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Abstract: Changwu County is a typical soil and water loss area on the Loess Plateau. Soil erosion
is an important ecological process, and the impact of land use/cover change on soil erosion has
received much attention. The present study used remote sensing images of the study area in 1987,
1997, 2007, and 2017 to analyze the land use/cover change (LULCC), and the RUSLE model was
applied to estimate the soil erosion in different times. We exploited the Sankey diagram to visualize
the spatiotemporal changes in land use/cover and soil erosion. We planned to obtain the most
suitable model by comparing the application of different spatial regression models (Geographically
weighted regression model, Spatial lag model, Spatial error model) and Ordinary least squares in
LULCC and soil erosion changes. The results revealed that land use/cover has significantly changed
in the last 30 years. From 1987 to 1997, cropland expansion came mainly from planted land and
orchards, which transformed 68.99 km2 and 64.93 km2, respectively. In 1997–2007, the planted land
increase was mainly through the conversion of cropland. In 2007–2017, the increase in orchard area
came mainly from cropland. The forest land increase was mainly from the planted land. Soil erosion
in Changwu County was dominated by slight erosion and light erosion, although the area of slight
erosion and light erosion continued to decrease. The annual average soil erosion increased, which
was estimated at 977.84 ton km−2 year−1, 1305.17 ton km−2 year−1, 1310.60 ton km−2 year−1, and
1891.46 ton km−2 year−1 in 1987, 1997, 2007, and 2017, respectively. These amounts of transformation
mainly occurred when slight erosion was converted to light erosion, light erosion was converted to
moderate erosion, and moderate erosion was converted to light and severe erosion. The Spatial lag
model and Spatial error model have higher accuracy than the Geographically weighted regression
model and Ordinary least squares when fitting the effect of LULCC and soil erosion change, where
the accuracy exceeded 0.62 in different periods.

Keywords: land use/cover change; soil erosion; spatial regression model; model comparison; remote
sensing; Loess Plateau

1. Introduction

The human understanding of nature has gone through a long process, from plunder
to protection. Land use and land cover change (LULCC) reflects the process of humans
getting along with nature [1–3]. Land use has been defined as the purpose for which

Forests 2021, 12, 1209. https://doi.org/10.3390/f12091209 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://doi.org/10.3390/f12091209
https://doi.org/10.3390/f12091209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12091209
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12091209?type=check_update&version=1


Forests 2021, 12, 1209 2 of 18

humans exploit the land cover. This involves both the manner in which the biophysical
attributes of land are manipulated and the intent underlying that manipulation, that is, the
purpose for which the land is used. Land cover has been defined by the attributes of the
Earth’s land surface and immediate subsurface, including biota, soil, topography, surface-
and ground-water, and human (mainly built-up) structures [4]. In recent years, research
on LULCC has become more extensive and in-depth, mainly focusing on the driving
factors of LULCC (including human activities, population increase, ecological factors,
economic development, and government policies) [5–7], the effect of LULCC (including on
land quality, hydrological cycle, climate change, biodiversity reduction, and agricultural
production) [8–11], and the prediction of future changes in LULCC [12,13].

Soil erosion leads to the degradation of soil fertility, the decline in soil productivity, the
destruction of surface vegetation, the deterioration of the environment, the restriction of
economic development in the region, and the massive transfer of sediment and pollutants
in the erosion process, which causes the eutrophication and siltation of the rivers and lakes
in downstream areas [14–17]. Soil erosion assessments have received extensive attention
since soil erosion threatens environmental and socio-economic conditions worldwide [16].
The RUSLE has been widely used in estimating soil erosion in the Loess Plateau. Jin used
the RUSLE to estimate soil erosion in the Loess Plateau to study its response to vegetation
and climate change [18]. Zhang estimated soil erosion in the largest tableland of the Loess
Plateau by RUSLE to study effect of land use changes on soil erosion [19].

Extensively covered by characteristic powdery, dry soil (called loess), and coupled
with unreasonable human activities and heavy rain, the Loess Plateau in China has suf-
fered serious soil erosion [20]. Since the founding of the People’s Republic of China, the
government has implemented a series of measures to control soil erosion [20,21]. This has
achieved significant results after long-term efforts by the Chinese government.

Changwu County is located in the loess gully region of the Loess Plateau [22]. As
a typical area of soil erosion on the Loess Plateau, soil and water conservation began
in the 1950s, and has undergone local decentralized governance, centralized continuous
management, comprehensive watershed management, and county-scale management. In
the late 1990s, the implementation of the Grain for Green Project played a key role in
suppressing local soil erosion [23]. However, government policies and human activities all
had an impact on the land use/cover pattern, and also brought great challenges or chances
for soil and water conservation in Changwu County. Research on land use/cover and
soil erosion in different areas of the loess plateau has attracted the continued attention of
researchers [24–26]. However, with the intervention of long-term government policies and
human activities, the spatial and temporal changes of the land use/cover pattern and soil
erosion in the study area remains unclear and the effect of LULCC on soil erosion change
is not established.

