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Wood is an advantageous building material with respect to its material properties,
its renewable character, its sustainable production, and its ability to store sequestered
carbon. However, wood can burn, rot, and turn ugly when it is used in an inappropriate
way. This is not a severe drawback as such, but the processes behind it are often more
difficult to predict compared to other materials, such as steel, concrete, or polymers. Hence,
substantial efforts are needed to make the performance of wood and wood products more
predictable and thus make wood a more competitive building material. In particular,
the response of wood to moisture, wood-inhabiting organisms, and fire are of immanent
importance for a multitude of applications in the building sector. Mathematical models,
survey-based prediction tools, simulation software, and risk mapping can be used to
characterize wood and its capacity to withstand external influences in a quantitative way.
These are essential instruments for service life planning and the performance classification
of wood and wooden products.

In recent years, enormous efforts have been made to improve the methodology and
to enlarge the pool of data needed for service planning with wood. Numerous research
groups around the globe followed a variety of strategies and used different concepts, but
they all approached the overall objective to make wood more predictable. Within this
Special Issue, we collected contributions from all disciplines, such as wood material science,
building physics, timber engineering, wood pathology, and climatology.

We encouraged studies from all fields, including decay hazard mapping, hygrothermal
simulation, moisture performance modeling, performance classification, service life predic-
tion, and service life planning to contribute to this Special Issue, to promote knowledge
about the performance of wood under different uses and changing climatic conditions.

The Special Issue comprises 12 papers by authors from 17 countries in Australasia,
Africa, North America, and Europe. They represent a wide range of aspects related to
performance modeling of wood and wood products and give timely examples of research
activities that can be observed around the globe. Several authors reported on engineering
approaches to predict and plan the service lives of buildings and structures made of
wood [1–3], models focusing on material properties such as material resistance against
decay agents [3–7], basic wood properties and their distribution in trees [8], and new
methods of monitoring performance-related parameters [9]. The link between exposure-
induced dosage and material-inherent resistance were established for a variety of use
conditions, such as soil contact and different above-ground scenarios [2–5,7,10,11]. Finally,
even a model describing the performance of media presenting wood-based products is
presented [12].
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