activities (i.e., changes in WT and IRR), while significant
upward (p < 0.05) trends in TWSAs generally appear in watersheds from tropical mon-
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soon, subtropical monsoon, and northern alpine climate zones possibly due to increased
precipitation and forest coverage (Figure 6a). As suggested by Figures 4 and A4b, NDVI
has a significant increasing trend in China as a result of a series of vegetation restoration
projects (e.g., the Grain for Grain Program and the Natural Forest Protection Program)
since the 1990s, which could improve the water conservation capacity to some extent and
may partly contribute to increasing TWSAs in watersheds covered by mature forest stands
and well-established vegetation (Figures 6a and 7) [67]. However, the positive impact
of vegetation change on TWS can be offset by human activities, which can influence wa-
ter storage immediately. Fast-growing demands for total water use (WT) and irrigation
(IRR) have greatly aggravated water storage deficits (Figures 4, 7 and A5d,e), especially
in semi-arid and arid watersheds, resulting in significant declines in TWSAs during the
study period [68–70]. For example, Wang et al. [68] found that strongly decreasing trends
occurred in surface water and TWS in China from 1989 to 2016.

Nevertheless, TWS dynamics and associated driving factors vary among watersheds
from different climate zones. In tropical watersheds, vegetation and climate play impor-
tant roles in modulating TWS, where P, ET, Tave, NDVI, SM, and WT are identified as
significant drivers for TWS variations (Figure 7). However, only ET and forest coverage
have significant upward trends in tropical watersheds (Figures 4, 6a and A3c), which
could be the determinant for the increased TWSAs during the study period. As is known,
well-established vegetation covers often play an important role in regulating streamflow,
soil moisture, and water retention capacities in ecosystems, which serve as the crucial
link between below-ground and above-ground ecohydrological processes [71]. On the
one hand, vegetation can increase recharges for groundwater, baseflow, and soil moisture
by various hydrological processes such as interception and soil infiltration [72], which
is favorable for below-ground TWS. On the other hand, vegetation growth is associated
with increased ET, which would decrease surface and total streamflow [31], and thus
decrease TWSAs (Figure 7). Given that tropical natural forests often have greater water
retention capacities with complex forest structures, which are beneficial for maintaining
water resources [73,74], a significant water surplus is expected in tropical watersheds once
the increments in below-ground water storage outweigh the above-ground ET losses by
forest growth.

In subtropical watersheds, climate and vegetation are also the main contributors to
the increased TWS over the study period. A large number of subtropical watersheds have
significantly increased forest coverage and NDVI (Figures 6a and A4b) due to afforesta-
tion and reforestation. The well-established forest stands can intercept rainfall through the
canopy, reducing the raindrop velocity and protecting surface soil [75]. Moreover, forests
are characterized by deep rooting systems that can promote infiltration, recharge baseflow
and groundwater, and mitigate soil erosion, which could eventually increase TWSAs. In
addition, significant increments in precipitation and effective precipitation also contribute
to TWSA increases (Figures 4 and 7) in these subtropical watersheds, although rising ET
and Tave may offset the increase in TWS caused by vegetation and precipitation increase
(Figures 4, 7 and A3c,d). Besides, although TWSAs are significantly related to WT and AGR
in a negative way (Figure 7), these two anthropogenic drivers show insignificant changes dur-
ing the study period, and thus yield limited contributions to TWS in subtropical watersheds.

The decreasing tendency in TWS over the study period is widespread in warm temper-
ate watersheds (Figure 5), which largely corresponds to significant declines in soil moisture
(Figure 4), especially in watersheds located in the North China Plain and the northern
Loess Plateau (Figure A4d). In addition, intensive human activities with fast-growing water
use by agriculture (e.g., AGR and IRR) and urban development (e.g., IND, DW, and WT)
(Figures 7 and A5) are also the main contributors to the decreased TWS in warm temperate
watersheds. Moreover, the declines in TWS can be aggravated by vegetation loss (e.g.,
the clearance of grass and forest) as a result of settlement development and agricultural
expansion, especially in some watersheds in the North China Plain [76] where grassland
degradation (Figure 6b) due to urbanization, agricultural expansion, and groundwater
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exploitation (Figure A5) is widespread. The negative impact of human activities on TWS
can sometimes even override the positive effect of precipitation and vegetation on TWS. For
example, increasing precipitation and vegetation in watersheds in the Loess Plateau would
potentially increase TWS (Figures A3a and A4a–c), while intense human activities offset
the increments, eventually leading to a significant decline in TWS (Figures 5, 7 and A5).
These indicate that most watersheds in the warm temperature climate zone have been
confronted with growing water shortages due to excessive human activities over the study
period, where water supply could be under much greater stress in the future with reduced
precipitation under climate change.