LULCC and soil erosion changes have obvious spatial attributes, which cannot meet
the requirement of independent variables in classical statistics. So as to more accurately
study the effect of LULCC on soil erosion changes, we chose different spatial regression
models (Geographically weighted regression model, Spatial lag model, Spatial error model)
to fit the relationship between the LULCC on soil erosion changes. We planned to obtain
the most suitable model by comparing the application of different spatial regression models
in LULCC and soil erosion changes. Ordinary least squares (OLS) is used as the reference of
the spatial regression models. The present study aims to analyze the spatial and temporal
change process of land use/cover by classifying the four remote sensing images of the
study area in 1987, 1997, 2007, and 2017, and analyze the spatial and temporal change
process of soil erosion through the quantitative estimation of soil erosion with the use of
the Revised Universal Soil Loss Equation (RUSLE) model, and we choose suitable spatial
regression models to fit the effect of LULCC on soil erosion changes.
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2. Materials and Methods
2.1. Study Region

The study area is situated in Changwu County, Shaanxi Province in the south of the
Loess Plateau of China, which extends from a latitude of approximately 34◦59′ N–35◦18′ N
and a longitude of 107◦38′ E–107◦58′ E, occupying an area of 567.1 km2 (Figure 1) [23,27].
The study area belongs to the loess gully region of the Loess Plateau. The “Yuan” (a
highland formed by erosion in the Loess Plateau, steep on four sides, flat on top) and
“Chuan” (a low-lying, open, and flat area formed by erosion between the Yuan and Yuan)
alternately had a gully development, forming crisscross gullies. The landforms were mainly
“Yuan” and slope land, followed by “Chuan”. The landform features were characterized
by high “Yuan”, deep gully, and steep slope. This area was drained by three main river
systems, namely, the Jinghe River, Heihe River and Nanhe River, which are tributaries of
the Yellow River. The dominant soil type was dark loessial soil, which is at “Yuan”, and
loessial soil, which is at the valley slope and gully channel. The altitude ranged from 847 m
to 1274 m above sea level [23,28].
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Figure 1. Map of the study area.

Changwu County belongs to a warm, temperate, semi-humid continental monsoon cli-
mate zone, with an average annual temperature of 9.1 ◦C. Furthermore, the frost-free period
is 171 days, and the annual precipitation is 587.8 mm. The annual rainfall concentration
period is 7, 8 and 9 months, and rainfall can reach up to 321.4 mm, accounting for 54.9% of
the total annual precipitation. The study area was mainly planted forest, and afforestation
began in the 1950s. The main tree species are Robinia pseudoacacia, Platycladus orientalis, Pi-
nus tabuliformis, Armeniaca sibirica, and Populus spp. Among these, R. pseudoacacia accounts
for more than 90% of the forested area [22,23,27].

The research area has few land resources and has experienced agricultural reclamation
for a long time. Agriculture occupies a major position in the county’s national economy.
The cropland and orchard are mainly concentrated on the plateau and gully bottom, and
the main plants were wheat, apple, and persimmon.

2.2. Data Sources

The land use/cover maps of Changwu County on 28 August 1987, 23 August 1997,
20 September 2007, and 27 June 2017 were derived from Landsat TM/ETM+/OLI imageries
with 30 m resolution (derived from the USGS website, http://www.usgs.gov, accessed on
16 July 2019), considering the vegetation growing season and image quality. The digital
elevation model (DEM) was sourced from the geospatial data cloud (http://www.gscloud.
cn/, accessed on 16 July 2019) with a resolution of 30 m.

Then, each image was radiometrically, atmospherically processed using the ENVI 5.3 im-
age processing software to eliminate the scattering and absorption effects from the atmosphere

http://www.usgs.gov
http://www.gscloud.cn/
http://www.gscloud.cn/
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and to obtain authentic the surface reflectance character. Finally, the images were geometrically
corrected and registered to the Xian_1980 datum and Xian_1980_3_Degree_GK_CM_108E
projections using the ArcGIS 10.5 image processing software to correct image distortion.

The object-based classification segmented the image into objects and identified both
the spectral and spatial features between the objects for classification. Object-based classifi-
cation reduces the within-class spectral variation, and generally eliminates salt-and-pepper
effects to potentially improve the classification accuracy. This approach identifies the image
objects using a multi-resolution segmentation approach, as implemented in the software
package eCognition [29–31]. In the present study, the combination of the threshold and
decision-tree approach classifications based on object-oriented classification methods were
used by the eCognition Developer 9.0 remote sensing information extraction software.

We interpreted six land use/cover classes from the images (Table 1), which were
orchard, cropland, forest land, planted land, water body and construction land. A total of
388 points (some inaccessible control points with high resolution images in Google earth)
were randomly selected to determine the classification accuracy by computing the overall
accuracy and Kappa coefficient. Overall accuracy is the sum of correctly classified values
from the diagonal values divided by the total number of randomly generated reference
values of the error matrix [32]. The Kappa coefficient, which reflects the consistency
between classification results and reference data, was also calculated, as follows [1]:

Kc =
N ∑r

i=1 xii −∑r
i=1 xi + x+i

N2 −∑r
i=1 xi + x+i

(1)

where: Kc is the Kappa coefficient; N is the total number of verification points; r is the
number of type; xi+ is the sum of the data in row i of the confusion matrix; x+i is the sum
of the data in column i of the confusion matrix; xii is the value of row i and column i in
confusion matrix.

