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Abstract: While products generated at global levels provide easy access to information on forest
growing stock volume (GSV), their use at regional to national levels is limited by temporal frequency,
spatial resolution, or unknown local errors that may be overcome through locally calibrated products.
This study assessed the need, and utility, of developing locally calibrated GSV products for the
Romanian forests. To this end, we used national forest inventory (NFI) permanent sampling plots
with largely concurrent SAR datasets acquired at C- and L-bands to train and validate a machine
learning algorithm. Different configurations of independent variables were evaluated to assess
potential synergies between C- and L-band. The results show that GSV estimation errors at C- and
L-band were rather similar, relative root mean squared errors (RelRMSE) around 55% for forests
averaging over 450 m3 ha−1, while synergies between the two wavelengths were limited. Locally
calibrated models improved GSV estimation by 14% when compared to values obtained from global
datasets. However, even the locally calibrated models showed particularly large errors over low GSV
intervals. Aggregating the results over larger areas considerably reduced (down to 25%) the relative
estimation errors.

Keywords: forest growing stock volume; synthetic aperture radar; ALOS PALSAR-2; Sentinel-1;
national forest inventory; machine learning

1. Introduction

Forests are among the most biodiverse terrestrial ecosystems and a key element for
carbon sequestration as they store large amounts of organic matter (i.e., biomass). Therefore,
forest above ground biomass (AGB) estimation is a sensitive research topic, as information
on AGB levels and dynamics is needed to estimate greenhouse gases flux and thus to
shape policies development, implementation, and monitoring [1]. This importance is
highlighted by the countless forest inventory programs aimed at evaluating, monitoring,
and reporting, among others, AGB or Growing Stock Volume (GSV) levels. Such programs
use an array of data sources from in situ measurements to information acquired by earth
observation (EO) platforms. In situ surveys, based on systematic sampling grids, are the
backbone of traditional national forest inventory (NFI) programs sometimes stretching
back centuries [2]. However, NFI programs are expensive and time consuming while not
providing for a synoptic view across the landscape [3].
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With the development of EO technologies, new avenues were open as the system-
atic data collection allowed for frequent, spatially resolved AGB or GSV estimates to be
derived within a range of national and global initiatives, such as the Japan Aerospace
Exploration Agency (JAXA) Kyoto and Carbon (KC) Initiative, the United Nation Collab-
orative Programme on Reducing Emissions from Deforestation and Forest Degradation
(REDD), NASA’s Carbon Monitoring System (CMS), and the European Space Agency
(ESA) Climate Change Initiative (CCI). Forest AGB was estimated from optical, radar,
and lidar sensors. Tracking forest properties with optical sensors is usually limited to
the first decades of development [4]. Lidar sensors provide very accurate information
on forest vertical structure [5], but their use is limited by temporal (airborne) or spatial
(space borne) coverage and cloud presence. As the radar signal is directly influenced by
the vegetation structure, synthetic aperture radar (SAR) sensors are more sensitive to AGB
levels when compared to optical data, and less limited by spatial and temporal availability
when compared to Lidar data [6]. Therefore, over the past two decades SAR sensors have
been widely used to retrieve forest biomass at a regional to global level due to constant
improvements in coverage and temporal and spatial resolutions, as well as independence
from cloud cover [7–13]. Such studies used a variety of modelling approaches, including
empirical, semi-empirical, numerical, and non-parametric modelling. Regardless of the
models used, the major limitation of spaceborne SAR observations is the sensitivity to
forest unrelated variables which result in substantial uncertainties and AGB-dependent
biases [14].

From the first prototype studies in the 1990s which evaluated the capability of a
certain set of optical and SAR observations to estimate GSV or AGB, recent studies in
the 2000s demonstrated that a combination of observations is beneficial to map biomass
across extended landscapes. While most studies reported on estimating biomass at local
to regional scale, a range of projects targeted biomass mapping at continental to a global
scale [13,15–20]. However, such data products are of limited use at national level due
to the (i) limited sensitivity to biomass, obtained through indirect relationship requiring
inference with models and approximations, (ii) low temporal frequency (e.g., one off),
(iii) generally low (>100 m) spatial resolution, (iv) unknown errors at national levels,
(v) compromises in the retrieval algorithms which need to account for a wide range of
conditions (e.g., boreal to tropical), and (v) the lack of calibration data over large tracts of
forests with the in situ data used for algorithm development being sourced from relatively
few countries. Such limitations translate into discrepancies between in situ and mapped
biomass stocks. Indeed, many studies have shown differences between the global products
specified accuracy and in situ samples over national to regional scales [14,18,21–24] with
locally calibrated products providing significant improvements for the estimated forest
parameters [14,23–25].