In the alpine climate zone, significant declines in TWS are detected in watersheds in
the southern and southeastern Qinghai–Tibet Plateau, while increasing TWS are observed
in watersheds in the Qaidam Basin and headwater sources of the Yangtze River. Watersheds
in the alpine climate zone are very sensitive to climate change given their large area of
frozen soils, permanent snows, and glaciers. TWS variations in these watersheds are mainly
controlled by climate and climate-induced vegetation change, such as agriculture activities,
grazing, and cultivation (Figure A3a–d). For example, in the past 20–30 years, 38.8%
of the grassland and nearly 50% of broad-leaf forest in the Qinghai–Tibet plateau were
under degradation mainly due to climate change and grazing, which inevitably reduced
TWS in this area [77,78]. Although precipitation significantly decreased over the study
period in watersheds from the Qaidam Basin and headwater sources of the Yangtze River,
the decreased LAI due to grassland degradation and the associated declines in ET and
increases in soil moisture collectively led to significant increases in TWS in these watersheds
(Figures 6b and A4c,d). On the contrary, watersheds in the southern and southeastern
Qinghai–Tibet Plateau are dominated by alpine forest, meadow, and glaciers with declined
precipitation and soil moisture and increased ET and glaciers retreat due to global warming
(Figures 6a–c, A3 and A4d). The reduced precipitation and increased ET and glacier
loss are the major contributors to significant declines in TWS in these alpine watersheds,
with complex responses of alpine forests and meadows to climate warming. In addition,
growing agricultural activities may also contribute to reductions in TWS in the alpine
forest-dominated southern Qinghai–Tibetan Plateau, but their negative effects on TWS
were offset by climate change impact in the grassland-dominated northern Qinghai-Tibetan
Plateau [79,80] (Figures 4, 7 and A5b).

TWS generally remains nonstationary and shows an insignificant trend during the study
period in mild-cold temperate zone watersheds (Tables 3 and 4), which is mainly caused by
the differences in TWS trends and associated drivers across this climate zone (Figure 5). The
downward tendency of TWS is mostly detected in watersheds located in the eastern mild
temperate zone (e.g., the Inner Mongolia Plateau), which is mainly due to growing water use
as a result of ambitious agriculture expansion (Figures 4 and 7) and accelerated grassland
degradation (e.g., grazing activities) (Figure 6b) over the study period. Contrarily, due to the
increased precipitation and evapotranspiration, and decreased temperature and population
density, an upward tendency in TWS is found in watersheds in the cold temperate zone
(e.g., Xiaoxing’anling mountains) where boreal coniferous and deciduous broadleaf forests
are dominant, as well as seasonally frozen soils. Increased LAI and associated increments
in ET are caused by newly regenerated or planted young forests, and these trees would
consume more water than old-growth trees [81,82]. However, a significant water surplus
occurs since the climate change effect (significant increments in precipitation and effective
precipitation, and increased soil water resulting from accelerated and advanced melting of
frozen soils) outweighs the above-ground ET losses due to forest growth (Figures 4, 7 and A3).
Interestingly, TWS in watersheds in mild-cold climate zones is positively related to NDVI
but negatively related to LAI and VFC. Although these vegetation indices are widely used
for monitoring, analyzing, and mapping temporal and spatial variations in vegetation
structure, and describing biophysical straits, the relationships between these indices are
complex given their differences in definitions and data sources [52–54]. Firstly, NDVI and
LAI may not always have positive correlations [83,84]. For example, Ma et al. [83] found
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that the observation angles directly determine the accuracy of LAI and NDVI estimations,
where NDVI decreases with increasing observation angles while there is a large value in
LAI. Danson et al. [84] also found that there was no significant relation between LAI and
NDVI when the value of LAI is larger than 6 based on remotely sensed data. Secondly,
NDVI usually increases with rising VFC when VFC is low. However, their relationship can
be negative when VFC is high given that the NDVI value may converge to 1 [85]. Therefore,
NDVI may have a saturation problem and be insensitive to vegetation change especially
in these cold temperate watersheds with dense coniferous forests [86]. This indicates the
usage of NDVI for vegetation change in these watersheds should be cautious.

