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Abstract: In this study, we explored hybrid fuzzy logic modelling techniques to predict the burned
area of forest fires. Fast detection is crucial for successful firefighting, and a model with an accurate
prediction ability is extremely useful for optimizing fire management. Fuzzy Inductive Reasoning
(FIR) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are two powerful fuzzy techniques for
modelling burned areas of forests in Portugal. The results obtained from them were compared with
those of other artificial intelligence techniques applied to the same datasets found in the literature.

Keywords: hybrid fuzzy techniques; FIR; ANFIS; forest fire; burned areas prediction

1. Introduction

As discussed in [1], weather and climate are the most important factors influencing
fire activity, and they are changing due to human industry. In the near future with a
warmer climate, we expect more severe fire weather, more burned area, more ignitions and
a longer fire season. It is possible to see these effects right now, for example: Australian
fires since September 2019 that have burned at least 17.9 million acres, destroyed more
than 3000 homes, and killed at least 28 people.

The Climate Atlas of Canada [2], clearly explains this vicious cycle connecting forest
fires and climate change. All efforts to reduce global warming help prevent forest fires,
which, in turn, mitigates climate change. In this context, any effort to improve forest fire
management is of special relevance and utility. In this regard, accurate predictions of
burned areas offer useful knowledge for management decisions and resource planning.

It is possible to find in the literature a considerable number of research papers that deal
with predicting burned areas using different artificial intelligence and machine-learning
models. Several of these, mainly based on neural networks, were developed in [3–5], and
their usefulness for predicting burned areas were studied and compared. Random forest,
radial basis functions, genetic algorithms and support vector machines were also used by
several authors for the task at hand [6–9]. In [9], a wildfire probability prediction method
employing Bayesian networks and fuzzy logic was studied and evaluated through a case
study in Australia. Other machine-learning methodologies, such as ensemble learning,
were also addressed, of which random forest approximations delivered the best results [10].
Another interesting ensemble approach for improving the predictive accuracy of forest
fire can be found in [11]. The authors combined a locally weighted learning algorithm
with the Cascade Generalization, Bagging, Decorate, and Dagging ensemble learning
techniques and applied it to a region of Vietnam. An investigation focused on the Monte
Carlo heuristic search algorithm was conducted to predict the spread of forest fires [12].

All of these papers used real data from different parts of the world to train and validate
their models.

In this paper we addressed the challenge of modelling forest fires by means of hybrid
machine-learning techniques based on fuzzy logic to predict the areas forest fires will burn.

We studied two fuzzy-based learning approaches: Fuzzy Inductive Reasoning (FIR)
and the Adaptive Neuro Fuzzy Inference System (ANFIS) because they have been shown
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to have high predictive power in medicine, energy and other areas [13–16]. Fuzzy logic
modelling can handle uncertainties and explain complex relationships and causal relations
between variables to enable better decision-making and design strategies. The forest fires
datasets in the UCI repository [17,18] were used in the current research. This was the first
time that FIR was used to model forest fire burned areas.

2. Materials and Methods

FIR and ANFIS combine mainly soft computing approaches: FIR combines fuzzy logic
with machine-learning and ANFIS combines it with neural networks.

2.1. Fuzzy Inductive Reasoning (FIR)

The General System Problem Solving (GSPS) developed by George Klir [19], is the
conceptual basis of this fuzzy approach, the main objective of which is to extract knowledge
from data.

This method of modelling and simulation performs an internal and automatic pro-
cess of relevant feature selection that allows identifying not only the variables that have
the most predictive power but also when they are most relevant. FIR can describe sys-
tems that contain uncertainty, i.e., those for which the underlying physical laws are not
well understood.

We developed two software approaches: FIR and Visual-FIR [20,21]. The first is meant
for data scientists with previous knowledge of modelling and data treatment, while the
second offers a more user-friendly environment for the development of system models as
predetermined blocks with default values for different parameters.

The FIR technique of both FIR and Visual-FIR consists of two steps. The first involves
the identification of the model representing the system under study, including feature
selection and knowledge extraction from data. The second step corresponds to a prediction
of the system’s future behaviour based on the previously identified model.

A FIR model is composed of two fundamental items: structure and historical behavior.
The former refers to the selection of both spatial and temporal variables (i.e., feature
selection); the latter concerns input/output relationships defined as if–then rules.

