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Abstract: The creation and maintenance of complex forest structures has become an important forestry
objective. Complex forest structures, often expressed in multimodal shapes of tree size/diameter (DBH)
distributions, are challenging to model. Mixture probability density functions of two- or three-
component gamma, log-normal, and Weibull mixture models offer a solution and can additionally
provide insights into forest dynamics. Model parameters can be efficiently estimated with the maxi-
mum likelihood (ML) approach using iterative methods such as the Newton-Raphson (NR) algorithm.
However, the NR algorithm is sensitive to the choice of initial values and does not always converge.
As an alternative, we explored the use of the iterative expectation-maximization (EM) algorithm
for estimating parameters of the aforementioned mixture models because it always converges to
ML estimators. Since forestry data frequently occur both in grouped (classified) and ungrouped
(raw) forms, the EM algorithm was applied to explore the goodness-of-fit of the gamma, log-normal,
and Weibull mixture distributions in three sample plots that exhibited irregular, multimodal, highly
skewed, and heavy-tailed DBH distributions where some size classes were empty. The EM-based
goodness-of-fit was further compared against a nonparametric kernel-based density estimation (NK)
model and the recently popularized gamma-shaped mixture (GSM) models using the ungrouped
data. In this example application, the EM algorithm provided well-fitting two- or three-component
mixture models for all three model families. The number of components of the best-fitting models
differed among the three sample plots (but not among model families) and the mixture models of the
log-normal and gamma families provided a better fit than the Weibull distribution for grouped and
ungrouped data. For ungrouped data, both log-normal and gamma mixture distributions outper-
formed the GSM model and, with the exception of the multimodal diameter distribution, also the NK
model. The EM algorithm appears to be a promising tool for modeling complex forest structures.

Keywords: complexity; diameter (DBH) distribution; estimation-maximization (EM) algorithm;
forest structure; gamma; log-normal; maximum-likelihood (ML) method; nonparametric kernel-
density estimation; Weibull

1. Introduction

In forestry, the contemporary paradigms of ecological forestry and close-to-nature sil-
viculture look toward natural disturbance regimes to inform management approaches [1,2].
In general, natural disturbances and silvicultural cutting practices are important drivers of
forest dynamics that often cause partial upper canopy tree mortality and create openings
that serve as sites and niches for the establishment of new and/or the release of advance
tree regeneration [3–7]. Due to tremendous variabilities in size, intensity, severity, and fre-
quency of disturbances [4,8], large live legacy trees often survive natural disturbances and
are thus placed in the immediate proximity of the new regeneration [7,9–11]. The outcomes
of such partial disturbances are highly heterogeneous vertical forest structures in time and
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space that range from single to two or more cohorts or single to two or multiple canopy
layers formed by pure or mixed tree species [12].

To quantify vertical forest structures, model forest dynamics, growth, and yield,
and compare managed to natural stands, size/diameter at breast height (DBH) distribu-
tions are typically used [13]. Several shapes of DBH distributions have been consistently
found in both managed and natural stands [14]. For example, relatively even-aged stands
are often characterized by unimodal and near normal distributions, uneven-aged stands
typically exhibit rotated sigmoid or reverse-J diameter distributions and multi-aged stands
such as many old-growth forests show multimodal and/or irregularly descending distri-
butions characterized by asymmetry, skewness, interruptions (i.e., gaps in the distribution),
multimodality, and heavy tails [14].

Two general approaches (i.e., nonparametric and parametric methods) dominate
the modeling of DBH distributions. The nonparametric kernel-based density estimation
(NK) method e.g., Ref. [15] is a very efficient approach with the capacity to approximate
a wide variety of shapes, but suffers from two restrictions: (i) the need for a suitable
choice of bin size [16,17] and (ii) the inability to estimate standard errors and confidence
intervals for the estimated parameters. Whereas NK methods smooth empirical DBH
distributions without the need to estimate parameters, parametric methods estimate the
parameters of particular probability density functions that can conform to a wide array
of DBH distributions and are credited with providing a deeper understanding of forest
dynamics [18]. Parametric methods are often differentiated into flexible single or one-
component parametric probability density functions (PDFs) [19–22] and finite mixture
models consisting of two or more components [23–26]. Recent research has shown that
despite their flexibility in shape, popular single/one-component parametric models such
as the gamma and Weibull PDFs do not adequately portray irregular bi- and multi-modal
DBH distributions [15,25]. It is precisely these bi- and multi-modal DBH distributions
that represent heavy-tailed and highly skewed DBH distributions with some large trees
and gaps in the distribution, however, that reflect outcomes of natural disturbances that
are of interest to forest scientists and managers [15,25]. For these latter, more complex
distributions, finite mixture distributions that contain a few more components and thus
define different shape parameters for the sub-populations that comprise the overall DBH
distribution, are now recommended [27,28].

Finite mixture distributions treat overall, heterogeneous DBH distributions as a com-
pound of several distributions of sub-populations composed of multiple basic shapes
that reflect different age cohorts or canopy layers [15,18,29]. Among the recent studies
that have investigated various mixture distributions, we refer to [18] for two-component
mixture Weibull distributions, [30] for two-component mixtures of three-parameter Weibull
distributions, [29] for the mixture of log-normal, normal and two-parameter gamma dis-
tributions, [23] for the mixture of two-parameter Weibull distributions, [31] for mixture
of normal, log-normal, and two-parameter Weibull distributions, [25] for the mixture
of three-parameter gamma and Weibull distributions, [15] for the mixture of two- and
three-parameter gamma and Weibull distributions, [24] for the mixture of three-parameter
Weibull distributions, and [14,28] for two-component mixtures of two-parameter gamma
distributions and gamma-shaped mixture (GSM) models. The GSM model is a special
type of the two-parameter gamma mixture model for which estimating the parameters is
much easier, because the scale parameters of all components in each GSM model are the
same and the shape parameter of the k-th component is k, for k = 1, . . . , K [27,32]. Hence,
for a K-component GSM model 2K parameters are estimated whereas for a K-component
gamma mixture model the number of parameters is 3K-1.

The parameters of the finite mixture models (including the GSM model) can be es-
timated via a Bayesian or maximum likelihood (ML) approach e.g., [14,15,25,28]. The
Bayesian approach uses Gibbs samplers or Markov chain Monte Carlo (MCMC) compu-
tations that are computationally cumbersome and time consuming for large K. The ML
approach requires suitable starting parameters and iteratively executes and completes com-
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putations when numerical algorithms converge to a global maximum or terminates once a
convergence criterion is met. Iterative algorithms such as the expectation-maximization
(EM) are often combined with the Newton-Raphson (NR) method to find suitable initial
values to estimate the parameters of the distributions [33]. Finding a suitable choice of
the initial values for implementing the ML approach is not an easy task, however. Be-
cause the number of initial values that must be chosen depends on the number of groups
(i.e., diameter classes) and the numbers of the components of the finite mixture model, this
task becomes particularly challenging when the number of components for which starting
values must be found is more than three or four. The NR method is, however, sensitive
to the initial values, and the choice of initial values can strongly influence the speed of
convergence of the estimation procedure and its ability to locate the global maximum [25].
Finally, complex forests structures characterized by irregular and multimodal empirical
DBH distributions often exhibit many local maxima, minima, and saddle points on the
likelihood surface that can cause algorithms to become extremely unstable and to not
converge on the global maximum. In contrast, the iterative EM algorithm always con-
verges, and does so expeditiously when a good starting value is chosen [34]. The K-means
clustering algorithm is a powerful method for obtaining initial values [35] that can then be
used in the iterative EM algorithm for estimating the parameters of a mixture model [33].