Forests are under constant pressure due to anthropogenic factors related to clearing
activities and changes in land use with approximately 4.5% of the Romanian forests being
affected by at least one disturbance event (complete or nearly complete tree removal) over
the past two decades. The high rate of forest disturbance, as estimated from remote sensing
datasets [26], suggest changes in Romanian forests growing stock volume as significant as
those caused by climate changes alone [27,28]. However, spatially explicit GSV estimates
are not available for the Romanian forests, as remote sensing technologies were mostly
used to estimate forest cover rather than GSV [26,29,30]. The hypothesis of this study was
that SAR datasets may provide the means to derive spatially explicit estimates of GSV with
higher frequency when compared to the five-year cycle of the National Forest Inventory
(NFI) and lower errors when compared to globally derived GSV estimates [13,20]. The aim
of this study was to ascertain the utility of locally calibrated models, based on in situ NFI
information and SAR datasets, for GSV estimation in the Romanian forests. The specific
objectives were to (i) calibrate single- and multi-frequency SAR-based models for GSV
retrieval in the Romanian forests, and (ii) ascertain the synergies of C- and L-band SAR
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datasets for GSV retrieval. The results were then compared against recent global GSV
maps [20] to assess the potential utility of the locally calibrated models over global datasets.

2. Materials
2.1. Study Area and In Situ Data

The study was carried out in selected areas of the Romanian Carpathian Mountains
(Figure 1). The Carpathians is third longest range within Europe, after the Urals and
the Scandinavian Mountains, and stretches 1500 km across seven countries, although
most of the range (54%) is located within the Romanian borders. The Carpathians are
an eastward continuation of the Alps, but differ considerably from them as they are less
compact and reach lower elevations. In contrast to the Alps, glaciation affected only the
highest peaks, with the remaining areas being shaped by rivers. The climate is influenced
by polar-continental air from east and northeast in winter and oceanic mases from the west
during the rest of the year differentiating them from the much dryer surrounding plains.
Precipitations range from 600 to 1800 mm. The vegetation is dominated by forests, mainly
beech, spruce, and, to a lesser extent, oak species, which provide habitats for the largest
European populations of brown bears, wolves, and lynxes. The Carpathians contains most
of the European Union’s remnant virgin forests. The selected areas include some of the
highest mountain peaks (exceeding 2500 m) as well as three of the six ecoregions present
within the Romanian national territory [31].
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Figure 1. Study area within the Romania borders (a) and the locations of the available national forest inventory (NFI)
sample plots (b). Detail of NFI node (c). Each PSP is formed by concentric circles of 7.98 m, 12.62 m, and 25 m radius.

The in situ samples were collected within the second cycle (2013–2018) of the Romanian
NFI. The NFI was established in 2008 using a 4 × 4 km grid, although a denser 2 ×
2 km grid is used in plains where forest cover is low. The NFI is a two stage (aerial
photography followed by in situ surveys) continuous forest inventory with a five-year
cycle that covers the entire national territory. The field surveys comprise, at the end of the
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five-year cycle, about 24,000 permanent sample plots. To increase field work efficiency,
the measurements are realized on four permanent sampling plots (PSP) at each grid
node (Figure 1b). Each PSP contains three concentric circles (7.98 m, 12.62 m, and 25 m in
radius) where different forest characteristics are assessed, including forest type, tree species,
diameter at breast height (DBH), height (H), lying deadwood, and ground vegetation. DBH
and height are assessed in the first two circles, 7.98 m (5.6 cm ≤ DBH ≤ 28.5 cm) and 12.62 m
(DBH ≥ 28.5 cm). The GSV estimation is based on species-specific (43 main species)
allometry based on DBH and height. For conifers, the volume of branches (>5 cm diameter)
was established through specific equations as percentage of stem volume and was added to
the stem volume [32]. The volume measurements are scaled (by the circle area), aggregated,
and reported per hectare. NFI estimates GSV with a sampling error of 1.79%, with target
differences between measurements and control surveys less than 1%. The NFI objective is
to derive statistics of forest properties over the national territory. As such, individual plot
measurements are not optimized to calibrate or evaluate remote sensing products due to
the relatively small sampling area.

For each PSP, the data provided included the main forest species, forest inventory
date, percentage forest cover, mean diameter at breast height, and height, as well as per
hectare GSV. Of the 1815 PSPs available for this study, 1153 were inventoried between
2015 and 2016, coinciding with the EO data acquisition period. The remaining plots
were inventoried in 2014. As forest stands in Romania consist of homogeneous tracts
(species composition, age, and DBH classes), the NFI plots are representative of larger areas
were not falling on stand border, as stands range between 6–10 ha in hilly and 10–15 ha in
mountainous regions. The DBH, H, and GSV over the in-situ data, reached 96 cm, 50 m, and
1577 m3 ha−1, respectively, depending on the sample plot (Table 1). As small pockets of
large trees influence average values, when relatively small areas are assessed, the PSP-wise
GSV was high (>1000 m3 ha−1) for some plots (Figure 2).

Table 1. Range of plot-wise mean DBH and H and GSV. Values for all/modelling plots (see
Section 3.1).

Main Species DBH Range (cm) H Range (m) GSV Range (m3 ha−1)

beech (n = 900/322) 7–157/8–96 3–50/8–50 5–1577/9–1577

oaks (n = 249/72) 11–80/11–52 9–36/11–32 13–742/22–731

coniferous (n = 560/238) 8–85/11–85 8–44/9–43 12–1470/22–1401

other species (n = 106/33) 10–66/10–59 9–39/12–39 15–1080/15–1080
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2.2. Earth Observation Data

The NFI plots used in this study were covered within 13 ALOS PALSAR-2 frames
and six ascending and descending Sentinel-1 relative orbits (Figure 1). 104 L-band ALOS
PALSAR-2 dual-polarized (HH and HV polarizations) datasets were provided by JAXA
(2014–2017 period) as single look complex (SLC) images, while 1034 Sentinel-1 A and B
granules were downloaded from open repositories for the years 2015–2016, the period
when most (83) ALOS PALSAR-2 datasets were acquired. Sentinel-1 ground range detected
(GRD) dual polarized (VV and VH polarizations) C-band datasets (A and B satellites)
were downloaded for the six relative orbits (29, 102, and 131 ascending and 7, 80, and 109
descending passes) covering the selected study areas.