As described in [20], feature selection is based on the maximization of a model’s
forecasting power quantified by a Shannon entropy-based quality measure, which deter-
mines the uncertainty associated with forecasting a particular output state given any legal
input state. The overall entropy of the model structure, Hs, is computed as described in
Equation (1).

Hs = −∑
∀i

p(i)× Hi (1)

where p(i) is the probability of that input state’s occurring, and Hi is the Shannon entropy
relative to the ith input state. Then, a normalized overall entropy Hn is computed, as
defined in Equation (2).

Hn = 1− Hs

Hmax
(2)

Hn is a real number between 0.0 and 1.0, where a higher value indicates a higher
forecasting power. The model structure with highest Hn value generates forecasts with the
smallest amount of uncertainty.

Once the first item has been completed, i.e., when the features with the most predictive
power have been selected, they are used to obtain the input/output relationships from the
data reserved for training the model. These relationships are defined by a set of if–then
rules. From this rule base, which describes the behaviour of the system, the prediction
stage can be carried out. To do this, we selected the subset of k rules that were the closest
(using a distance measure) to the new input for which we wanted an output prediction. The
kNN (k-nearest-neighbors) fuzzy inference algorithm was used for this purpose. The fuzzy
membership function of the current state was predicted by computing a distance-weighted
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average of the fuzzy membership functions of the rules selected as the closest, as presented
in Equation (3).

Memboutnew =
5

∑
j=1

wrelj
×Memboutj (3)

The weights were in the range (0.0, 1.0), and their sum was always equal to 1. They can
be interpreted as percentages. For a deeper explanation of the Fuzzy Inductive Reasoning
methodology refer to [20,21].

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a hybrid neuro-fuzzy system introduced by Jang [22,23] and has been widely
used in the literature. ANFIS is a Sugeno-type fuzzy system that uses neural network
learning to adjust and tune its own parameters, i.e., membership and output functions.
Equation (4) presents an example of two Sugeno rules. Their key property is that the
consequent of the rules can be a crisp function or a constant value.

R1: If A is A1 and B is B1 then p1 × a+ q1 × b + r1
R2: If A is A2 and B is B2 then p2

(4)

Figure 1 shows the inference process of a Sugeno-type fuzzy system when the rule set
defined in Equation (4) conforms to the fuzzy model.
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The input values of the fuzzy variables A and B, i.e., a = 3 and b = 2, are singletons to
which the T-norm operator (min) is applied to determine the firing strength of each rule
(left-hand side of Figure 1). The min operator stablishes the weights, w1 and w2, associated
with each rule, which are then used to obtain the output of the inference process, i.e., z
(right-hand side of Figure 1), by a weighted average equation.

Therefore, Sugeno’s fuzzy system has two sets of parameters that must be set or
learned. One refers to the parameters of the membership functions of fuzzy variables.
The other refers to the values p1, q1, r1 and p2 of the polynomials that determine the
consequents. The ANFIS initializes these parameter sets and then tunes them automatically
using optimization algorithms commonly used in neural networks. The input parameters
are tuned using a gradient descent algorithm, and the output parameters are tuned by
means of a least-squares estimator algorithm. A deeper explanation can be found in [22,23].
The fuzzy toolbox of Matlab contains an implementation of the ANFIS.

2.3. Forest Fire Data

The data used in this study came from the UCI machine learning repository [18]
and contains information on fires in the northeast region of Portugal from January 2020
to December 2003. As explained in [17], the data set was built as a composition of two
sources. In the first, every time a forest fire occurred, several features were registered daily:
time, date, spatial location in a 9 × 9 grid, type of vegetation involved, components of
the forest fire weather index (FWI) and the total burned area. The FWI is the Canadian
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system for rating fire danger [24] in which high FWI values correspond to severe burning.
The second source contains several weather observations recorded within a 30 min period
by a meteorological station. The two databases were integrated into a single dataset of
517 forest fire entries. Table 1 describes the registered data features.

Table 1. Data features, description and measures.

Attribute Description (Measure)

Spatial Attributes

X x-axis coordinate (from 1 to 9)

Y y-axis coordinate (from 1 to 9)

Temporal Attributes

month Month of the year (January to December)

day Day of the week (Monday to Sunday)

Fire Weather Index (FWI) Attributes

FFMC FFMC code (Real numbers)

DMC DMC code (Real numbers)

DC DC code (Real numbers)

ISI ISI index (Real numbers)

Weather Attributes

temp Outside temperature (in ◦C)

RH
(relative humidity) Outside relative humidity (in %)

wind Outside wind speed (in km/h)

rain Outside rain (in mm/m2)

area Total burned area (in ha)

The first four rows contain spatial and temporal attributes. Then, we have the FWI
attributes, where FFMC stands for Fine Fuel Moisture Code; DMC is Duff Moisture Code;
DC is for Drought Code; and ISI is for Initial Spread Index. The last 5 features are weather
attributes, the values of which correspond to the records obtained by the station sensors
once the fire has been detected. However, the rain values correspond to the accumulated
precipitation during the previous half hour. On the other hand, a logarithm transformation
was applied to the burned area variable to reduce the positive skew trait.