Although recent research on finite mixture models has predominantly focused on the
gamma and Weibull PDFs, e.g., [14,15,25,28], less attention has been given to the log-normal
mixture model, which is also a very flexible PDF that is able to fit highly skewed and heavy-
tailed DBH distributions. Further, we have found no research devoted to estimating the
parameters of finite mixture models fitted to grouped data in the field of forestry.

In this study, we expand on previous work on finite mixture models in forestry and
developed the EM algorithm for the most commonly used multi-component mixture
models in forestry, i.e., the gamma, Weibull, and log-normal, mixture models for conditions
when observations are available both in grouped and in ungrouped form. In this study,
we used the K-means clustering algorithm to obtain initial values for the EM parameter
estimation approach. The objective of this paper is to explore the utility of the EM algorithm
for fitting gamma, log-normal, and Weibull mixture models to diameter distributions of
three irregular and multi-sized/aged forests. We further compared the performance of
the resulting models with the best fit to the NK and GSM models when DBH data were
ungrouped. Finally, we explored whether the number of groups (i.e., the number and
width of diameter classes) influenced which model family provided the better fit in our
empirical example datasets.

2. Results

The EM algorithm resulted in mixture models that fit the empirical data quite well.
The model family that produced the closest fit with lowest Akaike Information Criterion
(AIC) and largest log likelihood (LL) values differed among the three samples, with the
log-normal and gamma families typically producing better fits than the Weibull family. The
number of components in the various K-component mixture models that resulted in the
best model when data were grouped depended on the width of the diameter classes and,
to a minor extent, on the evaluation criterion (AIC or LL). Whether data were analyzed in
grouped or ungrouped form did not influence the selection of the best model family and
number of model components. For reference, the initial values for implementing the EM
algorithm for the three sample plots obtained using the k-means clustering approach are
given in Appendix C.

Sample 1 was characterized by a broadly bimodal, rotated sigmoid DBH distribution
that had no trees in the size classes between 30 and 50 cm in DBH (Figure A1). The DBH
distribution was best captured by two- or three-component models (Table 1). The two-
component mixture model was the superior model for grouped-5 and ungrouped (based
on AIC), whereas the three-component model was superior for grouped-2.5, grouped-5,
and ungrouped (the latter two based on LL). The shapes fit by the two-component mixture



Forests 2021, 12, 1196 4 of 22

model families were similar, with the log-normal and gamma families providing the
better fit (Figure A1a–d). In general, all models underestimated the density of trees in
the smallest size class, particularly in grouped-2.5, and successfully reflected the bimodal
shape of the underlying DBH distribution. The shapes of the curves of grouped-2.5 and
grouped-5 as well as of grouped and their corresponding ungrouped data forms were
very similar. Among the three-component mixture models, the log-normal family was
consistently identified as superior for grouped and ungrouped data (Table 1). The three-
component mixture models identified three modes in the underlying DBH distribution,
but the different model families disagreed in the placement of the modes, particularly
when the data were in grouped form (Figure A1e–h). For grouped-2.5, the log-normal
distinguished between the smallest DBH class (first mode) and the 17.5–27.5 cm classes
(second mode) and identified the 62.5–65 cm classes as representing the third mode of trees
in the 52.5–87.5 cm size classes. In contrast, the gamma and Weibull families identified a
single mode between 12.5–27.5 cm but distinguished two modes in the 52.5–87.5 cm size
classes. For ungrouped data, the three model families provided similar shapes of the fitted
curves and agreed on placing two modes in the 12.5–27.5 cm size classes. For grouped-5,
the three model families agreed more closely on the fitted shape, with similar shapes of the
log-normal and gamma families for size classes up to 32.5 cm and similar shapes of the
gamma and Weibull families for the size classes above 52.5 cm. Despite some differences,
the shapes of fitted curves of grouped and ungrouped data were generally similar.

Table 1. Parameter estimates and goodness-of-fit statistics for the mixture of log-normal, gamma, and Weibull distributions
fitted to sample 1 when DBH data are ungrouped (UG), grouped in classes of width 2.5 cm (G2.5), and grouped in classes of
width 5 cm (G5) . It should be noted that the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters Statistic

K Type Family α = (α1, . . . , αK)
′

β = (β1, . . . , βK)
′

AIC LL

2

G2.5
log-normal (4.210, 2.894)

′
(0.153, 0.288)

′
73.476 −31.738

gamma (11.848, 40.816)
′

(1.592, 1.671)
′

74.028 −32.014
Weibull (3.553, 6.460)

′
(20.971, 73.501)

′
76.675 −33.337

G5
log-normal (4.216, 2.890)

′
(0.266, 0.148)

′
45.312 −17.656

gamma (13.399, 44.042)
′

(1.395, 1.556)
′

46.154 −18.077
Weibull (3.487, 6.855)

′
(20.796, 73.218)

′
49.115 −19.557

UG
log-normal (2.876, 4.213)

′
(0.287, 0.157)

′
207.174 −98.587

gamma (39.902, 12.080)
′

(1.714, 1.532)
′

207.815 −98.907
Weibull (6.397, 3.629)

′
(73.265, 20.551)

′
211.038 −100.519

3

G2.5
log-normal (2.600, 3.108, 4.203)

′
(0.0371, 0.1722, 0.153)

′
65.557 −24.778

gamma (334.213, 108.835, 12.499)
′

(0.251, 0.575, 1.512)
′

70.185 −27.092
Weibull (22.398, 12.600, 3.724)

′
(86.140, 64.990, 20.979)

′
70.969 −27.484

G5
log-normal (4.110, 4.135, 2.947)

′
(0.023, 0.104, 0.253)

′
46.263 −15.131

gamma (15.288, 90.470, 0.122)
′

(1.288, 0.694, 0.122)
′

46.670 −15.335
Weibull (45.341, 10.354, 3.836)

′
(83.511, 63.075, 21.076)

′
48.099 −16.049

UG
log-normal (4.441, 4.136, 2.876)

′
(0.049, 0.094, 0.287)

′
210.274 −97.137

gamma (416.582, 112.260, 12.080)
′

(0.204, 0.560, 1.532)
′

210.673 −97.336
Weibull (8.048, 7.846, 6.397)

′
(25.679, 15.343, 73.265)