Table 1. Description of land use/cover types identified in the study area.

Type Description

Orchard Agricultural land for planting fruit trees
Cropland All agricultural land used for growing food crops

Forest land The trees closed to canopy or have closed canopy
Planted land Including open forest, bushes, shrubs and grass
Water body Including river and reservoir

Construction land Including settlements, roads and buildings

2.3. LULCC Analysis

After completing the classification and accuracy verification, we used the intersect
tool in ArcGIS 10.6 to calculate the transfer matrix of the image classification results of
different periods, and counted the area transferred by type.

The transfer matrix can intuitively reflect the transfer trend between different land
use/cover types within a certain period, and the model can be expressed, as follows:

Sij =



S11 S12
S21 S22

. . . S1j

. . . S2j

· · · S1n
. . . S2n

. . . . . .
Si1 Si2

. . . . . .

. . . Sij

. . . . . .

. . . Sin
. . . . . .
Sn1 Sn2

. . . . . .

. . . Snj

. . . . . .

. . . Snn

 (2)
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where: Sij is the area of the land use/cover type i at time t converted to the land use/cover
type j at time (t + 1); n is the total number of land use types.

PR =
Sij

∑n
j=1 Sij

(3)

where: PR is the land use/cover type transfer rate.
In order to reveal the changes in land use/cover area in different periods, the land

use/cover annual area change rate (LR) was calculated, as follows [33]:

LR =
Lt+n − Lt

Lt
× 1

n
× 100% (4)

where: LR is the land use/cover annual area change rate; Lt is the area of the land use land
cover class at time t; Lt+n is the area of the same land use land cover class at time t + n; n is
the time difference between t and t + n.

In order to visualize the temporal and spatial changes in land use/cover, we finally
used the Sankey diagrams to illustrate the transfer situation of land use/cover classes
at different times. Sankey diagrams are a type of flow diagram, in which the width of
the arrows is proportional to the flow rate. These diagrams have mostly been applied to
analyze energy- or material-flows [34]. The Sankey diagram has had few applications in
land use/cover change [35,36]. In the Sankey diagrams, the width of the lines represents
the transfer areas of land use/cover class. The stacked bars visualize the land use/cover
class in 1987, 1997, 2007, and 2017, and the height of each component in the stacked bars is
proportional to the amount of area occupied by land use/cover class in the study area. We
used the R software package called networkD3 to map the Sankey diagrams [37].

2.4. Soil Erosion Estimation

In the present study, we used the revised universal soil loss equation (RUSLE) model
to estimate the mean annual soil erosion in the study area at different times. The RUSLE
model has been widely used to estimate soil erosion by considering the climate, topography,
soil, and land use factor.

The RUSLE model equation was defined by Renard [38] as follows:

A = 100× R × K × LS × C × P (5)

where: A is the average annual soil erosion rate (t km−2 year−1); R is the rainfall erosivity
factor (MJ mm hm−2 h−1 year−1); K is the soil erodibility factor (thm2 h hm−2 MJ−1 mm−1);
LS is the topographic factor; C is the crop management factor; P is the conservation sup-
porting practice factor.

2.4.1. R, Rainfall Erosivity Factor

Rainfall data was collected from the Loess plateau science data center, National Earth
System Science Data Sharing Infrastructure, National Science and Technology Infrastructure
of China (http://loess.geodata.cn, accessed on 6 July 2020). The monthly average rainfall
data during the period of 1987–2017 was used to calculate the R factor. The study area has
no record of rainfall intensity. As a result, the monthly rainfall data was used to calculate
the R factor using the following equation developed by Wischmeier and Smith [39].

R =
12

∑
i=1

(1.735× 101.5×lg Pi
2

P −0.08188) (6)

where: Pi is the monthly amount of rainfall and P is the annual rainfall.

http://loess.geodata.cn
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2.4.2. K, Soil Erodibility Factor

The K factor was measured under a standard plot, since this represents the suscepti-
bility of soil to erosion, the amount and rate of runoff, and transportability of the sediment.
The K factor was obtained from Loess Plateau Data Center, National Earth System Science
Data Sharing Infrastructure, National Science and Technology Infrastructure of China
(http://loess.geodata.cn, accessed on 6 August 2020).

2.4.3. LS, Slope Length and Steepness Factor

The LS factor reflects the impact of topographic features on soil erosion. We used
the formula for the graded slope factor proposed by Foster and Wishcmeier [39], and the
formula for the slope length factor proposed by Desmet and Govers [40].

S = 10.8 sin θ+ 0.03 θ < 5◦ (7)

S = 16.8 sin θ − 0.5 5◦ ≤ θ < 10◦ (8)

S = 21.91 sin θ − 0.96 θ ≥ 10◦ (9)

where: S is the slope factor and θ is the slope (◦).