2.4. Model Evaluation

In this research, a 10 fold cross validation (10-fold CV) technique was applied to study
the performance and viability of the models. The training data were used to obtain the
model and the test data were used to determine the model error. We performed the cross
validation 10 times. This means that the dataset was randomly partitioned 10 times into a
training and test subsets, then the model was obtained from the training data and the error
on the test set was calculated. This allowed us to have sufficient statistical confidence.

The RMSE (root mean square) and the MAE (mean absolute deviation) errors are the
ones chosen to determine the models performance. These error measures are described in
Equations (5) and (6), respectively.

RMSE =

√√√√ 1
N

N

∑
i=1
|yi − ŷi|2 (5)
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MAE =
1
N

N

∑
i=1
|yi − ŷi| (6)

where ŷi is the predicted output, yi the system output and N the number of samples.
Both RMSE and MAE are commonly used accuracy measures for comparing different

methods on the same data, as is the case in this research. The MAE gave equal weight to
errors in the average, i.e., corresponded to a linear score. The RMSE gave a relatively high
weight to large errors, since the errors were squared before being averaged. This meant
that the RMSE was the most useful when large errors were particularly undesirable.

2.5. Fuzzy Model Development

In this research, 100 fuzzy models were developed and validated for FIR and the
ANFIS: a 10-fold cross validation applied 10 times, gives the identification of 100 models.

The first step to obtain a fuzzy models was the discretizing of the variables in
the system. The process entailed the transformation of crisp variables into fuzzy vari-
ables, i.e., it was necessary to define fuzzy sets and their representation by means of
membership functions.

An analysis of the variables (see Table 1) was carried out, taking into account their
histograms and the input/output correlation to determine the most suitable number of
classes to discretize each of them. As a consequence, the variables X, Y, month, FFMC,
DMC, DC, ISI, RH, temperature and wind were represented in three fuzzy sets and the day
of the week and rain were discretized into two classes. For the day-of-the-week variable,
we grouped weekdays and weekends. Two classes were also used for the rain variable
since there is no much variability in this parameter. Although the amount of rain varied
from 0.2 to 6.4 mm/m2, the number of rain events was small. This limitation meant that
the precision of the model did not increase when this variable was represented by a greater
number of fuzzy sets. On the contrary, an increase in the number of classes led to a “curse
of dimensionality” problem.

Finally, the output variable was discretized into three classes or fuzzy sets, but it
was used only by the FIR approximation since, as previously mentioned, the ANFIS has
a function as its output (see Figure 1). All fuzzy sets were represented by bell-shaped
membership functions.

2.5.1. FIR Models

As previously mentioned, to identify the best FIR models that capture the knowledge
of the system, it is first of all necessary to convert quantitative data into qualitative data.
This is done by the fuzzification process once the necessary parameters have been defined,
which are the number of linguistic values (fuzzy sets) and their representation through
membership functions.

The shape and distribution of the membership functions depend on the algorithm
used in the discretization process, which will directly influence the prediction process and,
therefore, the inference results. In this research, FIR uses two discretization algorithms:
the equal-width partition (EWP) and the equal-frequency partition (EFP) [15]. In the
first, the universe of discourse of the linguistic variable is divided in such a way that
the membership functions are uniformly distributed. In the second one, the membership
functions are distributed so that each represents the same number of data points. Following
this rule, the distribution of the membership functions obtained is usually non-uniform.

Variables X, Y, month, FFMC, DMC, DC, ISI, RH, temperature, day of the week and
wind are discretized using the EFP algorithm. The variables of rain and area are discretized
using the EWP algorithm.

Once the data has been discretized, FIR performs a feature selection process where
the more relevant causal relations between the input and output variables are identified.
To this end, we used the model structure identification process of fuzzy inductive reason-
ing to perform a feature selection based on the entropy reduction measure as described
in Section 2.1.
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The feature selection process performed by FIR concluded that temperature, RH,
wind, rain and FFMC, are the most relevant (have the strongest causal relationship to the
output) for determining the burned area efficiently and accurately. If we had use additional
variables in the inference process, the entropy would have increased, thereby decreasing
the predictive power.