′
214.205 −99.102

Sample 2 was characterized by a broadly bimodal to multimodal distribution with an
understory cohort between 12.5–45 cm in DBH, no trees between 45–65 cm in DBH, and a
small overstory cohort between 65–75 cm in DBH (Figure A2). The understory cohort had a
mode in the 22–22.5 cm class and one in the 30–35 cm classes. Overall, the two-component
Weibull was the superior model for grouped-5 and ungrouped whereas the three-parameter
gamma and log-normal were superior for grouped-2.5 (Table 2). The shapes fit by the
two-component mixture model families were similar, particularly of the log-normal and
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gamma families, but the Weibull family provided the better fit by placing the first mode cor-
rectly between 30–35 cm and providing a closer fit to the second mode between 65–75 cm
(Figure A2a–d). In general, all models underestimated the density of trees in the first in
grouped-2.5, but successfully reflected the bimodal shape of the underlying DBH distribu-
tion. The shapes of the curves of grouped-2.5 and grouped-5 as well as of grouped and
their corresponding ungrouped data forms were very similar. Among the three-component
mixture models, the log-normal and gamma families were consistently identified as supe-
rior for grouped and ungrouped data (Table 2). This is largely because of nearly identical
shapes of the three-component log-normal and gamma mixture models that identified the
same modes, whereas the Weibull family missed the actual mode of the underlying DBH
distribution, particularly for grouped-5 (Figure A2e–h). Even though the first mode was
a more obvious feature of grouped-2.5, both log-normal and gamma models portrayed
this mode more sharply for grouped-5 but overestimated the density of the 30–35 cm
and 65–75 cm classes. All three model families captured the empty size classes between
45–60 cm. For ungrouped data, the three model families provided similar shapes of the
fitted curves and agreed rather well on placing the modes, with slightly better fits provided
by the log-normal and gamma than the Weibull model. The overall relative advantage of
the log-normal and gamma over the Weibull mixture distribution was a consistent similar
shape for grouped and ungrouped forms.

Table 2. Parameter estimates and goodness-of-fit statistics for the mixture of log-normal, gamma, and Weibull distributions
fitted to sample 2 when DBH data are ungrouped (UG), grouped in classes of width 2.5 cm (G2.5), and grouped in classes of
width 5 cm (G5) . It should be noted that the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters Statistic

K Type Family α = (α1, . . . , αK)
′

β = (β1, . . . , βK)
′

AIC LL

2

G2.5
log-normal (4.230, 3.318)

′
(0.025, 0.289)

′
72.305 −31.152

gamma (972.111, 13.375)
′

(0.071, 2.142)
′

69.215 −29.607
Weibull (52.200, 4.698)

′
(69.976, 31.530)

′
63.122 −26.561

G5
log-normal (4.203, 3.322)

′
(0.028, 0.276)

′
41.739 −15.869

gamma (278.370, 14.189)
′

(0.240, 2.022)
′

40.463 −15.232
Weibull (38.627, 4.643)

′
(68.320, 31.567)

′
35.990 −12.995

UG
log-normal (4.234, 3.318)

′
(0.037, 0.289)

′
304.256 −147.128

gamma (732.216, 13.388)
′

(0.094, 2.143)
′

300.953 −145.476
Weibull (39.990, 4.706)

′
(70.189, 31.421)

′
294.357 −142.178

3

G2.5
log-normal (4.223, 3.018, 3.481)

′
(0.032, 0.240, 0.133)

′
58.660 −21.330

gamma (638.393, 18.451, 59.230)
′

(0.106, 1.128, 0.553)
′

58.522 −21.261
Weibull (41.376, 4.926, 7.611)

′
(69.697, 21.784, 35.645)

′
60.877 −22.438

G5
log-normal (4.200, 2.943, 3.469)

′
(0.020, 0.168, 0.135)

′
38.490 −11.245

gamma (632.997, 37.412, 53.350)
′

(0.105, 0.507, 0.605)
′

38.658 −11.329
Weibull (38.628, 6.351, 7.438)

′
(68.320, 21.144, 35.285)

′
42.186 −13.0932

UG
log-normal (4.234, 2.972, 3.477)

′
(0.037, 0.228, 0.123)

′
300.263 −142.131

gamma (732.216, 20.710, 65.696)
′

(0.094, 0.967, 0.496)
′

299.940 −141.970
Weibull (39.990, 5.932, 8.117)

′
(70.189, 21.657, 35.461)

′
300.493 −142.246

Sample 3 was characterized by a generally negative exponential or reverse-J diameter
distribution typical of many old-growth forests where the number of trees initially declines
sharply with increasing tree size (Figures A3 and A4). In contrast to the previous two
samples, the diameter distribution in sample 3 was much wider, contained very few empty
diameter classes toward the larger end of the long right-tailed distribution (between 80
and 100 cm DBH; Figures A3 and A4), and was mildly multi-modal. The multi-modality
was largely smoothed over by all two-component mixture models but were more clearly
expressed in the three- and four-component mixture models. Overall, the three-component
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log-normal was the superior model for grouped-2.5 and grouped-5 (based on AIC) whereas
the four-parameter log-normal was superior for grouped-2.5 and grouped-2.5 (based on
LL) and ungrouped (Tables 3 and 4). Though broadly similar, the shapes of the three-
and four-component log-normal and gamma models differed from the Weibull model at
the first mode around the 10 cm size class, for which the Weibull provided the better fit,
particularly for grouped-5, and around the mid-sized classes between 20–40 cm, which the
Weibull model typically underestimated. For ungrouped data, the three model families
provided similar shapes of the fitted curves and agreed rather well on placing the modes,
with slightly better fits provided by the log-normal and gamma than the Weibull model.
All three mixture model families provided curves that fit the data much more closely when
the data were analyzed in ungrouped form.

Table 3. Parameter estimates and goodness-of-fit statistics for the mixture of log-normal, gamma, and Weibull distributions
fitted to sample 3 when DBH data are ungrouped (UG) and grouped (G) in classes of width 2.5 cm. It should be noted that
the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters Statistics

K Type Family α = (α1, . . . , αK)
′

β = (β1, . . . , βK)
′

AIC LL

1

G
log-normal 2.956 0.693 214.360 −105.180

gamma 2.046 12.233 259.537 −127.768
Weibull 1.407 35.634 329.422 −162.7114

UG
log-normal 2.954 0.693 3201.910 −1598.955

gamma 2.045 12.223 3272.889 −1634.444
Weibull 1.368 27.634 3307.548 −1651.774

2

G
log-normal (4.000, 2.668)

′
(0.350, 0.435)

′
175.664 −82.832

gamma (7.531, 5.853)
′

(7.269, 2.606)
′

181.498 −85.749
Weibull (3.421, 2.377)

′
(70.085, 18.450)

′
202.398 −96.199

UG
log-normal (4.101, 2.689)

′
(0.263, 0.448)

′
3140.958 −1565.479

gamma (14.141, 5.081)
′

(4.403, 3.207)
′

3159.619 −1574.517
Weibull (3.796, 2.308)

′
(67.822, 18.481)

′
3194.808 −1592.176

3

G
log-normal (4.165, 2.376, 3.062)

′
(0.248, 0.268, 0.423)

′
174.497 −79.248

gamma (12.858, 13.141, 12.418)
′

(4.797, 1.857, 0.955)
′

176.244 −80.122
Weibull (4.704, 2.496, 3.875)

′
(75.592, 31.643, 13.306)

′
193.224 −88.612

UG
log-normal (4.238, 3.520, 2.556)

′
(0.189, 0.228, 0.352)

′
3139.964 −1561.982

gamma (27.672, 18.870, 8.462)
′

(2.551, 1.840, 1.610)
′

3152.290 −1566.975
Weibull (5.448, 4.466, 3.152)