4.2. Limitations and Uncertainties

There are some uncertainties and limitations in our study associated with the selection
of indices, the study period, and the research method. These 16 indices were selected
according to existing studies. To describe watershed characteristics, we only involve
vegetation indicators and soil moisture, while other soil metrics (e.g., soil porosity and
texture) and topographic and landscape indices may also have impacts on TWS [87,88].
Moreover, permanent water storage (e.g., glaciers) is an important component of TWS. In
the context of global warming, the glaciers would melt and affect local and downstream
TWS [17]. However, there is a lack of detailed data describing glacier dynamics and other
watershed characteristics (e.g., soil, topography, and landscape). Second, although this
study fills the research gap that assesses TWS dynamics at large spatial scales in China,
the study period of our study is relatively short. Admittedly, the longer the study period
allows us to capture more robust trends and spatial patterns as well as their associated
mechanisms. Future assessment of TWS dynamics with a longer study period should
be performed if more data are available. In addition, uncertainties may arise from data
products provided by different sources. For example, although the GLASS LAI products
have been widely used, they have some limitations, such as the high dependence on
the quality of surface reflectance [89]. The spatial resolution of GRACE data may also
cause uncertainty in retrieving TWS. For the 214 watersheds, we only have 20 watersheds
with a size of less than 10,000 km2, and the effect of spatial resolution on retrieving TWS
is limited. Assessing quantitative relationships between TWS dynamics and different
drivers could largely improve our understanding of the relative contributions of drivers to
TWS. However, the quantitative estimations are difficult to validate since there is a lack
of field data and effective quantification methods. Thus, our study focuses on qualitative
correlations between TWS dynamics and drivers. Future studies and field samplings are
needed to validate the accuracy of data from different sources.

5. Conclusions

The dynamics of TWS and their driving factors at a relatively large scale are rarely
evaluated in China. Our assessment demonstrated that China experienced water deficits
over the period from 2004 to 2014. Climate variability, watershed characteristics, and
anthropogenic activities can significantly affect TWS. We conclude that dominating factors
of TWS dynamics across climate zones are different. Our study indicates that researchers
need to identify the major contributing factors to TWS in their study areas and suggests
that watershed management strategies should be designed for watersheds from different
climate zones with a comprehensive understanding of their specific TWS dynamics and
driving mechanisms.
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Appendix B

According to Figure A3a, significant increments (p < 0.05) in precipitation (P) are
mainly detected in tropical, central warm temperate (particularly the Loess Plateau), and
eastern mild-cold temperate watersheds, while significant decrements (p < 0.05) are found
in watersheds located in alpine and eastern warm temperate climate zones. Effective precip-
itation (PE) significantly increases in warm temperate watersheds, whereas it significantly
decreases in alpine and southwestern subtropical watersheds (Figure A3b). For significant
changes in evapotranspiration (ET), most watersheds have increasing trends, while signifi-
cant decrements in ET are identified in watersheds from northern subtropical and eastern
warm temperate zones (Figure A3c). Additionally, temperature (Tave) shows significantly
positive trends (p < 0.05) in watersheds in tropical, subtropical, alpine, warm, and western
mild-cold temperate climate zones, while significantly negative variations (p < 0.05) occur
in Northeast China experiencing the mild-cold temperate climate (Figure A3d).