Li =
Aout

m+1 − Ain
m+1

(∆x)2·Lm
m·22.3m

(10)

where: Li is the slope length factor of the i raster; Ain is the confluence area of the grid
entrance, m2; Aout is the confluence area of the grid outlet; ∆x is the grid resolution, m; L is
the non-cumulative slope length related to the flow direction of the grid inlet and outlet;
m is the slope length index, according to the research results of Liu et al. [41]. These take
the values as follows:

m = 0.2 θ < 0.5◦ (11)

m = 0.3 0.5◦ ≤ θ < 1.5◦ (12)

m = 0.4 1.5◦ ≤ θ < 3◦ (13)

m = 0.5 θ ≥ 3◦ (14)

2.4.4. C, Crop Management Factor

The C factor reflects the effect of vegetation types and cover on soil erosion. Vegetation
has the function of intercepting rainfall, slowing down surface runoff, maintaining soil and
water, and inhibiting soil erosion [39]. Different vegetation types and cover show different
effects in inhibiting soil erosion. The C factor values were assigned by combining the land
use/land cover classification map of the study area and the results of previous studies on
the C factor in the Loess Plateau and a drawn C factor map [42,43].

2.4.5. P, Conservation Supporting Practice Factor

The P factor expresses the impact of support practice in the reduction of soil erosion,
which is defined as the ratio of soil erosion by a support practice to the corresponding loss
with upslope and downslope tillage [39]. The P factor ranges from 0 to 1 (non-dimensional).
The lower the value, the better the conservation practice. The P factor values were assigned
by the results of previous studies on the P factor in the Loess Plateau and a drawn P factor
map [42–45].

2.5. Soil Erosion Analysis

We classified the annual average soil erosion into six classes (slight, light, moderate,
severe, very severe, and extremely severe) in the study area (Table 2), based on the standards
for the classification and gradation of soil erosion SL190-2007 issued by the Ministry of
Water Resources of China. In order to visualize the temporal and spatial changes in soil

http://loess.geodata.cn
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erosion, we referenced the Sankey diagrams to illustrate the transfer situation of soil erosion
classes at different time and used the R software package called networkD3 to map this.
Similarly, in the Sankey diagrams, the width of the lines represents the transfer areas of the
soil erosion classes, and the height of each component in the stacked bars is proportional to
the amount of area occupied by the soil erosion class in the study area.

Table 2. The soil erosion classification index based on the standards for the classification and
gradation of soil erosion SL190-2007 issued by the Ministry of Water Resources of China.

Code Erosion Intensity
Ton km−2 year−1 Erosion Intensity Class

1 <1000 slight
2 1000–2500 light
3 2500–5000 moderate
4 5000–8000 severe
5 8000–15,000 very severe
6 >15,000 extremely severe

2.6. Regression Models
2.6.1. Ordinary Least Squares (OLS)

OLS is mainly used for parameter estimation of linear regression, which obtains the
minimum value of the sum of the squares of the difference between the actual value and
the model estimate and uses the minimum value as the parameter estimation value [46]. In
this study, we used OLS as the reference of the spatial regression models. The formula is
as follows:

Yi = α + β1X1 + · · ·+ βnXn + ε (15)

where Yi is the dependent variable; X1 to Xn are independent variables; α is the intercept;
β1 to βn are estimated regression coefficients; ε is the error term.

2.6.2. Spatial Regression Model

Geographically Weighted Regression Model (GWR)
The geographically weighted regression model (GWR) is a local spatial technique

that can be used to examine the spatial variabilities of regression parameters and model
performance [46]. Compared with the general liner models, the GWR model carries out
separate regressions at each location (observation), considering only other observations
within a specific distance to that location. The formula is as follows:

Yi = β0(ui, vi) +
m

∑
k=1

βk(ui, vi)Xik + εi (16)

where Yi is the dependent variable; X1 to Xn are independent variables; β0 (µi, νi) is the
intercept; µi and νi represent the coordinates of the sample i in space; βk are estimated
regression coefficients; ε is the error term.

β (ui, vi) =
(

AT W (ui, vi) A
)−1

A TW (ui, vi) C (17)

where β (µi, νi) is the regression parameter vector in location (µi, νi); X is a sampling matrix
of the independent variable; C is a sampling vector of the dependent variable; W (µi, νi) is
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a diagonal matrix, whose diagonal elements represent the geographical weightings of each
observation around point i.

Wi =


wi1 0 · · · 0
0 wi2

...
...

. . .
0
...

0 0 · · · win

 (18)

where win is the weight assigned to the observation at location i.
Spatial Lag Model (SLM)
The spatial lag model (SLM) can solve the influence of adjacent independent variables

on another independent variable, which was afresh regarded as an explanatory variable to
be used for regression [47]. The formula is as follows:

Yit = δ
N

∑
j=1

Wijyjt + βXit + µi + εit (19)

where t is an index for the time dimension (years in this study), with t = 1, 2, 3, . . . , T; i is
individual in cross section, with i = 1, 2, 3, . . . , N; δ is the spatial autoregressive coefficient;
Wij is the row standardized spatial weight matrix; Yit is the dependent variable at i and t;
Xit represents the vector of the independent variables at i and t; β represents the coefficient
vector; µi denotes a spatial-specific effect for i; εit is an error term for i and t.