′
(77.088, 38.036, 15.169)

′
3188.805 −1586.149

4

G
log-normal (4.331, 3.922, 3.146, 2.428)

′
(0.167, 0.218, 0.306, 0.288)

′
180.238 −79.119

gamma (40.550, 29.524, 21.736, 12.860)
′

(1.860, 1.583, 1.124, 0.935)
′

184.617 −81.308
Weibull (7.234, 4.908, 3.170, 3.418)

′
(87.458, 59.458, 32.177, 14.167)

′
199.350 −88.675

UG
log-normal (4.329, 3.892, 3.236, 2.462)

′
(0.143, 0.144, 0.188, 0.292)

′
3138.762 −1558.381

gamma (47.339, 48.153, 28.019, 12.138)
′

(1.621, 1.028, 0.924, 1.007)
′

3142.216 −1560.108
Weibull (7.656, 6.784, 5.427, 4.000)

′
(52.661, 82.269, 28.017, 13.269)

′
3172.867 −1575.433

In all three samples, the log-normal mixture model generally did a comparable, if not
better, job fitting the ungrouped data than the gamma mixture model and both models
outperformed the GSM (Table 5). The log-normal mixture model was identified as superior
to the gamma mixture model by all three goodness-of-fit measures in sample 1 and the
Kolmogorov-Smirnov (KS) and the Cramér-von Mises (CVM) measures in sample 2, and the
KS and Anderson-Darling (AD) measures in sample 3 (indicated by boldface values in
Table 5). The NK model was identified as the superior model by the KS measure in sample
2 and by all three measures in sample 3 while the GSM model consistently exhibited the
worst performance in all three samples. The differences in goodness-of-fit among the three



Forests 2021, 12, 1196 7 of 22

model families can be readily seen when the PDFs of the log-normal mixture, NK, and GSM
models were superimposed onto the DBH distributions of all three samples (Figure A5).

Table 4. Parameter estimates and goodness-of-fit statistics for the mixture of log-normal, gamma, and Weibull distributions
fitted to sample 3 in grouped case when class width is 5 cm. It should be noted that the estimated vector of mixing
parameters is not given for the sake of saving space.

Estimated Parameters Statistics

K Model α = (α1, . . . , αK)
′

β = (β1, . . . , βK)
′

AIC LL

1
log-normal 2.950 0.700 136.568 −66.284

gamma 2.017 12.376 179.552 −87.776
Weibull 1.403 34.300 237.321 −116.660

2
log-normal (3.531, 2.481)

′
(0.568, 0.303)

′
103.765 −46.882

gamma (3.259, 9.486)
′

(12.567, 1.366)
′

107.470 −48.735
Weibull (3.638, 2.276)

′
(70.807, 18.911)

′
132.321 −61.160

3
log-normal (4.145, 3.104, 2.379)

′
(0.257, 0.368, 0.198)

′
95.901 −39.950

gamma (9.607, 12.329, 19.674)
′

(6.160, 1.843, 0.569)
′

96.210 −40.105
Weibull (6.104, 2.586, 2.626)

′
(83.387, 48.790, 17.167)

′
129.290 −56.645

4
log-normal (4.320, 3.881, 3.098, 2.388)

′
(0.170, 0.227, 0.296, 0.200)

′
101.564 −39.782

gamma (46.628, 23.178, 18.438, 16.192)
′

(0.935, 3.0233, 1.298, 0.716)
′

103.357 −40.678
Weibull (18.360, 9.149, 2.697, 2.630)

′
(95.022, 71.635, 46.513, 17.165)

′
132.513 −55.256

Table 5. Goodness-of-fit statistics for fitting mixture of gamma, mixture of log-normal, GSM, and NK models to samples
1 and 2 in ungrouped case. The number of components used for fitting the log-normal and gamma mixture models to
samples 1 and 2 are 2 and 3, respectively. The number of components used for fitting GSM model to both samples is 250.

Family

Sample Measure Gamma Log-Normal NK GSM

1
KS 0.090 0.088 0.143 0.106
AD 0.214 0.198 0.457 0.399

CVM 0.024 0.022 0.056 0.045

2
KS 0.110 0.104 0.100 0.128
AD 0.218 0.221 0.255 0.671

CVM 0.035 0.034 0.046 0.124

3
KS 0.039 0.039 0.026 0.094
AD 0.519 0.475 0.328 4.397

CVM 0.069 0.074 0.021 0.436

3. Discussion

The EM algorithm was quite successful fitting two- and three-parameter gamma, log-
normal, and Weibull mixture distributions to three empirically observed example diameter
distributions. Empirical diameter distributions in natural forests are often characterized
by random, local, irregular, and multiple modes that reflect peaks of establishment of
natural regeneration at certain time intervals and/or episodic growth releases of individual
or small groups of trees following disturbances or gap dynamics [4,14,36]. Theoretical
probability density functions anticipate gradual, but not necessarily small, differences in
the frequency of trees in neighboring size classes and are generally more successful at
approximating multimodal than irregular distributions [25]. Thus, as long as empirical
diameter distributions do not exhibit large, erratic differences in the frequency of trees in
neighboring size classes (i.e., irregular distributions), kernel density and theoretical density
functions can provide smoothed fits that closely approximate various shapes of empirical
diameter distributions. In this study, flexible two- and three-parameter log-normal and
gamma mixture models were particularly successful at approximated two differently
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shaped, highly skewed, heavy tailed, and multimodal empirical DBH distributions with
empty size classes.

The log-normal, gamma, and Weibull mixture distribution families are often used to
analyze heterogeneous lifetime or survival data [37], which DBH distributions represent.
In this study, these three mixture model distribution families did not perform equally
well, however. In most cases, but not always, the log-normal and the gamma mixture
models provided a closer fit to the empirical diameter distributions than the Weibull
model; in most cases, the log-normal mixture models were only slightly superior to the
gamma mixture models. Although mixture models are able to approximate stands with
multimodal diameter distributions with high accuracy and fit DBH distributions very
well around the largest maxima [14,15,29], the observed qualitative differences among the
distribution families were largely due to an underestimation of the tree frequency in the
class of the global maximum density, with more gradual and delayed changes in the shape
of the Weibull mixture distribution than the log-normal and gamma mixture distributions
(Figures A1 and A2).

The accuracy of the fit of all three mixture models also depended on the number of
components of each model. AIC and LL indicated that two components generated the
superior model in sample 1 and three or four components provided the better fit for the
DBH distributions in samples 2 and 3 , reflecting the fact that the number of components in
mixture models should be related to the number of maxima observed in a distribution [14].
Whereas all mixture models using fewer components than the number of maxima smoothed
over and missed some local maxima and generally overestimated densities in empty classes,
mixture models that matched the number of maxima were able to more closely trace the
subtleties of the DBH shapes. As [15] point out, however, the choice of using a two- or
three-component model depends largely on the study objective. If the study objective is to
fit theoretical distribution models as precisely as possible to a specific empirical data set,
then the number of mixture components should be matched to the number of random, local
extremes. If, however, the objective is to make more general inferences about regeneration
or stand dynamics, then modeling random, local multimodality would not be of central
interest and the focus should be on the separation of local maxima that reflect the existence
and dynamics of subpopulations. For these types of investigations, two-component mixture
models are often sufficient [15,18,23,25,30]. While the decision to select a two-, three- or
higher-component mixed model may depend on the specific objective of the study, we
found that the ungrouped data format gave more similar results among the model families
that generally fit the underlying distribution very well. An additional benefit was that no
decision on the width of the size classes needed to be made.