2.5.2. The ANFIS Models

In this case, as mentioned before, it is necessary to define three fundamental parame-
ters to carry out the tuning process of the fuzzy system. The first one corresponds to the
function that defines the consequent of the rules, which can be a first-order polynomial
or a zero-order constant. In this research, a constant is defined as consequent since this
option is less computationally expensive and, in this case, using a first-order polynomial
did not improve the precision of the fuzzy model. The second parameter corresponded to
the fuzzy system optimization algorithm. Here, we used the gradient descent algorithm
combined with the least-squares estimator algorithm. The third parameter allowed us to
define the number of training epochs: in this case, 50 epochs were enough for the tuning
to converge.

In the ANFIS, variables are initially discretized following a uniform distribution of
the membership functions in their dimensionality space. The ANFIS could not use the
12 input variables to predict the total burned area output since the computational cost is
high and the Matlab software ran out of internal memory. Therefore, it was first necessary
to achieve a feature selection to be able to obtain models and study their accuracy. To this
end, we decided to make use of the FIR feature selection process as a pre-processing step,
and use the subset of selected input variables, previously mentioned, to obtain the best
ANFIS model to predict the burned areas.

3. Results

The main goal of this research was to study the performance of hybrid fuzzy logic
modelling techniques to predict the burned area of forest fires. As mentioned earlier, models
with accurate prediction ability are beneficial for optimizing fire management efforts.
Therefore, the results obtained by FIR and ANFIS models are presented in this section.

First of all, it is interesting to show the fuzzy sets of the input variables resulting
from the modeling processes. These sets are represented by their membership functions,
and Figure 2 shows the fuzzy sets that resulted from the FIR modeling. The membership
function distribution of the five relevant input variables are presented.

Notice that the membership functions of the FFMC variable were those with a less
uniform distribution, which was due to the characteristics of the available data. The FFMC
variable had the vast majority of the data in the 90–100 range. FIR determined that a
representation of fuzzy sets where the data was distributed in a similar proportion to each
membership function is the one that provided the best predictive power. The fuzzy sets
of the input variables resulting from the ANFIS models training process are shown in
Figure 3.

The distribution of the membership functions that represent the fuzzy sets differed
slightly from the ones selected by FIR because each methodology optimized membership
functions holistically by taking into account both the modeling and inference processes. It
should be remembered that the inference process of both methodologies were markedly
different. While the FIR inference process was based on the k-nearest neighbors approach,
the ANFIS fit the model using algorithms derived from neural networks and obtained the
prediction as a result of applying a Sugeno-type inference system.

As explained before, a 10-fold cross-validation was performed and repeated 10 times
for both FIR and the ANFIS. Figures 4 and 5 show graphically the results of the FIR and
ANFIS models for two folds of the dataset, #2 and #4. Figure 4 presents a fold that contained
forest fires with high burned areas. The RMSE obtained by the FIR and ANFIS models in
this fold was 69.17 and 110.10, respectively.
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Figure 5. Real versus ANFIS and FIR prediction results for burned area models. Each point in the
plot represents a forest fire. The results correspond to fold #2 in one of the 10 iterations. RMSE
obtained by the FIR and ANFIS models in this fold was 46.95 and 61.83, respectively.

In Figure 5, fold #2 is presented, where forest fires were of a lower magnitude and
therefore had a much lower burned area. The RMSE obtained by FIR and the ANFIS in this
fold was 46.95 and 61.83, respectively.

It should be noted that both models were capable of predicting large and small areas
considerably well. However, the FIR predictions were more accurate than those of the
ANFIS models. The average RMSE of the 10 executions for each 10-fold cross-validation
was 48.92 for FIR and 65.61 for the ANFIS. In the next section we discuss the accuracy of
these results by comparing them with the results obtained by other methodologies that
dealt with the same datasets.
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4. Discussion

To evaluate the prediction quality of this type of models, it is essential to contrast the
results with those of other artificial intelligence and machine-learning methodologies. For
this purpose, this section showed the results for the same problem (and the same datasets)
by other published research. The RMSE and MAE errors presented in Equations (5) and (6),
respectively, are used for this comparison.