Figure A4a suggests that LAI significantly increases (p < 0.05) in watersheds in tropical,
subtropical, warm temperate, and mild-cold temperate climate zones. Significant increasing
trends of NDVI are found in most study watersheds (Figure A4b). According to Figure A4c,
significant increasing trends (p < 0.05) in VFC occur in alpine, subtropical, central warm
temperate, and mild-cold temperate watersheds. For changes in SM (Figure A4d), sig-
nificant upward trends (p < 0.05) are tested in tropical, southern subtropical, mild-cold
temperate, and western warm temperate watersheds, while significant declines (p < 0.05)
are observed in alpine and eastern warm temperate watersheds.
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The trend analysis indicates that industry water consumption (IND) undergoes sig-
nificant increments (p < 0.05) in watersheds in mild-cold temperate, western alpine, and
subtropical climate zones (Figure A5a). A significant upward trend (p < 0.05) in agricul-
tural water use (AGR) is explored in watersheds located in the east and west of mild-cold
temperate, alpine, central subtropical monsoon, and western warm temperate climates
(Figure A5b). Compared with other climate zones, the changes in domestic water consump-
tion (DW) significantly decrease in the south of alpine watersheds (Figure A5c). In addition,
total water use (WT) has significant increasing trends (Figure A5d). In Figure A5e, there
are markedly positive trends in irrigation area (IRR) in China except for watersheds in
the central warm temperate climate zones. Lastly, there are significant decreasing trends
in population density (PD) in watersheds located in the north of mild-cold temperate
and the central subtropical monsoon climate zones, while other regions have significantly
increasing PD (Figure A5f).
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Table A1. Detailed information about watershed size, climate conditions, and TWS tends for
214 watersheds.

NO. ID Climate
Zone

Area
(km2) P (mm) Tave (◦C) TWS MK

tau

1 A010100 MC 41,473.19 339.86 1.25 0.49 *
2 A010200 MC 58,611.51 437.43 −0.66 0.45 *
3 A010300 MC 61,341.18 490.53 −2.15 0.45 *
4 A020100 MC 69,452.51 566.96 −0.13 0.42 *
5 A020200 MC 100,618.63 545.90 1.64 0.45 *
6 A020300 MC 138,267.04 520.10 4.21 0.42 *
7 A030100 MC 45,964.14 846.76 3.64 0.49 *
8 A030200 MC 33,667.01 688.09 4.91 0.31
9 A040100 MC 32,730.16 652.25 4.18 0.27

10 A040200 MC 64,548.34 648.47 2.99 0.38
11 A040300 MC 41,242.49 700.78 2.43 0.42
12 A040400 MC 44,987.73 675.08 1.82 0.49 *
13 A040500 MC 18,271.14 714.84 2.92 0.49 *
14 A050100 MC 123,785.80 620.06 −0.65 0.42
15 A060100 MC 24,845.07 679.86 2.79 0.56 *
16 A060200 MC 42,589.81 747.77 2.94 0.60 *
17 A070100 MC 11,441.55 691.30 2.44 0.60 *
18 A080100 MC 25,049.50 756.74 3.34 0.53 *
19 B010100 W 63,196.65 467.47 5.25 0.05
20 B010200 MC 39,231.93 434.38 5.26 0.20
21 B010300 MC 38,082.83 503.81 7.79 0.20
22 B020100 MC 10,821.14 688.19 5.77 0.24
23 B030100 MC 36,985.69 681.83 7.16 0.20
24 B030200 W 14,168.27 690.43 8.72 0.27
25 B040100 W 12,290.00 877.16 6.25 0.38
26 B040200 W 16,747.98 875.84 6.65 0.42
27 B050100 MC 24,471.30 982.81 3.72 0.53*
28 B050200 W 10,410.43 973.22 5.96 0.42
29 B060100 W 26,227.84 856.18 7.91 0.24
30 B060200 W 38,053.53 594.56 8.68 0.16
31 C010100 W 45,043.11 530.77 6.49 −0.27
32 C010200 W 11,308.64 603.37 11.12 −0.42
33 C020100 W 22,293.76 546.10 8.43 −0.56 *
34 C020200 W 17,729.95 445.14 6.22 −0.85 *
35 C020300 W 28,154.55 477.38 6.32 −0.78 *
36 C020400 W 16,277.47 541.11 12.20 −0.64 *
37 C030100 W 18,829.10 495.42 9.46 −0.82 *
38 C030200 W 12,962.85 518.92 13.11 −0.78 *
39 C030300 W 13,998.49 525.19 13.17 −0.75 *
40 C030400 W 31,242.82 522.33 9.23 −0.89 *
41 C030500 W 15,424.85 558.94 14.16 −0.89 *
42 C030600 W 26,510.46 582.60 10.40 −0.82 *
43 C030700 W 9371.70 650.03 15.22 −0.82 *
44 C030800 W 23,159.94 573.61 14.22 −0.78 *
45 C040100 W 33,173.78 614.12 14.25 −0.82 *
46 D010100 A 86,810.32 643.16 −1.09 0.42
47 D010200 A 45,624.64 510.67 0.96 0.31
48 D020100 A 14,712.22 289.19 −1.34 −0.31
49 D020200 A 16,408.75 350.02 3.51 −0.31
50 D020300 A 33,226.18 587.09 3.29 −0.42
51 D020400 A 26,522.28 407.34 4.21 −0.38
52 D030100 A 29,972.50 373.51 8.08 −0.82 *
53 D030200 W 24,190.04 327.31 8.75 −0.93 *
54 D030300 MC 31,760.93 238.31 9.84 −0.96 *
55 D030400 MC 56,017.33 298.32 6.45 −0.89 *
56 D030500 MC 21,255.23 301.16 8.44 −0.89 *
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Table A1. Cont.