It has also been reported that the implementation of mixture models with more
than two parameters is problematic, because the estimation process may fail to converge,
the algorithm may become extremely unstable, and the global maximum of the likelihood
function may not be found [14]. To avoid non-convergence, the GSM model has been
promoted as an alternative, because it smooths small local DBH maxima, making it a useful
model for approximating the empirical DBH distributions in stratified stands with complex
structures [14]. In this study, however, the EM algorithm always led to convergence and
robust estimates of parameters. In addition to a consistently superior performance of the
two- and three-component log-normal and gamma mixture models over the GSM model,
the speed taken by the central processing unit (CPU) for estimating the parameters was
much faster for the finite mixture models (i.e., less than 1.5 seconds for all three samples)
compared to the time needed for estimating the 250 components of the GSM model (i.e., 120,
150, and 720 seconds for samples 1 and 150 seconds for samples 1, 2, and 3, respectively).
and 2, respectively).

The performances of the two- and three-component log-normal and gamma-mixture
models were comparable, and often superior, to the approximation obtained using the
highly flexible NK model [14,15,38]. This reflects the capacity of two- and three-component
log-normal, gamma, and Weibull mixture distributions to very accurately approximate mul-
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timodal DBH distributions that describe complex forest structures with three or multiple
age cohorts [25]. As exemplified in the two-cohort stands of samples 1 and 2, when DBH
distributions reach a first local maximum, decrease thereafter, and increase again to reach a
second local maximum (i.e., a rotated sigmoid distribution), two- and three-component
mixture models fit very well. In these instances, the mixture models fit around the distinct
and sharp local maxima and largely smooth over smaller local maxima, which often express
random multimodality and whose overall influence on the quality of the approximation
is limited [15]. In contrast, kernel density estimators smooth over the distinct and sharp
extremes (i.e., both maxima and empty DBH classes), leading to less precise approxima-
tions than in multilayered stands with smoother distributions [15], as was seen with the
reverse-J DBH distribution in separate heavy-tailed and highly skewed plot whose DBH
is not given in this study. The successful performance of the NK model also reflects that
an accurate parametric model was selected to fit the empirical DBH data that overcame
one of the main limitations that challenge finite mixture distributions, namely the failure of
the estimation process to converge or find the global maximum. We conclude that the EM
algorithm, at least for the sample plots used in this study, provided initial values that were
sufficiently close to the values for which the log likelihood function was able to reach the
global maximum.

4. Materials and Methods
4.1. Material

The EM algorithm was applied to example data collected in three plots located in two
different sampling areas. The first sample used two plots of 0.08 ha size that were part of a
larger study on the effects of prescribed burning established in multi-aged mixed ponderosa
pine (Pinus ponderosa Dougl. ex Laws.) that contained scattered western junipers (Juniperus
occidentalis Hook.). The plots were located in the Malheur National Forest on the southern
end of the blue Mountains near Burns, Oregon, USA [39]. Of the many variables originally
collected in this study, we only used the diameter at breast height (DBH, measured at 1.3 m
height) of all live trees in plot 75 (sample 1) and plot 23 (sample 2). The second sampling
area of the study was located in district 1, compartment 111 in the Kordkuy forest in the
Golestan province of northern Iran (UTM zone 40: E247508, N4065346). The forest is a
semi-natural multi-aged Oriental beech (Fagus orientalis Lipsky) dominated forest that is
managed with the single-tree selection system. One 100 × 100 m plot was established in an
area of the compartment that had a tree canopy cover of 85%. All living trees in the plot
with a DBH greater than 6 cm were measured using two caliper readings at an angle of 90◦

to one another. The plot summary statistics are provided in Table 6.

Table 6. Summary statistics for DBH data.

Sampling Number of 1st 3rd
Sample Area Trees (n) Min. Quartile Median Mean Quartile Max.

1 USA 24 12.20 17.30 41.30 43.46 65.42 90.20
2 USA 40 11.40 24.43 31.10 31.73 34.65 71.10
3 Iran 399 6.00 11.25 16.50 25.00 29.12 101.50

4.2. Methods
4.2.1. Mixture Models and Inference

The PDF of a K-component mixture model has the form

g(x|Θ) =
K

∑
k=1

ωk f
(
x
∣∣θk
)
, (1)

where x is the DBH value, Θ = (ω
′
, θ
′
1, . . . , θ

′
k)
′

in which θk is the parameter vector of the
k-th component with PDF f (.|θk) and ω = (ω1, . . . , ωK)

′
is the vector of mixing parameters.
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The mixing parameters ωks are non-negative and sum to one, i.e., ∑K
k=1 ωk = 1. In this study,

f (.|θk) denotes the PDF of gamma, log-normal, or Weibull distribution given, respectively,
by the following:

f
(
x
∣∣θk
)
=

1
βΓ(α)

(
x
β

)α−1

exp
{
−
(

x
β

)}
, (2)

f
(
x
∣∣θk
)
=

1
xβ
√

2π
exp

{
−1

2

(
log(x)− α

β

)2
}

, (3)

f
(
x
∣∣θk
)
=

α

β

(
x
β

)α−1

exp
{
−
(

x
β

)α}
, (4)

where x > 0 and θk = (α, β)
′
. For the families given in (2) and (4), α and β play the role of

the shape and scale parameters, respectively. Assuming that x = (x1, . . . , xn)
′

are coming
from a mixture model with PDF (1), the ML estimator Θ̂ of the parameter vector Θ is
obtained by maximizing the log-likelihood function. This means

Θ̂ = argmax
Θ

n

∑
i=1

log
( K

∑
k=1

ωk f
(
xi
∣∣θk
))

.

In order to estimate Θ̂ through the ML approach, computer packages use iterative
methods such as the NR algorithm, which does not always converge on the global max-
imum, particularly for irregular and incomplete distributions with heavy tails. When
encountering incomplete data problems, the EM algorithm introduced by [40] is the most
popular inferential tool for estimating the parameter vector.