Spatial Error Model (SEM)
The spatial error model assumes that the error terms have an impact on spatial

dependence [48]. The formula is as follows:

Yit = βXit + µi + ϕit (20)

ϕit = ρ
N

∑
j=1

Wij ϕjt + εit (21)

where ϕit is the spatially autocorrelated error term; ρ is the spatial autocorrelation coeffi-

cient;
N
∑

j=1
Wij ϕjt denotes the interaction effects among the disturbance terms of the different

units; λ refers to the spatial autocorrelation coefficient.
In this study, we used soil erosion change as the dependent variable and land

use/cover area change as the independent variable to undertake regression analysis. The
OLS model and the GWR model were run in ArcMap10.7 software. The SLM model and the
SEM model were run in GeoDa 1.18 software (http://geodacenter.github.io/formats.html,
accessed on 6 August 2020).

3. Results
3.1. LULCC Classification and Accuracy Evaluation

The LULCC classification maps of Changwu Country were generated for each of the
following years: 1987, 1997, 2007, and 2017 (Figure 2). The overall classification accuracy
in 1987, 1997, 2007, and 2017 was 89.1%, 90.2%, 92.4%, and 93.5%, respectively, and the
respective Kappa coefficients were 0.81, 0.87, 0.90, and 0.92, respectively, which met the
needs for the present study.

http://geodacenter.github.io/formats.html
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3.2. LULCC Analysis

The rate and trend of changes markedly varied between land use/cover in the intervals
of the study period. We divided our data into the three research periods (1987–1996,
1997–2006, and 2007–2017), and the differences in LULCC were significant during each
study period. Cropland expanded rapidly in the period of 1987–1997 at a rate of 3.48% per
annum. However, from 1997 to 2007, the cropland area had a substantial shrinkage at a
rate of 4.97% per annum. By 2007, this was only 146.11 km2, accounting for 50.31% of the
cropland area in 1997. The cropland area successively decreased in the period of 2007–2017,
but the rate of decline slowed down, and the area decreased by 25%. The orchard area
decreased in the first period of 1987–1997, and successively increased in the other two
periods (1997–2007 and 2007–2017). A comparison of 1987 and 1997 revealed a reduction in
orchard area percentage from 20.95% to 12.73%. However, from 1997 to 2007, the orchard
area rapidly increased at a rate of 6.66% per year, with an increase of 48.15 km2. From 2007
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to 2017, the orchard area continued to increase at a rate of 3.34% per year, with an increase
of 40.19 km2.

The construction land area successively increased from 1987 to 2017, although the
changes varied in different periods in the whole area. The construction land area increased
by 37.85% and 23.58% from 1987 to 1997 and from 1997 to 2007, respectively. However, the
rate of construction land increase quickly changed with the rapid economic development
and increased by 313.50% from 2007 to 2017. This covered 34.96 km2 in 2017, which was
the largest in the last 30 years. The water body area drastically changed, with an increase
of 79.53% from 1987 to 1997, a decrease of 37.67% from 1997 to 2007, and a slight increase
of 8.51% from 2007 to 2017.

In the 1950s, the Changwu County Government began to carry out large-scale locusts
by organizing people, mainly to obtain timber and firewood. In the 1990s, due to the need
for economic development, a large number of forest trees were cut for the construction
of houses and mine pillars. This led to the substantial shrinkage of forest land, reduced
by 52.34% from 1987 to 1997. As the government’s awareness of forest land protection
gradually increased, the government began to implement the Grain for Green Project in
1999, and the forest land was quickly restored. In 2007, forest land rapidly increased by
310.49%, when compared with 1997. In 2017, there was a continuous increase in forest land,
with an increase of 37.55%, when compared with 2007.

However, the planted land and forest land change were inconsistent. The planted
land decreased by 7.01% from 1987 to 1997, increased by 19.68% from 1997 to 2007, and
decreased by 33.29% from 2007 to 2017.

The cropland, orchard, planted land and forested land were converted into large
areas with other land types at each time period, and there was less conversion between
construction land, water bodies, and other land types (Figure 3). From 1987 to 1997, the
largest increase in area of cropland was mainly due to the conversion of planted land and
orchards, which transformed 68.99 km2 and 64.93 km2, respectively. The forest land was
mainly converted into planted land and cropland, which were converted to 26.92 km2 and
7.91 km2, respectively. The large-scale conversion of cropland and planted land occurred
between 1997 and 2007. The conversions of cropland to planted land and forest land were
80.33 km2 and 19.72 km2, respectively. The area converted from cropland to orchard was
81.46 km2, which was the largest conversion between all land types in this period.
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From 2007 to 2017, the area converted from planted land to forested land was the
largest among all land types at 54.46 km2, followed by the conversion of cropland to
orchards, which was 52.94 km2. The rapid expansion of construction land mainly came
from the conversion of cropland, orchards and planted land to cope with the development
process of urbanization.