NO. ID Climate
Zone

Area
(km2) P (mm) Tave (◦C) TWS MK

tau

57 D040100 W 39,045.65 452.61 8.48 −0.93 *
58 D040200 W 23,669.62 394.27 8.71 −0.93 *
59 D040300 W 48,479.81 420.97 10.01 −1.00 *
60 D050100 W 40,106.59 528.62 9.07 −0.89 *
61 D050200 W 24,996.79 504.66 9.67 −0.82 *
62 D050300 W 43,799.44 486.02 9.49 −0.82 *
63 D050400 A 31,078.78 554.87 7.40 −0.75 *
64 D050500 ST 17,632.94 655.79 11.36 −0.75 *
65 D050600 ST 18,413.12 664.77 12.52 −0.78 *
66 D050700 W 16,102.14 644.92 12.63 −0.75 *
67 D060100 W 6009.98 666.76 12.03 −0.78 *
68 D060200 W 13,762.79 613.06 10.18 −0.82 *
69 D060300 ST 18,918.75 711.46 12.22 −0.71 *
70 D060400 W 3327.59 678.51 14.15 −0.82 *
71 D070100 W 7570.86 676.30 15.32 −0.82 *
72 D070200 W 11,520.84 699.17 13.12 −0.82 *
73 D070300 W 4523.98 691.39 15.04 −0.75 *
74 D080100 MC 43,524.95 285.24 8.71 −0.93 *
75 E010100 ST 16,198.71 942.52 16.11 −0.42
76 E010200 ST 14,804.98 1028.58 16.03 0.05
77 E020100 ST 67,661.97 828.15 15.47 −0.78 *
78 E020200 ST 25,178.55 1122.53 15.77 0.05
79 E020300 ST 31,742.58 889.09 15.50 −0.82 *
80 E020400 ST 8401.70 1068.95 15.96 −0.45
81 E030100 ST 7851.87 1100.24 15.72 −0.53 *
82 E030200 ST 25,017.33 1131.08 15.18 −0.56 *
83 E040100 W 10,036.48 742.36 14.35 −0.82 *
84 E040200 W 22,433.73 738.29 15.12 −0.82 *
85 E040300 W 9751.93 838.77 14.65 −0.82 *
86 E040400 ST 33,578.17 867.59 13.71 −0.85 *
87 E040500 W 4179.98 843.47 13.33 −0.82 *
88 E050100 W 14,550.42 680.76 13.43 −0.82 *
89 E050200 W 48,336.09 744.74 12.52 −0.53 *
90 F010100 A 146,040.82 408.21 −3.91 0.60 *
91 F010200 ST 74,779.04 949.22 1.51 −0.82 *
92 F020100 ST 12,8821.94 925.24 2.98 −0.56 *
93 F020200 ST 12,8766.38 943.55 10.92 −0.49 *
94 F030100 ST 77,155.92 937.02 2.90 −0.27
95 F030200 ST 58,696.32 935.55 9.22 0.05
96 F030300 ST 27,132.36 955.36 17.28 0.49 *
97 F040100 ST 60,368.63 752.94 7.95 −0.38
98 F040200 ST 35,868.57 934.51 14.67 0.42
99 F040300 ST 39,064.36 1017.61 15.51 0.42