4.2.2. Application of Mixture Models to Sample Plots

Mixture models of gamma, log-normal, and Weibull distributions were each fitted to
samples 1–3. Groups in all three samples were either 2.5 cm or 5 cm wide (hereafter grouped-
2.5 or grouped-5). Parameters of the mixture models in both grouped and ungrouped cases
were estimated using the EM algorithm described briefly in Appendices A and B. We note
that the initial values for implementing the EM algorithm were obtained through the
K-means method of clustering in the R [41] environment using command kmeans(.). To do
this, data were partitioned into K groups and the proportion of data points belonging
to the k-th cluster was considered as the initial values for k-th mixing parameter for
k = 1, . . . , K. For each group k, the initial values for αk and βk were obtained using the
method of moments. For applying the K-means approach to the grouped DBH observations,
the midpoint of the i-th cluster is repeated fi times for i = 1, . . . , m in order to obtain n
observations for applying K-means approach. For implementing the EM algorithm, we
have provided an R package called ForestFit [42]. Performance of the various mixture
models was compared for both grouped and ungrouped data. The performances were
further compared with the GSM and NK models using only the ungrouped data. The K-
component GSM model with PDF given by

ggsm(x|Θ) =
K

∑
k=1

ωk
βk

Γ(k)
xk−1e−βx,

where Θ = (ω1, . . . , ωK, β)
′

has been used recently for modelling the DBH distribution [28].
The NK model estimate the fitted PDF f (x), to the data using

f (x) =
1

nh

n

∑
i=1
K
( x− xi

h

)
,
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where x1, . . . , xn are DBH observations, h is bin size, and K(y) is a mathematical function
that satisfies

∫ ∞
−∞ K(y) = 1. It should be noted that in the present study, h is determined by

the Plug-in bandwidth estimator proposed by [43] and the kernel was the Gaussian type de-
fined as K(y) = 1/

√
2π exp

{
−y2/2

}
. The statistical packages GSM [27] and kerdiest [44]

that were developed for the R [41] environment were used to fit the GSM and NK mod-
els, respectively. Also, for having a fair comparison, we suppose that data are given in
ungrouped from. As statistical goodness-of-fit measures, we used the AIC, AD, CVM, KS,
and LL given by

AIC = −2
n

∑
i=1

log g(xi|Θ) + 3K− 1, (5)

AD = −n−
n

∑
i=1

(
2i− 1

n

)[
log F(x(i)|Θ) + log

(
1− F(x(n−i+1)|Θ)

)]
, (6)

CVM =
1

12n
+

n

∑
i=1

[
F(x(i)|Θ)− 2i− 1

2n

]2
, (7)

LL = log g(x|Θ) =
n

∑
i=1

log g(xi|Θ), (8)

were x(i) denotes the i-th ordered value of DBH and F(.|Θ) is cumulative distribution
function. For computing statistics AIC, AD, CVM, and LL given in (5)–(8), we assume that
Θ is estimated using the EM algorithm. We note that the smaller (larger) values of AIC (LL)
indicate better models.

5. Conclusions

We derived the expectation-maximization (EM) algorithm for estimating parameters of
the most commonly used finite mixture distributions (i.e., gamma, log-normal, and Weibull
mixture models) fitted to grouped and ungrouped empirical diameter at breast height
(DBH) data. We used three sample plots with different DBH distributions to showcase
the EM algorithm, investigated the performance of the mixture models, and compared
their performance to nonparametric kernel-based density estimation (NK) and gamma-
shaped mixture (GSM) model. We want to stress, however, that while our analysis of
three different example sample plots provided very encouraging results for the utility
of the EM algorithm to model with irregular diameter distributions, the conclusions
about the relative performances of the gamma, log-normal, and Weibull mixture models
apply only to these three sample plots and should not be extrapolated beyond these
plots. Sample plots represented a bimodal rotated sigmoid distribution without any trees
between 30 and 50 cm in size, a bimodal distribution with understory trees up to 45 cm,
no trees between 45 and 65 cm in DBH, and a small overstory component between 65
and 75 cm (mixed-age ponderosa pine with scattered western junipers in both plots),
and a reverse-J diameter distribution with several small modes toward the right tail of
the distribution (mixed, deciduous uneven-aged Oriental beech forest). In these mixed-
species, two-cohort/two-layered, and multi-cohort/multi-layered stands, the two- and
three-component finite log-normal and gamma mixture models modeled empirical DBHs
(grouped and ungrouped) very well and generally outperformed the Weibull mixture
model. Both of these mixed model types also consistently outperformed the very flexible
GSM model that has previously been shown to work well for stands with high skewness
and heavy tails. The log-normal and gamma distributions were superior to the NK model
in clearly bimodal stands and were inferior in the reverse-J situation that contained several
minor modes along the right tail of the distribution. Because nonparametric models
preclude the computation of statistics such as standard errors and confidence intervals or
hypothesis testing of the estimated parameters, parametric mixture models are generally
regarded as a more insightful approach for fitting DBH distributions. We conclude that
the two- and three-component log-normal and gamma mixture models are well suited to
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characterize multimodal DBH distributions for natural stands with two, three or multiple
age cohorts of complex structure. The capability of these models to approximate and
quantify multimodal empirical DBH distributions makes these models a valuable tool
for investigating forest dynamics in complex stands that increasingly guide management
approaches in forestry.
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Appendix A. A Brief Introduction to the EM Algorithm for Mixture Models Fitted to
Ungrouped Data

In this study we use the EM algorithm for estimating Θ in the mixture model (1) when
x is available in both grouped and ungrouped (raw) forms. The EM algorithm finds the ML
estimators for the parameters of a statistical model when some information about the model
is missing. For a k-th component mixture model, each observed value is accompanied
by a label that determines the observation belongs to which component. For example,
the paired sample (xi, j) shows that i-th observed value xi belongs to j-th component
(for i = 1, . . . , n and k = 1, . . . , K) in which j is unknown label or origin of component.
Here, we have two sets of data (or variables) including the set of observed variable and
latent variable (labels). A sample including both of observed and latent variables is called
complete data. For a mixture model corresponds to (1), the observed data (DBH data) are
denoted by x1, . . . , xn where the k-th component of the mixture has the PDF f

(
.
∣∣θk
)
. In the

EM algorithm framework, the observed data corresponding to (1) are denoted by x1, . . . , xn
where the k-th component of the mixture has the pdf f

(
.
∣∣θk
)
. We denote the complete

data by ξ =
(
ξ
′
1, . . . , ξ

′
n
)′

=
(
(x1, z

′
1), . . . , (xn, z

′
n)
)′

in which zi = (zi1, . . . , ziK)
′

is the latent
realization of Zi = (Zi1, . . . , ZiK)

′
defining the origin component of xi for i = 1, . . . , n.

In each realization of Zi, one of its components, say Zik, equals to 1 and the others are zero.
Such realization states that yi comes from the k-th component of the mixture model. We
note that by this construction the observation xi comes from the k-th component when
Zik = 1, for i = 1, . . . , n and k = 1, . . . , K. The complete data log-likelihood function,
i.e., lc(Θ, ξ) is given as

lc(Θ, ξ) = C +
n

∑
i=1

K

∑
k=1

zik log ωk +
n

∑
i=1

K

∑
k=1

zik log f
(
xi
∣∣θk
)
,

where the constant C is independent of parameter vector Θ. Each EM algorithm has
two parts, including expectation (E) and maximization (M) steps. Both E- and M-steps
are repeated until convergence occurs. In what follows, we introduce both the E- and
M-step of the EM algorithm. Assuming that we are at the (t + 1)-th iteration of the EM

https://www.fs.usda.gov/rds/archive/Catalog/RDS-2017-0041
https://www.fs.usda.gov/rds/archive/Catalog/RDS-2017-0041
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algorithm, the E-step requires the calculation of the conditional expectation Q
(
Θ
∣∣Θ(t)) of

the complete data log-likelihood function given the observed data x and a current estimate

Θ(t) =
(
ω
′ (t)

, θ
′ (t))′

of the parameter vector Θ. We have

Q
(
Θ
∣∣Θ(t)) =E

(
lc(Θ, ξ)

∣∣x, Θ(t)) = C +
n

∑
i=1

K

∑
k=1

τ
(t)
ik log ωk +

n

∑
i=1

K

∑
k=1

τ
(t)
ik log f

(
xi
∣∣θk
)
, (A1)

where

τ
(t)
ik = E

(
Zik

∣∣∣xi, Θ(t)
k

)
=

ω
(t)
k f
(

xi

∣∣∣θ(t)k

)
∑K

k=1 ω
(t)
k f
(

xi

∣∣∣θ(t)k

) , (A2)

for i = 1, . . . , n and k = 1, . . . , K. The M-step can be carried out for each of PDFs given in
(2)–(4) as follows, respectively.