3.3. Soil Erosion Estimation and Analysis

We used the RUSLE to estimate the soil erosion in Changwu County. Figure 4 shows
the spatial distribution of soil erosion intensity in 1987, 1997, 2007, and 2017. The annual
average soil erosion for Changwu Country was estimated at 977.84 ton km−2 year−1,
1305.17 ton km−2 year−1, 1310.60 ton km−2 year−1, and 1891.46 ton km−2 year−1 in 1987,
1997, 2007, and 2017, respectively. The rates of annual average soil erosion increase were
significantly different between the periods of 1987–1997, 1997–2007, and 2007–2017, with
increases at the rate of 3.35%, 0.04%, and 4.43% per year in these three time periods,
although the annual average soil erosion continued to increase over time.
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Figure 5 shows the spatial distribution of six classes of annual average soil erosion
in 1987, 1997, 2007, and 2017. The areas of slight erosion and light erosion continued to
decrease, but the areas of moderate erosion and severe erosion continued to increase during
these three periods (1987–1997, 1997–2007, and 2007–2017) (Figure 5). The areas of very
severe erosion and extremely severe erosion decreased during the period of 1997–2007 but
increased during the period of 1987–1997 and 2007–2017. The area of slight erosion was the
largest, accounting for 70.88%, 66.30%, 65.79%, and 61.31% of the study area in every year.
As the soil erosion intensity increased, the corresponding area gradually decreased.
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standards for the classification and gradation of soil erosion SL190-2007 issued by the Ministry of Water Resources of China.

The transformation amount of soil-erosion class area varied at different time periods.
The amount of transformation mainly occurred when slight erosion was converted to
light erosion, light erosion was converted to moderate erosion, and moderate erosion was
converted to light and severe erosion (Figure 6). The area converted from slight erosion to
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light erosion was the largest at 33.30 km2, followed by light erosion converted to moderate
at 27.11 km2 and then moderate erosion converted to light erosion at 13.73 km2, during
the period of 1987–1997. However, during the period of 1997–2007, the area converted
from light to moderate erosion was the largest at 20.32 km2, indicating that soil erosion
intensity was increasing, followed by slight erosion converted to light erosion at 19.78 km2

and moderate erosion converted to slight erosion at 18.91 km2. It noteworthy that not
only the area converted from light to moderate erosion was the largest at 32.83 km2

during the period of 2007–2017, but moderate erosion converted to severe erosion at
21.21 km2 also first appeared as the third in the three time periods (1987–1997, 1997–2007
and 2007–2017). This result further revealed that the soil erosion intensity was increasing.
The transformation amount of slight erosion, light erosion to severe erosion, very severe
erosion, and extremely severe erosion was very small, indicating that slight erosion and
light erosion were relatively stable without drastic changes.

Forests 2021, 12, x FOR PEER REVIEW 14 of 19 
 

 

This result further revealed that the soil erosion intensity was increasing. The transfor-
mation amount of slight erosion, light erosion to severe erosion, very severe erosion, and 
extremely severe erosion was very small, indicating that slight erosion and light erosion 
were relatively stable without drastic changes. 

 

Figure 6. This figure shows the soil erosion change for 1987, 1997, 2007, and 2017. The stacked bars’ 
colors represent soil erosion class. The stacked bars’ height represents area of soil erosion class. The 
width of the lines represents the transfer areas of soil erosion class. 

3.4. LULCC Effect on Soil Erosion Change and Model Comparison 
The OLS and Spatial regression models (GWR, SLM and SEM) were applied to fit the 

relationship between LULCC and soil erosion change and their accuracies R2 were shown 
in Table 3. The results showed that the SEM and SLM have higher accuracy than the GWR 
and OLS in fitting the effect of LULCC and soil erosion change in different periods. In 
1987–1997, SEM has the highest accuracy (R2 = 0.659), followed by SLM (R2 = 0.653), GMR 
has lower accuracy (R2 = 0.203), and OLS has the lowest accuracy (R2 = 0.025). However, 
SLM has the highest accuracy (R2 = 0.644) in 1997–2007, followed by SEM (R2 = 0.639), 
GMR has lower accuracy (R2 = 0.211), and OLS has the lowest accuracy (R2 = 0.047). In 
2007–2017, SEM and SLM have higher accuracies (R2) at 0.639 and 0.627, respectively, and 
GMR and OLS have lower accuracies (R2) at 0.300 and 0.004, respectively. In summary, 
the SEM and SLM have better explanations for the effect of LULCC on soil erosion change. 

Table 3. Accuracy R2 value (p < 0.01) of different models in fitting the effect of LULCC on soil erosion 
change in different periods. 

Period OLS GWR SLM SEM 
1987–1997 0.025 0.203 0.653 0.659 
1997–2007 0.047 0.211 0.644 0.639 
2007–2017 0.004 0.300 0.627 0.639 

4. Discussion 
LULCC reflects the results of human–environment interactions [49,50]. The Loess 

Plateau has been disturbed by human activities for a long time, and human activities are 
the main factors that affect LULCC in the Loess Plateau [51,52]. Changwu County is an 
area dominated by agricultural production. Population expansion has led to long-term 
pressure on resources. The results indicate that the cropland area expanded significantly 
between 1987 and 1997 (Section 3.2). This was due to the population growth, backward 
economic development during this period, and per capita income of farmers which de-
pended on the expansion of cropland to improve. Hence, large areas of planted land were 

Figure 6. This figure shows the soil erosion change for 1987, 1997, 2007, and 2017. The stacked bars’
colors represent soil erosion class. The stacked bars’ height represents area of soil erosion class. The
width of the lines represents the transfer areas of soil erosion class.