100 F040400 ST 23,800.93 966.02 16.77 0.38
101 F050100 ST 51,083.17 1018.07 13.72 0.56 *
102 F050200 ST 36,997.82 1071.45 13.99 0.75 *
103 F060100 ST 19,092.87 940.97 14.56 0.49 *
104 F060200 ST 80,857.98 1054.45 15.53 0.71 *
105 F070100 ST 18,158.75 1211.08 14.69 0.75 *
106 F070200 ST 54,417.17 1180.79 15.36 0.78 *
107 F070300 ST 35,395.90 1200.50 15.33 0.78 *
108 F070400 ST 16,515.17 1272.79 16.04 0.82 *
109 F070500 ST 11,910.24 1277.88 15.74 0.78 *
110 F070600 ST 54,040.31 1360.81 17.15 0.75 *
111 F070700 ST 41,728.33 1343.38 17.48 0.78 *
112 F070800 ST 32,260.72 1262.03 17.29 0.75 *
113 F080100 ST 94,742.01 854.58 11.43 −0.31
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Table A1. Cont.

NO. ID Climate
Zone

Area
(km2) P (mm) Tave (◦C) TWS MK

tau

114 F080200 ST 24,414.02 887.86 15.22 −0.27
115 F080300 ST 37,232.54 1059.64 15.33 0.53 *
116 F090100 ST 14,854.61 1432.96 16.08 0.75 *
117 F090200 ST 40,910.15 1547.86 17.74 0.67 *
118 F090300 ST 23,643.46 1472.95 17.60 0.71 *
119 F090400 ST 19,821.07 1468.32 17.65 0.78 *
120 F090500 ST 16,201.79 1601.23 17.60 0.67 *
121 F090600 ST 15,990.92 1688.19 16.99 0.64 *
122 F090700 ST 14,806.03 1574.38 16.99 0.67 *
123 F090800 ST 20,302.84 1497.02 17.66 0.75 *
124 F100100 ST 17,770.44 1154.60 12.72 0.78 *
125 F100200 ST 21,790.17 1142.38 16.20 0.71 *
126 F100300 ST 34,251.96 1158.87 16.54 0.49 *
127 F100400 ST 23,017.81 1325.82 16.93 0.71 *
128 F110100 ST 43,495.11 1236.87 16.18 0.20
129 F110200 ST 35,552.60 1363.98 15.74 0.35
130 F110300 ST 13,876.48 1306.54 15.89 −0.35
131 F120100 ST 17,820.64 1387.83 15.85 0.05
132 F120200 ST 8436.70 1348.46 16.07 −0.20
133 F120300 ST 7742.61 1512.98 16.48 0.20
134 F120400 ST 4757.13 1420.43 16.36 −0.09
135 G010100 ST 33,071.13 1696.34 15.77 0.56 *
136 G010200 ST 18,726.80 1661.86 15.61 0.35
137 G020100 ST 10812.38 1722.91 16.31 0.27
138 G020200 ST 1365.86 1782.27 0.00 0.36
139 G030100 ST 15,229.00 1841.64 15.04 0.45
140 G030200 ST 20,192.22 1865.49 15.53 0.42
141 G040100 ST 17,009.52 1799.32 15.80 0.45
142 G050100 ST 43,534.09 1676.38 16.65 0.60 *
143 G050200 ST 19,234.41 1730.08 16.85 0.53 *
144 G060100 ST 35,963.54 1693.45 18.26 0.60 *
145 G070100 T 38,877.74 1954.36 17.13 0.53 *
146 H010100 T 57,507.93 1028.04 15.03 0.05
147 H010200 ST 26,572.96 1031.86 14.45 0.16
148 H020100 ST 54,832.13 1280.75 18.08 0.56 *
149 H020200 ST 58,769.39 1300.93 17.29 0.60 *
150 H030100 ST 39,411.43 1281.92 17.29 0.53 *
151 H030200 ST 38,725.63 1570.26 19.11 0.71 *
152 H040100 ST 30,395.15 1508.51 18.60 0.67 *
153 H040200 ST 36,462.52 1731.22 20.60 0.67 *
154 H050100 ST 17,729.86 1529.82 17.79 0.75 *
155 H050200 ST 29,770.64 1692.95 19.16 0.75 *
156 H060100 ST 19,340.65 1724.52 19.16 0.67 *
157 H060200 ST 9089.74 1889.35 20.97 0.67 *
158 H070100 ST 7689.55 1955.68 20.74 0.71 *
159 H070200 ST 1124.95 1965.12 21.34 0.71 *
160 H070300 ST 19,514.04 1974.55 21.94 0.71 *
161 H070400 ST 24.89 1823.90 20.39 0.49
162 H080100 ST 29,405.44 1673.25 18.84 0.64 *
163 H080200 ST 17,691.43 1736.14 20.52 0.67 *
164 H090100 T 34,093.06 1850.01 22.40 0.60 *
165 H090200 T 22,151.88 1770.85 21.67 0.60 *
166 H100100 T 34,122.92 2000.36 23.00 0.24
167 H100200 T 46.77 1576.70 19.87 0.23
168 J010100 T 23,648.34 1153.04 16.73 0.20
169 J010200 T 36,858.42 1038.22 15.97 −0.13
170 J010300 T 15,475.56 1199.31 16.32 0.38
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Table A1. Cont.