Appendix A.1. M-Step of the EM Algorithm for Mixture of Gamma Distributions

Suppose x = (x1, . . . , xn)
′

denotes a sample of n independent observations from
mixture of gamma distributions with pdf given in (2) where θ = (α, β)

′
. Substitute pdf of

the gamma distribution into the right-hand side of (A1) to obtain

Q
(
Θ
∣∣Θ(t)) =C +

n

∑
i=1

K

∑
k=1

τ
(t)
ik log ωk +

n

∑
i=1

K

∑
k=1

τ
(t)
ik

[
− log βk − log Γ(αk) + (αk − 1) log

xi
βk
− xi

βk

]
. (A3)

where C is a constant independent of θk = (αk, βk)
′
. Assume that we are currently perform-

ing the (t + 1)-th iteration of the EM algorithm. We maximize (A3) with respect to αk and
βk in order to update α

(t)
k and β

(t)
k as α

(t+1)
k and β

(t+1)
k , respectively. It follows that α

(t+1)
k is

a solution of the equation

α
(t+1)
k =argmax

αk

n

∑
i=1

τ
(t)
ik

[
− log Γ(αk) + (αk − 1) log

xi

β
(t)
k

]

and

β
(t+1)
k =

∑n
i=1 τ

(t)
ik xi

α
(t)
k ∑n

i=1 τ
(t)
ik

.

Appendix A.2. M-Step of the EM Algorithm for Mixture of Log-Normal Distributions

Suppose x = (x1, . . . , xn)
′

denotes a sample of n independent observations from
mixture of log-normal distributions with pdf given in (3) where θ = (α, β)

′
. Substitute pdf

of the log-normal distribution into the right-hand side of (A1) to obtain

Q
(
Θ
∣∣Θ(t)) =C +

n

∑
i=1

K

∑
k=1

τ
(t)
ik log ωk +

n

∑
i=1

K

∑
k=1

τ
(t)
ik

[
− log xi − log βk −

1
2

(
log xi − αk

βk

)2
]

, (A4)

where C is a constant independent of θk = (αk, βk)
′
. Assume that we are currently perform-

ing the (t + 1)-th iteration of the EM algorithm. We maximize (A4) with respect to αk and
βk in order to update α

(t)
k and β

(t)
k as α

(t+1)
k and β

(t+1)
k , respectively. It follows that

α
(t+1)
k =

∑n
i=1 τ

(t)
ik log xi

∑n
i=1 τ

(t)
ik

,
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and

β
(t+1)
k =

∑n
i=1 τ

(t)
ik log

(
xi − α

(t)
k

)2

∑n
i=1 τ

(t)
ik

.

Appendix A.3. M-Step of the EM Algorithm for Mixture of Weibull Distributions

Suppose x = (x1, . . . , xn)
′

denotes a sample of n independent observations from
mixture of Weibull distributions with pdf given in (4) where θ = (α, β)

′
. Substitute pdf of

the gamma distribution into the right-hand side of (A1) to obtain

Q
(
Θ
∣∣Θ(t)) =C +

n

∑
i=1

K

∑
k=1

τ
(t)
ik log ωk +

n

∑
i=1

K

∑
k=1

τ
(t)
ik

[
log αk − log βk +

(
αk − 1

)
log

xi
βk
−
(

xi
βk

)αk
]

. (A5)

where C is a constant independent of θk = (αk, βk)
′
. Assume that we are currently perform-

ing the (t + 1)-th iteration of the EM algorithm. We maximize (A5) with respect to αk and
βk in order to update α

(t)
k and β

(t)
k as α

(t+1)
k and β

(t+1)
k , respectively. It follows that α

(t+1)
k is

a solution of the equation

α
(t+1)
k = argmax

αk

n

∑
i=1

τ
(t)
ik

[
log αk + (αk − 1) log

xi

β
(t)
k

−
(

xi

β
(t)
k

)αk
]

,

and

β
(t+1)
k =

∑n
i=1 τ

(t)
ik x

α
(t)
k

i

∑n
i=1 τ

(t)
ik


1

α
(t)
k

.

For more details about the EM algorithm for mixture models fitted to ungrouped data, we
refer reader to [26,45].

Appendix B. A Brief Introduction to the EM Algorithm for Mixture Models Fitted to
Grouped Data

Suppose each element of the random sample x = (x1, . . . , xn)
′

follows the PDF
given in (1). Further assume that sample x has been partitioned into m mutually ex-
clusive groups each of the form (ai, bi) for i = 1, . . . , m. We note that the a1 and bm
can be regarded, respectively, as the minimum and maximum observed values and
∪m

i=1(ai, bi) ⊆ S in which S denotes the support of the distribution. It is worth not-
ing that we just know about the number ni of observations falling in (ai, bi) and the fact
that ai < xij < bi for j = 1, . . . , ni and i = 1 . . . , m. So, the vector of observed data is given

by y =
(
(n1, a1, b1)

′
, (n2, a2, b2)

′
, . . . , (nm, am, bm)

′)′
.
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Appendix C. Initial Values for Implementing the EM Algorithm Applied to Samples 1,
2, and 3

Table A1. Initial values of the EM algorithm for sample 1 obtained using the K-means clustering
approach when DBH data are ungrouped (UG) and grouped (G) in classes of width 5 cm. It should
be noted that the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters

K Type Family α(0) =
(
α
(0)
1 , . . . , α

(0)
K
)′

β(0) =
(

β
(0)
1 , . . . , β

(0)
K
)′

2

G
log-normal (2.787, 4.189)

′
(0.258, 0.483)

′

gamma (38.508, 13.458)
′

(1.771, 1.356)
′

Weibull (7.1000, 3.873)
′

(72.890, 20.173)
′

UG
log-normal (2.850, 4.190)

′
(0.367, 0.264)

′

gamma (37.567, 11.605)
′

(1.820, 1.594)
′

Weibull (4.807, 2.636)
′

(73.300, 20.588)
′

3

G
log-normal (4.411, 4.120, 2.694)

′
(0.277, 0.155, 0.683)

′

gamma (127.705, 172.082, 13.422)
′

(0.621, 0.353, 1.393)
′

Weibull (35.232, 12.082, 3.499)
′

(85.467, 66.073, 20.783)
′

UG
log-normal (0.068, 0.075, 0.367)

′
(4.440, 4.138, 2.851)