Table 2 presents these errors different models applied to the same datasets in the
literature [3,17,25,26], as well as the errors obtained by FIR and the ANFIS (bottom of
the table). These datasets have worked with various approaches within the area of AI as
well as in statistical models. Here, we presented published results that could be directly
compared with the ANFIS and FIR models developed in this research since the experimen-
tation was carried out following the same criteria for data treatment, model construction
and validation.

Table 2. Mean absolute and root mean square prediction errors obtained by different models found in the literature [3,17,25,26],
as well as by the ANFIS and FIR models. The results are given in the form of mean ± t-student 95% confidence intervals
in cases where this information was available. DT stands for decision trees, MR for multiple regression, NN for neural
network, SVM for support vector machine, RF for random forest, GS-GP for geometric semantic genetic programming, LR
for linear regression, ST-GP for standard genetic programming decision tree, IR for isotonic regression, CCN for cascade
correlation network, MPNN for multi-layer perceptron neural network, PNN for polynomial neural network, RBF for radial
base function neural network and TOB for transparent open-box network.

Method Parameters Reference MAE RMSE

DT Reduction of the sum of squares Cortez et al.
[17] 13.18 ± 0.05 64.5 ± 0.0

MR Least squares alg. Cortez et al.
[17] 13.01 ± 0.00 64.5 ± 0.0

NN
MLP 1HL; logistic/linear; 100 epochs;

3 times; BFGS alg.;
Hidden Lay. = 4 neurons

Cortez et al.
[17] 13.71 ± 0.69 66.9 ± 3.4

SVM Sequential Minimal Optimization alg.;
RBF kernel; C = 3; Gamma = 2−5

Cortez et al.
[17] 12.71 ± 0.01 64.7 ± 0.0

RF T = 500 Cortez et al.
[17] 12.93 ± 0.01 64.4 ± 0.0

GS-GP Crossover = 0.7; Mutation Rate = 0.3;
Mutation Step = 0.1; Elitism

Castelli et al.
[25] 12.9 -

SVM Polynomial kernel (second degree) Castelli et al.
[25] 13.6 -

RF Not specified Castelli et al.
[25] 19.3 -

LR Not specified Castelli et al.
[25] 19.6 -

ST-GP Not specified Castelli et al.
[25] 21.0 -

IR Not specified Castelli et al.
[25] 21.5 -

NN Feed forward; Backpropagation Castelli et al.
[25] 33.8 -

CCN Num. Layers = 3; Sigmoid/Gaussian;
Hidden Lay. = 2 neurons

Al-Janabi et al.
[3] 551.4 62.6

MPNN Num. Layers = 3; logistic/linear; Hidden
Lay. = 1 neuron

Al-Janabi et al.
[3] 617.4 63.1
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Table 2. Cont.

Method Parameters Reference MAE RMSE

PNN Gaussian kernel; p1 = 31.30; p2 = −27.30;
p3 = 1.13; p4 = 6.30

Al-Janabi et al.
[3] 516.5 63.2

RBF
Num. Neur. = 100; Min. Rad. = 0.01; Max.
Rad. = 519.669; Min. Lambda = 0.01328;

Max. Lambda = 9.95337

Al-Janabi et al.
[3] 911.2 54.2

SVM RBF kernel; C = 84.18; Epsilon = 0.001;
Gamma = 3800.2

Al-Janabi et al.
[3] 282.4 54.0

TOB Two stages; Wn = 0.5; Q = 10; Evol 2–6;
Optimum Wood [26] 13.08 63.26

ANFIS Hybrid alg.; constant func.; 50 epochs Our research 13.02 ± 0.04 64.6 ± 0.0

FIR EWP-EFP; 2–3 FS per var. Our research 11.93 ± 0.01 48.9 ± 0.0

The first three columns of Table 2 show the methods, the specific parameters used to
generate the model where this information appeared in the publication and the references.
The last two columns show the MAE and RMSE errors, respectively. It should be noted
that there are methods in different papers that use different modeling parameters, thus
reporting different results.

For all the fuzzy and non-fuzzy models presented, the predicted output was post-
processed using the inverse of the logarithmic transformation. If the transformation results
were negative, they were unified to zero.

From analyzing the results shown in Table 2, it is clear that the lowest errors for both
metrics were obtained with FIR models, i.e., MAE = 11.93 and RMSE = 48.9. This implied
a higher prediction accuracy of the FIR models with respect to all the other models in
the table.