3. Methods
3.1. SAR Data Processing and Extraction

The images acquired on the same orbit were first co-registered in the radar geometry.
For Sentinel-1 products, the orbital state vectors were updated using the Precise Orbit
Ephemerides, with the co-registration process being carried out by relative orbit after
slice assembly (i.e., concatenation) as the Sentinel-1 image frames (i.e., slices) acquired
from the same orbital path are provided in slices of variable ground footprints. For the
ALOS PALSAR-2 data, the SAR processing was carried out on a path/frame basis. Image
co-registration was based on a cross-correlation algorithm [33] with the first image of
the temporal data series being used as reference. Each co-registered image was multi-
looked to obtain a ground pixel spacing of approximately 30 m (4 × 8 pixels in range and
azimuth for ALOS PALSAR-2 and 20 × 3 pixels in range and azimuth for Sentinel-1). The
backscatter was converted to gamma0 using an ellipsoid-based area as reference, to account
for the influence of topography [34]. The backscatter coefficient (γ◦) was subsequently
topographically normalized using the real scattering area, derived pixel-wise [35], from
the one arc-second Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM). Each image was then orthorectified to the Universal Transverse Mercator (UTM)
coordinate system (zone 35 North, datum WGS84) using a look-up table that related the
coordinates of each pixel in the radar geometry with the coordinates of the same pixel in
the map geometry. The look-up table was generated using image orbital information and
the digital elevation model [36].

At each PSP, the backscatter coefficient of all images acquired before the forest inven-
tory date was extracted for the pixel containing the center coordinates. The backscatter
values were averaged for all available dates by polarization and by relative orbit (Sentinel-1).
The standard deviation of the backscatter temporal series (i.e., temporal stability) was also
computed at each PSP location for every sensor, polarization, and relative orbit (Sentinel-1).
Out of the 1815 available NFI samples, 704 (665 forest and 39 non-forest) were used for
modelling and validation of the retrieved GSV. The reduced number of useful samples
was determined by the intersection between ALOS PALSAR-2 and Sentinel-1 orbits, the
correspondence between NFI inventory date and ALOS PALSAR-2 and Sentinel-1 image
acquisition dates, and topography, as pixels affected by geometric distortions were masked
out during SAR data processing. As both ascending and descending Sentinel-1 orbits were
tested, the number of PSPs affected by layover and shadow was high.

3.2. Growing Stock Volume Retrieval

Several modeling approaches can be used to retrieve forest GSV (or AGB) from radar
backscatter coefficients, including parametric and nonparametric models [3,8–10,13,16,24,37–41].
Within a previous study, some of these models were evaluated using the Romanian NFI
and ALOS PALSAR-2 datasets [42]. The results suggested that non-parametric models
provide the lowest errors and bias, regardless of polarization or forest species over the
selected study area. Therefore, we used a non-parametric modelling approach, based
on Random Forests [43], to assess the synergies between the C- and L-band dataset for
GSV retrieval. As non-parametric models offer the opportunity to include non-linearly
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related variables, and have no assumptions regarding the statistical properties of the
data, such models are often preferred when a sufficiently large dataset of samples is
available for model parameterization. The models use ensemble learning methods to
improve the overall predictive power with respect to any of the constituent models by
aggregating their predictions. In random forest regression, each tree is built using a
deterministic algorithm by selecting a random set of variables and a random sample from
the training dataset [43]. Although RF models provide high fit statistics there are known
drawbacks, including difficulties in interpreting the results, potential overfitting, and high
computational demands. A total of 85 RF models were trained and evaluated by gradually
increasing the independent variables, starting from single polarized to multi-polarization
multi-sensor data (see Section 4 and Table A1 in Appendix A for detailed information of
the predictor variables used). Each sensor was individually tested to generate a reference
baseline and allow for cross-sensor comparisons. The use of additional variables (e.g.,
forest type, temporal backscatter variability, and local incidence angle) was also evaluated
to ascertain the opportunity for GSV retrieval improvements. For each sensor, we increased
the independent variables, starting with the average backscatter, temporal stability (i.e.,
the standard deviation of the time series, sd), local incidence angle (LIA), and the forest
type (Ft). For the C-band we analyzed the ascending and descending passes separately, as
well as their combination. The models were calibrated using the 704 PSP samples. In this
study, TreeBagger from MATLAB® software package (v. 2020b) was used to construct the
RF classifier. The number of decision trees was set to 200 and a curvature test was used
to select the best split predictor and grow unbiased trees [44]. The remaining parameters
were kept as default, with surrogate splits being allowed to account for missing values in
the data.