NO. ID Climate
Zone

Area
(km2) P (mm) Tave (◦C) TWS MK

tau

171 J020100 ST 92,175.82 867.20 0.08 −0.82 *
172 J020200 T 74,639.37 1209.03 16.20 0.13
173 J030100 ST 109,419.77 856.71 −1.04 −0.82 *
174 J030200 T 24,578.61 1121.37 15.96 −0.38
175 J030300 ST 21,843.12 1224.27 12.50 −0.53 *
176 J040100 A 57,856.28 677.61 −4.39 −0.85 *
177 J040200 A 148,406.72 825.84 −0.95 −0.93 *
178 J040300 ST 52,439.60 968.40 2.38 −0.93 *
179 J050100 ST 151,638.00 1026.57 3.72 −0.89 *
180 J060100 A 5622.61 238.17 −11.39 −0.49 *
181 J060200 A 59,445.04 465.36 −4.96 −0.89 *
182 K010100 MC 215,394.29 314.78 3.10 0.20
183 K010200 MC 99,453.54 269.77 5.88 −0.82 *
184 K020100 A 41,726.79 209.92 7.18 −0.75 *
185 K020200 A 152,430.90 131.02 7.37 −0.60 *
186 K020300 A 126,307.25 107.79 4.92 −0.49 *
187 K020400 W 151,286.51 148.84 9.34 −0.78 *
188 K030100 A 47,500.93 247.78 −1.46 0.20
189 K040100 A 78,565.45 216.56 −1.46 0.67 *
190 K040200 A 202,154.52 118.15 −0.17 0.82 *
191 K050100 MC 57,673.63 113.55 6.15 −0.75 *
192 K050200 W 41,518.80 95.16 8.86 −0.85 *
193 K050300 W 37,853.56 127.26 7.56 −0.96 *
194 K060100 MC 50,693.78 276.03 1.81 −0.16
195 K060200 MC 26,241.70 215.73 4.42 −0.38
196 K060300 MC 8033.20 361.15 3.90 −0.13
197 K070100 MC 22,241.47 314.94 4.98 −0.45
198 K070200 MC 61,879.15 316.68 2.24 −0.75 *
199 K080100 MC 88,652.18 208.83 8.03 −0.64 *
200 K090100 MC 18,346.21 146.53 5.58 −0.85 *
201 K090200 MC 85,909.97 243.12 4.99 −0.75 *
202 K090300 MC 53,560.57 338.34 6.64 −0.75 *
203 K100100 A 88,788.54 164.03 2.03 −0.31
204 K100200 A 98,125.46 255.45 1.77 −0.49 *
205 K100300 A 87,948.13 298.22 3.96 −0.49 *
206 K100400 W 54,636.34 262.86 6.65 −0.60 *
207 K100500 W 41,588.46 196.08 6.65 −0.75 *
208 K100600 W 111,173.19 119.92 4.58 −0.89 *
209 K110100 A 73,358.80 107.87 7.36 0.02
210 K110200 A 137,705.99 77.12 6.90 0.35
211 K120100 W 33,832.29 122.80 5.39 −0.85 *
212 K130100 W 234,953.07 110.99 13.63 −0.64 *
213 K130200 A 134,052.61 74.68 11.06 −0.75 *
214 K140100 A 791,638.02 277.51 −5.13 −0.47 *

Note: T, ST, W, MC, and A denote tropical monsoon, subtropical monsoon, warm temperate, mild-cold temperate,
and alpine climate zones, respectively. The positive values of MK tau denote increases in TWSAs, while negative
values mean decreases. * Indicates significant at α = 0.05.
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