It was not possible to conclude which method obtained the model with the highest
error since in the results presented by Castelli et al. [25] the RMSE was not available,
and it became difficult to understand the MAE results published by Al Janabi et al. [3],
which were extremely high. Therefore, this analysis was not intended to rank the different
methodologies but simply to show that fuzzy approximations can be a good alternative to
the methods previously studied.

The ANFIS models obtained equivalent results to those achieved by the decision trees
(DTs), multiple regression (MR) and support vector machines (SVMs) of Cortez et al. [18],
and the transparent open-box (TOB) network of Wood [26]. In addition, the ANFIS obtained
better results than all the methods presented by Castelli et al. [25]: SVM, RF, LR, ST–GP,
IR and NN, except the geometric semantic genetic programming (GSGP) model, which
achieved a very similar MAE to that of the ANFIS (12.9 GSGP vs. 13.02 ANFIS).

It should be noted that the reduction of the RMSE of the FIR models with respect to
the others is relevant, which can be interpreted as meaning that FIR was better able to deal
with outliers. Remember that the RMSE is more sensitive to outliers than the MAE.

FIR also had a MAE error value (11.93) lower than those of the other methods. The
closest MAE was obtained by the SVM presented by Cortez et al. [17], which had a value
of 12.71.

One aspect that we consider relevant to the improvement obtained by FIR is that
it performed, as mentioned above, a feature selection process within its internal model
identification structure. In the problem at hand, FIR determined that only five of the
12 input variables were relevant to predicting the burned area accurately. These five vari-
ables (temperature, RH, wind, rain and FFMC) were the only ones used by FIR (and the
ANFIS) to infer the model with the highest predictive power.

In fact, this result coincided with the conclusions of Cortez et al. [17], who said that
the weather variables were the most relevant. Figure 6 presents the REC curves obtained
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by the RF and SVM of Cortez et al. [18] and FIR models, which are the methodologies that
produced better MAE–RMSE relation accuracy.
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Clearly, FIR was the best solution as it has the largest area under the curve. Both, SVM
and FIR obtained the same results for low absolute errors, but differed on the number of
points predicted correctly while increasing the error. The FIR models were able to obtain a
slightly better percentage of correct predicted points compared to the SVM models.

5. Conclusions

The main objective of this work was to study the effectiveness of models based on
fuzzy logic to predict areas burned by forest fire. There is clearly a vicious cycle connecting
forest fires and climate change [2]; therefore, any effort to help manage forest fires better
is of special relevance and will also be of great utility for slowing climate change. In this
line, accurate predictions of burned areas offer useful knowledge for fire management
decision’s regarding resource planning.

In this research, the forest fires data were registered from the Montesinho Natural
Park (Portugal), available from the UCI machine-learning repository [18].

The fuzzy inductive reasoning (FIR) and the adaptive neuro-fuzzy inference system
(ANFIS) hybrid fuzzy logic methodologies were presented and used to model the burned
areas. We used a 10-fold cross-validation, in which model identification and validation was
repeated 10 times. In total, 100 FIR and 100 ANFIS models were generated to analyze the
generalization performance of these hybrid fuzzy models.

FIR was used, in a first step, as a feature selection process to determine which of the
12 input variables were more relevant for predicting the output. In this sense, FIR found
that temperature, RH, wind, rain and FFMC were highly causal; therefore, the FIR and
ANFIS models used only these five features to obtain their corresponding models. This
conclusion coincided with that of Cortez et al. [17], who said that weather variables were
the most relevant.

The prediction results obtained by the ANFIS and FIR were compared with those
in the literature [3,17,25,26], that used the same data and followed the same criteria for
data treatment, model construction and validation. These papers presented the results
of a considerable number of methodologies: different kinds and structures of neural
networks (CCN, MPNN, PNN, RBF), support vector machines (SVMs), decision trees
(DTs), multiple regression (MR), random forest (RF), transparent open-box (TOB) network,



Forests 2021, 12, 1005 12 of 13

geometric semantic genetic programming (GSGP), linear regression (LR), standard genetic
programming decision tree (ST-GP) and isotonic regression (IR).

The results indicated that FIR models had the highest predictive power, with the
lowest MAE and RMSE errors compared to all other models. The ANFIS models obtained
equivalent results to those achieved by some configurations of DT, MR, SVMs and TOB.
It can be concluded that RF and SVM are the methodologies that get better MAE–RMSE
relation accuracy behind FIR.

We consider that the results open a path of study and analysis to develop and apply
hybrid fuzzy methodologies to the field of forest fires and climate change.
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