3.3. GSV Retrieval Accuracy

Model performance was evaluated at both pixel and grid levels. At pixel (i.e., plot)
level, the retrieval was evaluated using repeat random sub-sampling with cross-validation
for each individual sensor and polarization, as well as for dual polarized and dual frequency
configurations. To reduce variability due to random sampling effects, 100 rounds were
performed by randomly splitting the 704 PSPs into training (75%) and validation (25%)
samples. During each round, the models were calibrated using the training samples and
subsequently used to estimate the GSV for the validation samples. The observed and
predicted GSV for the validation samples was accumulated over the 100 rounds and used
to compute four accuracy error metrics: the root mean squared error (RMSE, Equation
(1)), the relative RMSE (RelRMSE, Equation (2)), the bias (Equation (3)), and the Pearson’s
correlation coefficient (r).

RMSE =

√√√√ 1
n

n

∑
j=1

(
Pj − Oj

)2 (1)

RelRMSE = RMSE/Õ (2)

Bias = P̃ − Õ (3)

where: Pj = predicted values, Oj = in situ observed values, n = number of samples, and Õ
and P̃ = mean values for the observed and predicted values, respectively.

As GSV estimation errors are inherently large when using small NFI plots for SAR
models calibration [45,46], accuracy metrics (as per Equations (1)–(3)) were also derived over
predefined grids of 10 × 10, 20 × 20, and 30 × 30 km. The grid size was a compromise
between having enough samples in each tile to obtain a more reliable estimate of the NFI
average stem volume and having enough tiles to compute the accuracy metrics by volume
intervals. As the Sentinel-1 strips covered the 1815 available PSPs (Figure 1), the analysis
was focused on the GSV maps derived from C-band VH polarized data (see Section 4.2) to
maximize the number of tiles containing at least 4 in situ plots (i.e., one NFI grid node). The
errors were estimated for both ascending and descending satellite passes. Models using the
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VH backscatter and its temporal standard deviation (see Table 2, in bold) were calibrated
using the reduced set (704) of NFI for cross-comparison purposes. At each tile, the average
NFI GSV was compared to the average GSV for the corresponding predicted pixels.

3.4. Local vs. Global GSV Retrieval

The GSV overall accuracy estimates were compared against values derived at con-
tinental to global levels. We used the GlobBiomass dataset [20], the only global product
currently available at comparable pixel spacing (100 m) and derived from comparable re-
mote sensing datasets (C- and L-band SAR data). The GlobBiomass product provides GSV
estimates for the reference year 2010 based on the combined use of Envisat ASAR (C-band)
and ALOS PALSAR (L-band) sensors and ancillary information from Landsat imagery.
GSV values from the first NFI cycle (2008–2012) were used as reference to match the dates
of the GlobBiomass product. As NFI data collection protocol and location did not change
between the first and second NFI cycles and we have used the same SAR wavelengths to
derive the local product, input datasets influence on the results were minimized. Please
note that Envisat ASAR and ALOS PALSAR sensors were decommissioned in 2012 and
2011, respectively while data from Sentinel-1 and ALOS PALSAR-2 were not available until
2014. The GlobBiomass GSV values were extracted at the location of the available NFI plots
to compute the same error metrics.

4. Results and Discussions

The higher backscatter variability at L-band when compared to C-band, due to the
limited number of multi-temporal datasets available is evident for all the main species
in the Carpathians (Figure 3). Additionally, notice the different GSV ranges, significantly
larger for beech forests when compared to the coniferous and oak forests. The backscatter
coefficient shows the specific raise with GSV up to a SAR wavelength specific saturation
point. By main species, the average backscatter values were slightly higher at L-band over
the coniferous forests (Figure 3b). For display reasons, a logarithmic model was fitted to
the data. The fit was very similar for both SAR wavelengths over the high biomass beech
forests (Figure 3c). Different saturation points between the two wavelengths are apparent
over the coniferous and oak forests (Figure 3b,d), suggesting changed sensitivity to GSV.

4.1. Pixel-Wise GSV Estimation

Over all sensors, polarizations, and predictor variables combinations, the RMSE, Rel
RMSE, and r ranged between 238–278 m3 ha−1, 55–65%, −5–6 m3 ha−1, and 0.14–0.48,
respectively (Tables 2 and A1). As showing results for all possible combinations of the pre-
dictor variables (19) is problematic, Table 2 shows the error metrics for a selection of models
to understand their variations when expanding the number of predictor variables. Notice
that adding more variables does not translate into more accurate predictions. Additional
configurations were provided in Table A1 for completeness. The data is presented by SAR
wavelength, multi-frequency configurations and descending C-band passes combinations.
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Figure 3. Scatterplots of cross-polarized backscatter coefficient as a function of growing stock volume (GSV) for all samples
and by main forest species (a–d). Values show multi-temporal averages. Grey and black (dashed) lines show logarithmic
model fit.

Table 2. GSV accuracy as a function of the independent variables used for the single polarized models. Bold numbers
show overall results for the models analyzed by GSV intervals in Figures 4 and 5. Abbreviations as follows: RMSE—root
mean squared error, RelRMSE—relative RMSE, r—Pearson’s correlation coefficient, L—stands for L-band, C—stands for
C-band, H—horizontal, V—vertical, a—ascending pass, d—descending pass, sd—standard deviation, Ft—forest type, and
LIA—local incidence angle.