3.4. LULCC Effect on Soil Erosion Change and Model Comparison

The OLS and Spatial regression models (GWR, SLM and SEM) were applied to fit the
relationship between LULCC and soil erosion change and their accuracies R2 were shown
in Table 3. The results showed that the SEM and SLM have higher accuracy than the GWR
and OLS in fitting the effect of LULCC and soil erosion change in different periods. In
1987–1997, SEM has the highest accuracy (R2 = 0.659), followed by SLM (R2 = 0.653), GMR
has lower accuracy (R2 = 0.203), and OLS has the lowest accuracy (R2 = 0.025). However,
SLM has the highest accuracy (R2 = 0.644) in 1997–2007, followed by SEM (R2 = 0.639),
GMR has lower accuracy (R2 = 0.211), and OLS has the lowest accuracy (R2 = 0.047). In
2007–2017, SEM and SLM have higher accuracies (R2) at 0.639 and 0.627, respectively, and
GMR and OLS have lower accuracies (R2) at 0.300 and 0.004, respectively. In summary, the
SEM and SLM have better explanations for the effect of LULCC on soil erosion change.

Table 3. Accuracy R2 value (p < 0.01) of different models in fitting the effect of LULCC on soil erosion
change in different periods.

Period OLS GWR SLM SEM

1987–1997 0.025 0.203 0.653 0.659
1997–2007 0.047 0.211 0.644 0.639
2007–2017 0.004 0.300 0.627 0.639
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4. Discussion

LULCC reflects the results of human–environment interactions [49,50]. The Loess
Plateau has been disturbed by human activities for a long time, and human activities are
the main factors that affect LULCC in the Loess Plateau [51,52]. Changwu County is an area
dominated by agricultural production. Population expansion has led to long-term pressure
on resources. The results indicate that the cropland area expanded significantly between
1987 and 1997 (Section 3.2). This was due to the population growth, backward economic
development during this period, and per capita income of farmers which depended on
the expansion of cropland to improve. Hence, large areas of planted land were converted
into cropland. The orchard mainly comprised of persimmon orchard and apple orchard
during this period. However, a large area of persimmon and apple trees fell and these areas
were turned into cropland, due to economic benefits. However, the agricultural structure
has changed as the orchard area continues to increase, while cropland has continued
to decrease from 1997 to 2017, which plays an important role in alleviating pressure on
resources. This change was correlated with the national policy on ecological environment
protection, but the huge benefits brought by orchards were the direct driving force for the
conversion of cropland into orchards. Wang [53] investigated the rural transformation
from the perspective of regime shifts of socio-ecological systems in Changwu County and
reported that the apple’s income (41,370 yuan/ha) was 138 times of that of grain in 2007.
This result supports the present research results very well.

The results of the spatial and temporal changes in forest land in the study area reflect
the changes in people’s attitudes towards the environment. Protecting the environment has
attracted the government’s attention. The area of forested land has continuously increased
since the implementation of Grain for Green Project in 1999. The implementation of the
Grain for Green Project resulted in large areas of cropland being used for afforestation.
Hence, cropland was mainly transformed into planted land and forested land between
1997 and 2007. During this period, the government’s awareness of forest land protection
gradually increased, and the forest was quickly restored as the forest tree cover quickly
grew. Some unclosed forests grew into forests. Therefore, forest land mainly comes from
the conversion of planted land and cropland. In 2017, the forested area reached 123.93 km2,
accounting for 21.8% of the research area. This result indicates that the forest land was
continuously recovered with the government’s emphasis on the ecological environment,
and that the agricultural structure is continuously changing. The conversion of cropland to
planted land was 18.78 km2 between 2007 and 2017, which indicates that the conversion of
cropland to forests is continuous.

The complex structure of forests could intercept rainfall and reduce soil erosion,
thereby improving soil protection [54,55]. Hence, the increase in forest area not only benefits
water and soil conservation, regulates the climate, and purifies the environment, but also
brings business opportunities to the local tourism industry. Forest-based well-being tourism
is becoming more and more popular due to the comfortable environment provided by the
forest, which derived the development of the tertiary industry from 67.50 million yuan in
1997 to 1843 million yuan during the period. Furthermore, R. pseudoacacia forests are an
important source of honey plants, and a large area of R. pseudoacacia forests have attracted
bee farmers. The ecological service function provided by forests for humans guarantees
the continuous increase in forest land. The continuous expansion of construction land area
reflects the improvement of people’s quality of life. That is, from a GDP of 544.3 million
yuan in 1987 to a GDP of 9.596 billion yuan in 2017. Especially from 2007 to 2017, Changwu
Country witnessed rapid economic development and urbanization, which all determined
the expansion of construction land. Xiao et al. [56] investigated the urbanization and
land use change in Shijiazhuang in China, and reported that construction land, as a ‘fast-
expansion stage’, was at the period of fast economic development. This coincides with the
present research results.