′

gamma (0.561, 0.299, 1.820)
′

(43.036, 48.327, 37.577)
′

Weibull (87.668, 65.810, 20.588)
′

(7.317, 7.078, 2.635)
′

Table A2. Initial values of the EM algorithm for sample 2 obtained using the K-means clustering
approach when DBH data are ungrouped (UG) and grouped (G) in classes of width 5 cm. It should
be noted that the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters

K Type Family α(0) =
(
α
(0)
1 , . . . , α

(0)
K
)′

β(0) =
(

β
(0)
1 , . . . , β

(0)
K
)′

2

G
log-normal (4.228, 3.361)

′
(0.221, 0.096)

′

gamma (28.139, 15.983)
′

(0.699, 2.291)
′

Weibull (29.191, 4.347)
′

(68.226, 31.488)
′

UG
log-normal (4.257, 3.417)

′
(0.209, 0.349)

′

gamma (484.296, 12.085)
′

(0.142, 2.374)
′

Weibull (10.724, 3.512)
′

(70.542, 31.526)
′

3

G
log-normal (4.241, 2.957, 3.460)

′
(0.174, 0.313, 0.322)

′

gamma (1403.329, 22.372, 86.368)
′

(0.048, 0.903, 0.388)
′

Weibull (47.700, 5.661, 10.943)
′

(69.290, 21.868, 35.109)
′

UG
log-normal (4.275, 3.030, 3.449)

′
(0.290, 0.257, 0.290)

′

gamma (484.296, 17.989, 69.850)
′

(0.1442, 1.113, 0.470)
′

Weibull (10.724, 3.356, 7.815)
′

(70.542, 21.847, 34.643)
′
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Table A3. Initial values of the EM algorithm for sample 3 obtained using the K-means clustering
approach when DBH data are ungrouped (UG) and grouped (G) in classes of width 2.5 cm. It should
be noted that the estimated vector of mixing parameters is not given for the sake of saving space.

Estimated Parameters

K Type Family α(0) =
(
α
(0)
1 , . . . , α

(0)
K
)′

β(0) =
(

β
(0)
1 , . . . , β

(0)
K
)′

1

G
log-normal 2.868 0.838

gamma 2.544 9.841
Weibull 1.217 26.718

UG
log-normal 2.803 0.911

gamma 2.536 9.853
Weibull 1.686 27.749

2

G
log-normal (4.076, 2.710)

′
(0.349, 0.408)

′

gamma (14.734, 5.464)
′

(4.250, 2.990)
′

Weibull (4.182, 2.290)
′

(68.919, 18.445)
′

UG
log-normal (4.085, 2.660)

′
(0.318, 0.511)

′

gamma (14.740, 5.447)
′

(4.246, 2.991)
′

Weibull (4.096, 2.606)
′

(69.054, 18.529)
′

3

G
log-normal (4.237, 3.330, 2.251)

′
(0.171, 0.477, 0.215)

′

gamma (12.866, 22.071, 17.321)
′

(4.797, 1.857, 0.955)
′

Weibull (5.202, 4.403, 4.124)
′

(73.599, 30.952, 13.272)
′

UG
log-normal (4.257, 3.488, 2.561)

′
(0.181, 0.342, 0.300)

′

gamma (30.998, 19.398, 8.810)
′

(1.790, 2.315, 1.537)
′

Weibull (5.726, 4.821, 3.383)
′

(77.389, 37.974, 15.182)
′

4

G
log-normal (4.309, 3.883, 3.125, 2.521)

′
(0.295, 0.257, 0.232, 0.435)

′

gamma (51.062, 35.001, 25.532, 15.781)
′

(1.521, 1.343, 0.916, 0.717)
′

Weibull (8.125, 6.965, 5.706, 4.664)
′

(82.462, 50.264, 25.293, 12.383)
′

UG
log-normal (4.310, 3.899, 3.234, 2.463)

′
(0.303, 0.077, 0.199, 0.210)

′

gamma (52.172, 47.226, 28.442, 12.874)
′

(1.495, 1.048, 0.911, 0.933)
′

Weibull (7.217, 7.001, 5.565, 4.124)
′

(82.857, 52.662, 28.022, 13.272)
′

Fore more details about the EM algorithm for mixture models fitted to grouped data,
we refer reader to [46,47].

Appendix D. Figures A1–A5
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Figure A1. Histograms of DBH data in sample 1. (a): 2-component mixture models fitted to grouped data corresponding
to classes of width 2.5 cm, (b): 2-component mixture models fitted to ungrouped data, (c): 2-component mixture models
fitted to grouped data corresponding to classes of width 5 cm, (d): 2-component mixture models fitted to ungrouped data,
(e): 3-component mixture models fitted to grouped data corresponding to classes of width 2.5 cm, (f): 3-component mixture
models fitted to ungrouped data, (g): 3-component mixture models fitted to grouped data corresponding to classes of width
5 cm, (h): 3-component mixture models fitted to ungrouped data. Superimposed are estimated pdf of the mixture of Weibull
(solid line), gamma (dashed line), and log-normal (dotted line) distributions.
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Figure A2. Histograms of DBH data in sample 2. (a): 2-component mixture models fitted to grouped data corresponding to
classes of width 2.5 cm, (b): 2-component mixture models fitted to ungrouped data, (c): 2-component mixture models fitted
to grouped data corresponding to classes of width 5 cm, (d): 2-component mixture models fitted to ungrouped data, (e):
3-component mixture models fitted to grouped data corresponding to classes of width 2.5 cm, (f): 3-component mixture
models fitted to ungrouped data, (g): 3-component mixture models fitted to grouped data corresponding to classes of width
5 cm, (h): 3-component mixture models fitted to ungrouped data. Superimposed in each subfigure are estimated pdf of the
mixture of Weibull (solid line), gamma (dashed line), and log-normal (dotted line) distributions.
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Figure A3. Histograms of DBH data in sample 3 corresponding to classes of width 2.5 cm. Superimposed in each subfigure
are estimated pdf of the mixture of Weibull (solid line), gamma (dashed line), and log-normal (dotted line) distributions.
The fitted pdf in subfigures are related to: (a) 2-component mixture models fitted to grouped data, (b) 2-component mixture
models fitted to ungrouped data, (c) 3-component mixture models fitted to grouped data, (d) 3-component mixture models
fitted to ungrouped data, (e) 4-component mixture models fitted to grouped data, and (f) 4-component mixture models
fitted to ungrouped data.
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Figure A4. Histograms of DBH data in sample 3 corresponding to classes of width 5 cm. Superimposed in each subfigure
are estimated pdf of the mixture of Weibull (solid line), gamma (dashed line), and log-normal (dotted line) distributions.
The fitted pdf in subfigures are related to: (a) 2-component mixture models fitted to grouped data, (b) 2-component mixture
models fitted to ungrouped data, (c) 3-component mixture models fitted to grouped data, (d) 3-component mixture models
fitted to ungrouped data, (e) 4-component mixture models fitted to grouped data, and (f) 4-component mixture models
fitted to ungrouped data.
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Figure A5. Histogram of DBH observations for sample 1 (a), sample 2 (b), and sample 3 (c). Superimposed are pdfs of
NK, GSM, and mixture of log-normal models. The pdf of the gamma mixture model has been not shown for the ease
of comparison.
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