Independent Variables RMSE RelRMSE Bias r Independent Variables RMSE RelRMSE Bias r

L-HV 266.9 62.4 −1.4 0.30 Ca-VH 274.0 63.9 −0.3 0.24
L-HH 282.9 66.3 3.1 0.14 Ca-VV 275.0 63.9 −2.7 0.21

L-HV, L-HVsd 254.3 59.5 −1.4 0.35 Ca-VH, Ca-VHsd 263.4 62.6 −0.3 0.28
L-HV, L-HH 253.0 58.9 0.2 0.36 Ca-VV, Ca-VH 267.0 62.4 0.7 0.25

L-HV, L-HVsd, Ft 244.0 57.1 0.02 0.41 Ca-VH, Ca-VHsd, Ft 249.0 59.2 2.1 0.38
L-HV, L-HH, L-HH/HV,

LIA, Ft 241.9 56.1 −3.4 0.46 Cd-VV, Cd-VH,
Cd-VV/VH, LIA, Ft 245.7 57.0 −4.6 0.41

L-HV, L-HH/HV,
Ca-VH, Ca-VV/VH, LIA 239.9 56.2 1.9 0.45

Ca-VH, Ca-VHsd,
Cd-VH, Cd-VHsd, Ft,

LIAa, LIAd
249.5 59.5 −0.6 0.40

Within the single sensor single polarization configuration, the L-band data provided
similar relative RMSE errors when compared to the C-band data. The small difference was
explained by the much denser C-band time series, and the use of average backscatter over
3 years prior to the forest inventory date. This allowed for a considerable reduction in the
environmental induced noise (i.e., backscatter variation due to changes in soil and vegeta-
tion water content) at C-band, where over 150 images were averaged over each relative
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orbit. In contrast, fewer images (5–10) were available for the ALOS PALSAR-2 sensor over
each acquisition frame. Improved GSV retrieval accuracy at C-band was observed when
adding as an independent variable either the local incidence angle (LIA) or the forest type
(FT). However, such improvements were marginal for all accuracy metrics. The RMSE,
RelRMSE, and r improved, on average, by 15 m3 ha−1, 3%, and 0.1, respectively. Dual
polarized models were slightly more accurate (2–5%) when compared to single polarized
models at both C- and L-bands, while the addition of co- to cross-polarized backscatter
ratios further decreased the estimation error, albeit marginally. Adding the time series
standard deviation to backscatter and co- to cross-polarized ratios improved the accuracy
metrics slightly, suggesting that some information can be added to that already contained
in the backscatter coefficient. Similarly, adding LIA and/or FT to the models only resulted
in marginal improvement, most likely being related to the increased number of variables
available in the model. No synergies were observed in terms of retrieval accuracy, when
combining information from both ascending and descending C-band passes with model
performance not improving over the use of either pass. However, GSV estimation from
both ascending and descending passes has merit over the rough Carpathian topography,
as it limits the extent of ‘not-observed’ areas, i.e., areas with topographic distortion due to
shadows and layover which are masked out during SAR processing. Further, the similar
error level from both passes provides for a homogeneous GSV estimation over the entire
landscape. Little synergy was also observed when simultaneously using C- and L-band for
GSV retrieval. Improvements in the RMSE, RelRMSE, and r were noticed with respect to
using single pass C-band data, but were marginal, i.e., 10 m3/ha, 3%, and 0.05, respectively.
In addition, such improvements were observed when adding the LIA to the various combi-
nations of SAR frequencies, polarizations, and passes. The information provided by LIA
and Ftype was largely interchangeable in all configurations (single, dual, multi-frequency,
and multi-pass), as simultaneously using both variables did not improve the results. In
fact, the opposite was observed for some of the tested combinations. It seems that LIA
partitions data in a similar way to Ftype as oak forests are mostly found on lesser slopes
in the hilly region, with conifers being found towards the mountain tops on steep terrain.
This explanation is further supported by the fact that adding the LIA from different sensors
or satellite passes provided no tangible improvement of the accuracy metrics.

Error analysis by intervals (Figure 4 for models in bold in Table 2) shows much higher
relative RMSE errors over forests supporting low (<100 m3 ha−1) GSV values at both C- and
L-bands, which is consistent with previous findings [14,47]. The high relative RMSE are
related to the high signal variability due to the influence of local surface conditions (i.e., soil
surface roughness and moisture) as direct scattering from the ground dominates the signal
in forests supporting low GSV levels [48]. In addition, the relative RMSE metric is unstable
at lower GSV values, as the denominator approaches zero the relative error approaches
infinity. Over the remaining GSV intervals the relative RMSE decreased significantly
at both wavelengths with the minimum values (around 20%) being observed for the
400–600 m3 ha−1 GSV range. The estimation error was largely dominated by bias, as
the coefficient of variation (CV) of the error was below one (data not shown), for most
GSV intervals except the 400–600 m3 ha−1 where the random error dominated, and the
0–100 m3 ha−1 interval where bias and random error contribution was balanced (0.8 < CV
< 0.9). Note that the bias was positive over low GSV ranges and negative over the high GSV
ranges (Figure 5b), with a crossover at the GSV range with the lowest errors, 400–600 m3