Changwu County is an area with severe soil erosion on the Loess Plateau. The average
annual soil erosion was 6500 ton/km2 from 1949 to 1979 in Changwu County, according
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to the statistical data of soil and water conservation in Shaanxi province (derived from
http://loess.geodata.cn, accessed on 6 August 2020).

However, it was found that the erosion in the study area was mainly slight and light
erosion in Changwu County in the past 30 years. Severe erosion, very severe erosion, and
extremely severe erosion account for only a small amount. It can be observed from the
spatial and temporal variation of soil erosion that the transformation mainly occurred in
low-level soil erosion. Furthermore, the amount of high-level soil erosion transformation
was less. This shows that the earlier soil and water conservation projects played an
important role in the water and soil management in the study area.

In 2020, Wen [21] studied the cost effectiveness of soil erosion control practices in the
Chinese Loess Plateau and found that engineering erosion control techniques implemented
in the Loess Plateau are effective in controlling soil erosion, which is consistent with the
present research results.

As early as the 1950s, the state recognized the importance of protecting soil and water
loss but did not put forward scientific treatment methods. The treatment of soil erosion
was still in the exploratory stage, and farmers were called upon to build protection projects.
It was not until 1981 that a scientific treatment method was developed to comprehensively
treat mountains, rivers, cropland, forest, and roads, according to the scope of the drainage
basin, and effectively control the local soil and water loss.

When we analyzed the temporal and spatial changes of soil erosion, it was found that
the soil erosion changes in the study area had a kind of “inertia”. This “inertia” means that
each erosion level prefers to convert to a neighboring level, rather than a large number of
cross-level transformations. Furthermore, this “inertia” allows for the optimistic estimation
that the erosion in the study area is at a relatively safe stage, and that this would not
rapidly deteriorate.

However, what we must pay attention to is that the annual average soil erosion, mod-
erate erosion, and severe erosion in the study area all increased with time. Furthermore, the
very severe erosion and extreme erosion area was the largest in 2017, when compared with
the other time points (1987, 1997, and 2007). Hence, there is a need to further strengthen
the soil and water conservation work in Changwu County.

From the results of the LULCC, it can be observed that from 1987 to 1997, the forest
land decreased, and the people’s logging, illegal logging and cropland expansion caused
great damage to the local vegetation. This is also the direct cause of the increase in
soil erosion intensity from 1987 to 1997. The vegetation began to recover after the state
implemented the Grain for Green Project in 1999. Vegetation restoration can intercept
rainfall, reduce surface runoff, and alleviate soil erosion [57–59]. The influence of vegetation
on soil erosion can be reflected by the value of the C factor. The C factor value increased
from 1987 to 1997, but the C factor value continued to decrease from 1997 to 2017, indicating
that the increase of vegetation area may reduce soil erosion. However, the R factor value
was determined by rainfall. From 2007 to 2017, the rapid increase in the R factor value
was due to the increase in rainfall, which resulted in increased soil erosion intensity. This
was the direct basis for the different effects of LULCC and rainfall on soil erosion in
different periods.

This study used spatial regression model comparison for the first time to determine
the impact of LULCC on soil erosion change and has significance for future studies. The
results show that the relationship between soil erosion and LULCC obtained by SLM and
SEM is more reliable than that derived by GWR and OLS. As spatial panel data models,
SLM and SEM may consider the spatial and temporal impact on dependent variables to
obtain accurate estimates. Fang [60] found that panel data models may be applied to the
impact of land use changes on catchment soil erosion and sediment yield in northeastern
China. This result supports our research, and our research further expands the application
of panel data in LULCC and soil erosion change. This study used the selection of spatial
regression models to obtain the effect of LULCC on soil erosion change, which can provide
a reference for the relationship between LULCC and soil erosion change in other regions.

http://loess.geodata.cn
http://loess.geodata.cn
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5. Conclusions

The LULCC in Changwu County has been significant over the last 30 years. The im-
plementation of the Grain for Green Project, the change in agricultural structure, and good
income from orchards, have controlled the expansion of cropland which was conducive to
the harmony between humans and nature. The decrease to increase in forest land was the
direct result of the implementation of the Grain for Green Project, reflecting the importance
of people’s attachment to environmental issues. Construction land has continued to in-
crease in the past 30 years, which is closely correlated with the local economic development
and urbanization process. The soil erosion in Changwu County in the past 30 years has
been dominated by slight erosion and light erosion, and other erosion levels have been
less prevalent. The early soil and water conservation projects played an important role.
The changes in soil erosion in the study area had both positive (the soil erosion changes
showed a kind of “inertia”) and negative (the intensification trend of soil erosion intensity)
aspects. The SEM and SLM have higher accuracy in explaining the effect of LULCC and
soil erosion change in different periods. The explanatory power of LULCC on soil erosion
exceeded 0.62 in different periods.
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