ha−1. The standard deviation (SD) of the predicted values did not vary across GSV intervals
(75–85 m3 ha−1) except for the first bin, where the SD was twice as much (Figure 5a). Similar
values were observed over temperate forests in Poland in previous studies [14]. Overall,
the accuracy assessment shows that GSV is over- and under-estimated at low and high
GSV values, respectively as the models fitting aims at the point defined by the average of
the observed and predicted values [14].
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Figure 4. GSV retrieval metrics at pixel level for single polarization C- and L-band models, as well as the combined C- and
L-band data: (a) GSV by range, error bars indicate standard deviation of the predicted values. (b) Distribution of bias, (c)
root mean square error, and (d) relative root mean squared error. Dotted lines indicate fitting polynomial (a–c) and power
(d) curve to the calculated points. The dashed line indicates identity line. Bins plotted at average bin value.
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Figure 5. GSV retrieval metrics for 10 × 10 km grid cells for single polarization C-band models. Panels (a–d) show the same
information as in Figure 4.
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The relatively large errors observed for all combinations of predictor variables may
be related to potential mismatches between the Earth Observation data and the in situ
samples, as the coordinates at each PSP were reconstructed from the node grid coordinates
using the specified distance and azimuth. This may introduce displacements with respect
to the real location of the NFI plot where field crews were not able to precisely measure the
required azimuth and distance, or the exact location of the grid node (e.g., GPS location
error under dense forest canopy may reach several meters). Such positioning errors coupled
with the relatively small area inventoried may induce errors particularly for border stands.
For the remaining NFI samples, the positioning errors should have limited effects as
Romanian forests stands, averaging between 3.5 and 15 ha from plains to mountains, have
homogeneous structure and species composition.

4.2. Grid Based GSV Accuracy

Over the 10 × 10 km grid (244 cells), the RMSE and RelRMSE decreased to 158 m3

ha−1 and 35%, respectively (average values), with marginal differences being observed
between values from ascending (35.2%) and descending (33.8%) satellite passes. Averaging
GSV values from ascending and descending passes did not result in improved accuracy
metrics. Further aggregation through the larger 20 × 20 (125 cells) and 30 × 30 km (78 cells)
grids improved RMSE (119 and 105 m3 ha−1, respectively) and RelRMSE (29% and 25%,
respectively) values, but also increased the bias from 13 to 30 and, 35 m3 ha−1, respectively,
as only two or three bins were available. The RelRMSE for the 30 × 30 km aggregation
level was similar to that observed over the Swedish forests (21.4%) at the same scale.
However, our retrieval statistics indicate some residual bias, which was not the case in
Sweden, where a longer wavelength (L-band) was used for retrieval and more samples
were aggregated [49].

When compared to the pixel-based assessment, similar patterns were observed over all
biomass intervals except for the 0–100 m3 ha−1 range for which no grid cell was available
(Figure 5 for models in bold in Table 2). The improvement in retrieval statistics seemd
related to the absence of low GSV plots (<100 m3 ha−1) where large estimation errors were
observed at pixel level (Figures 4 and 5). Notice that the lower number of available cells at
larger grids precluded a similar analysis for the 20 × 20 and 30 × 30 km grids.

4.3. Comparison to Global Products

Our results support previous findings which demonstrated increased retrieval ac-
curacies for locally calibrated models [14,23–25]. When compared to the GlobBiomass
values (Figure 6), locally derived estimates showed potential to improve the RelRMSE by
about 15% (55.4 vs. 70.5%), decrease the RMSE by about 54 m3 ha−1 (236 vs. 290 m3/ha),
and increase the correlation between predicted and observe values from 0.2 to 0.5. Such
improvements, although significant and at a higher (30 vs. 100 m) spatial resolution, are
still far from the required accuracies needed for operational forest management which
target 5–10% accuracies for GSV at stand level. Nevertheless, one should notice that aggre-
gating the pixel wise GSV to lower spatial resolution (e.g., stand level) has the potential to
significantly decrease the RMSE and RelRMSE values [13,50] as also demonstrated by the
improvements observed at grid level. The incentive in using SAR based GSV estimation
from locally calibrate models resides in the opportunity to better fine tune the model to
the local conditions when compared to using globally available estimate. In addition,
SAR-based maps provide wall to wall cover, yearly updates, and the opportunity to derive
regional statistics.
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Figure 6. Growing stock volume estimated by GlobBiomass map at national forest inventory locations.

5. Conclusions

This study assessed the utility of C- and L-band data for GSV estimation over high
growing stock volume forests in the Carpathians. The study included representative areas
covering the three main forest species, oak, beech, and coniferous, making up the bulk of
the Romanian forests. The in situ NFI data and the SAR imagery were acquired between
2015 and 2016. GSV retrieval was carried out at 30 m pixel size using a machine learning
(Random Forests) algorithm and various configurations of the independent variables from
single sensor single polarization to multi-sensor multi-polarization. The observed RelRMSE
varied between 55–66% depending on the input predictor variables. For similar predictor
variables, the mapping accuracy was slightly higher at L- when compared to C-band.

The availability of significantly more datasets at C-band reduced speckle as the much
denser Sentinel-1 time series seemed to have compensated for the inherent limitations
of a shorter wavelength. Such a finding suggests that using denser L-band time series,
as those available from the soon to be launched NISAR mission, have the potential to
further improve GSV estimation accuracy in high volume forests. The GSV retrieval
errors decreased by 5–10% when adding temporal information (i.e., backscatter coefficient
temporal standard deviation) as an independent variable eliminating the need for a second
polarization. This suggests a high correlation between the information of co- and cross-
polarized channels, which may be explained by the overall high GSV levels and thus the
relative low correlation between GSV and backscatter. Little synergies were observed
when using both C- and L-bands, as well as when jointly using C-band ascending and
descending passes. While the utility of the pixel level GSV values is somewhat reduced,
their aggregation at grid level decreased the estimation errors (25–35%) and provided more
reliable estimates which may be useful for regional and national assessments. Future work
should focus on reducing GSV errors by fusing the Lidar data acquired by NASA’s Global
Ecosystem Dynamics Investigation (GEDI) mission to obtain a GSV gridded product that
provides more accurate estimates for stock levels at regional to national levels. In addition,
dense L-band temporal series from the future NISAR mission should be tested to ascertain
the potential to improve the locally derived GSV estimates, as datasets from the P-band
BIOMASS mission may not be available over the Carpathians.

As for the limitations of this study, the most important is related to the design of NFIs,
which are not optimized for calibrating and validating remote sensing products [49], the
large differences between the amount of data collected by the two SAR sensors, which
limited a like-for-like comparison, and the available DEM (SRTM DEM) used for terrain
normalization as a more precise DEM (e.g., Lidar based or Tandem-X DEM) allows for
improved scattering area estimation reducing the effect of topography on the backscatter
and thus improving the retrieval of the target biophysical characteristic [34,51].
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Appendix A

Table A1. GSV accuracy as a function of the selected independent variables for a range of configurations. Abbreviations as
follows: RMSE—root mean squared error, RelRMSE—relative RMSE, r—Pearson’s correlation coefficient, L—stands for
L-band, C—stands for C-band, H—horizontal, V—vertical, a—ascending pass, d—descending pass, sd—standard deviation,
Ft—forest type, and LIA—local incidence angle.

Independent Variables RMSE RelRMSE Bias r Independent Variables RMSE RelRMSE Bias r

Single polarized models based on L-band data Single polarized models based on C-band data
L-HH 282.9 66.3 3.1 0.14 Ca-VV 275.0 63.9 −2.7 0.21

Cd-VV 277.5 64.6 −2.9 0.19
L-HH, L-HHsd 264.0 61.6 −1.1 0.24 Cd-VH, Cd-VHsd 265.0 62.7 −2.6 0.26

Ca-VV, Ca-VVsd 262.6 62.4 −0.5 0.27
Cd-VV, Cd-VVsd 264.6 62.8 0.36 0.26

L-HV, L-HVsd, Ft 244.0 57.1 0.02 0.41 Ca-VH, Ca-VHsd, Ft 249.0 59.2 2.1 0.38
L-HH, L-HHsd, Ft 244.2 57.6 4.3 0.40 Cd-VH, Cd-VHsd, Ft 253.7 59.8 −3.8 0.36

Ca-VV, Ca-VVsd, Ft 248.7 59.3 1.0 0.39
Cd-VV, Cd-VVsd, Ft 249.9 59.5 3.1 0.37

L-HV, L-HVsd, LIA 246.4 57.6 1.5 0.40 Ca-VH, Ca-VHsd, LIA 256.8 60.9 −2.0 0.31
L-HH, L-HHsd, LIA 250.7 58.8 0.75 0.37 Cd-VH, Cd-VHsd, LIA 260.0 61.2 −3.5 0.32

Ca-VV, Ca-VVsd, LIA 257.4 61.3 1.7 0.30
Cd-VV, Cd-VVsd, LIA 261.1 61.7 −3.5 0.30

L-HV, L-HVsd, LIA, Ft 240.3 56.2 −0.6 0.44 Ca-VH, Ca-VHsd, LIA, Ft 248.4 59.3 2.4 0.38
L-HH, L-HHsd, LIA, Ft 237.7 55.9 3.4 0.45 Cd-VH, Cd-VHsd, LIA, Ft 252.5 59.7 −0.3 0.37

Ca-VV, Ca-VVsd, LIA, Ft 249.5 59.5 3.7 0.38
Cd-VV, Cd-VVsd, LIA, Ft 249.8 58.6 −5.4 0.39

Multi-polarized models based on L-band data Multi-polarized models based on C-band data

L-HV, L-HH 253.0 58.9 0.2 0.36 Ca-VV, Ca-VH 267.0 62.4 0.7 0.25
Cd-VV, C-VH 262.0 61.1 0.2 0.27

L-HV, L-HH, L-HH/HV 251.9 59.1 2.5 0.39 Ca-VV, Ca-VH,
Ca-VV/VH 264.8 61.8 3.3 0.24

Cd-VV, Cd-VH,
Cd-VV/VH 260.6 61.2 2.6 0.28

L-HV, L-HH, L-HH/HV,
Ft 249.2 58.0 0.42 0.40 Ca-VV, Ca-VH,

Ca-VV/VH, Ft 253.1 59.0 −1.0 0.35

https://scihub.copernicus.eu
https://auig2.jaxa.jp
https://globbiomass.org
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Table A1. Cont.

Independent Variables RMSE RelRMSE Bias r Independent Variables RMSE RelRMSE Bias r

Cd-VV, Cd-VH,
Cd-VV/VH Ft 248.8 58.0 −1.9 0.38

L-HV, L-HH, L-HH/HV,
LIA 242.7 56.3 −2.1 0.43 Ca-VV, Ca-VH,

Ca-VV/VH, LIA 253.4 59.7 6.1 0.30

Cd-VV, Cd-VH,
Cd-VV/VH, LIA 251.9 58. −0.5 0.34

L-HV, L-HH, L-HH/HV,
LIA, Ft 241.9 56.1 −3.4 0.46 Ca-VV, Ca-VH,

Ca-VV/VH, LIA, Ft 252.4 58.5 −3.0 0.36

Cd-VV, Cd-VH,
Cd-VV/VH, LIA, Ft 245.7 57.0 −4.6 0.41

L-HV, L-HH/HV 252.8 58.8 −0.1 0.38 Ca-VH, Ca-VV/VH 264.2 61.5 −1.8 0.26
Cd-VH, Cd-VV/VH 263.9 61.4 −3.5 0.27

L-HH, L-HH/HV 251.5 58.6 1.2 0.36 Ca-VV, Ca-VV/VH 265.3 62.0 0.4 0.25
Cd-VV, Cd-VV/VH 262.3 61.3 −0.1 0.26

L-HV, L-HH/HV, LIA 242.9 56.9 2.6 0.42 Ca-VH, Ca-VV/VH, LIA 258.8 60.4 0.4 0.29
Cd-VH, Cd-VV/VH, LIA 253.8 59.2 −1.1 0.35

L-HV, L-HH/HV, LIA, Ft 241.2 56.3 1.4 0.45 Ca-VV, Ca-VV/VH, LIA,
Ft 249.2 58.1 1.4 0.36

L-HH, L-HH/HV, LIA,
Ft 239.1 55.9 2.7 0.46 Cd-VV, Cd-VV/VH, LIA,

Ft 246.0 57.4 −0.5 0.41

L-HV, L-HH/HV,
L-HVsd 247.0 58.0 1.7 0.39 Ca-VH, Ca-VV/VH,

Ca-VHsd 259.4 61.3 −2.4 0.31

L-HH, L-HH/HV,
L-HHsd 248.6 58.1 −0.9 0.38 Cd-VH, Cd-VV/VH,

Cd-VHsd 261.6 62.2 2.8 0.28

L-HV, L-HH/HV,
L-HVsd, LIA 242.8 56.6 0.9 0.44 Ca-VH, Ca-VV/VH,

Ca-VHsd, LIA 258.2 61.4 0.8 0.31

L-HV, L-HH/HV,
L-HVsd, LIA, Ft 236.0 55.4 2.1 0.47 Ca-VH, Ca-VV/VH,

Ca-VHsd, LIA, Ft 248.9 59.5 2.0 0.38

L-HH, L-HH/HV,
L-HHsd, LIA, Ft 237.7 55.7 1.7 0.48 Cd-VH, Cd-VV/VH,

Cd-VHsd, LIA, Ft 246.8 58.3 −1.3 0.42

Independent variables RMSE RelRMSE Bias r Independent variables RMSE RelRMSE Bias r

Multi-frequency models (C- and L-band data) Models based on C-band data from ascending and
descending passes

L-HV, Ca-VV/VH 258.7 60.4 −0.3 0.32 Ca-VV, Ca-VVsd, Cd-VV,
Cd-VVsd 256.9 61.2 −1.3 0.32

L-HV, Ca-VV/VH, Ft 249.0 58.1 −1.6 0.39 Ca-VH, Ca-VHsd, Cd-VH,
Cd-VHsd 258.3 61.2 −3.9 0.32

L-HV, Ca-VV/VH,
Cd-VV/VH 252.0 59.1 2.7 0.34 C-VVa, C-VVa sd, C-VVd,

C-VVd sd, Ft 249.4 59.8 1.5 0.38

L-HV, Ca-VV/VH,
Cd-VV/VH, LIA 243.2 57.2 4.9 0.41 Ca-VH, Ca-VHsd, Cd-VH,

Cd-VHsd, Ft 254.2 59.8 −3.5 0.37

L-HV, L-HH/HV, Ca-VV,
Ca-VV/VH, LIA 239.3 55.8 2.6 0.45 C-VVa, C-VVa sd, C-VVd,

C-VVd sd, Ft, LIAa, LIAd 248.6 59.0 −1.4 0.40

L-HV, L-HH/HV,
Ca-VV/VH, Cd-VV/VH,

LIA
240.3 56.1 0.2 0.45

Ca-VH, Ca-VVVH,
Ca-VVsd, Cd-VH.

Cd-VVVH, Cd-VVsd
251.6 60.0 1.9 0.34

L-HV, L-HH/HV,
Ca-VV/VH, Ca-VHsd,
Cd-VV/VH, Cd-VHsd,

LIA

242.3 57.6 −0.3 0.46
Ca-VV, Ca-VVVH, Cd-VV,

Cd-VVVH, Ca-VHsd,
Cd-VHsd

254.6 60.7 0.6 0.33

L-HV, L-HH/HV,
Ca-VH, Ca-VV/VH,
Cd-VH, Cd-VV/VH,

LIA

240.1 57.3 1.2 0.46
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