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Abstract: The precise segmentation of forest areas is essential for monitoring tasks related to forest
exploration, extraction, and statistics. However, the effective and accurate segmentation of forest
images will be affected by factors such as blurring and discontinuity of forest boundaries. Therefore,
a Pyramid Feature Extraction-UNet network (PFE-UNet) based on traditional UNet is proposed
to be applied to end-to-end forest image segmentation. Among them, the Pyramid Feature Extrac-
tion module (PFE) is introduced in the network transition layer, which obtains multi-scale forest
image information through different receptive fields. The spatial attention module (SA) and the
channel-wise attention module (CA) are applied to low-level feature maps and PFE feature maps,
respectively, to highlight specific segmentation task features while fusing context information and
suppressing irrelevant regions. The standard convolution block is replaced by a novel depthwise
separable convolutional unit (DSC Unit), which not only reduces the computational cost but also
prevents overfitting. This paper presents an extensive evaluation with the DeepGlobe dataset and a
comparative analysis with several state-of-the-art networks. The experimental results show that the
PFE-UNet network obtains an accuracy of 94.23% in handling the real-time forest image segmen-
tation, which is significantly higher than other advanced networks. This means that the proposed
PFE-UNet also provides a valuable reference for the precise segmentation of forest images.

Keywords: forest image segmentation; PFE-UNet; PFE; spatial attention; channel-wise attention;
DSC unit

1. Introduction

Forest resources are highly relevant to national economic development [1], and play
an essential role in many aspects, such as ecotourism, landscape construction, and main-
tenance of ecological security of the country [2–5]. In recent years, the impact of overex-
ploitation and other reasons has led to a serious shortage of forest resources in China, and
the ecological environment has become extremely fragile [6,7]. Thus, the monitoring and
management of forest resources is a matter of great value. Forest image segmentation is
widely used in forest resource monitoring as a prerequisite for tasks such as forest surveys
and timber area statistics. However, traditional image segmentation methods suffer from
low accuracy and time consumption, which render it hard to handle segmentation tasks in
complex scenes. Therefore, how to handle the segmentation task in complex scenes has
been one of the most challenging problems within the field of forest image segmentation.

With the continuous development of deep learning, deep neural networks can be built
for end-to-end image semantic segmentation by supervised training at the pixel level. This
means that the output of segmentation prediction results of the same size can be achieved
by inputting color images of arbitrary size [8,9]. Convolutional neural networks (CNN)
are favored by many researchers due to their powerful feature representation in the field
of image segmentation [10]. The Fully Convolutional Network (FCN) has attracted much
attention for its remarkable pixel-level classification, and this model was first proposed
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by Long et al. [11]. The major difference between the FCN and CNN is that the fully con-
nected layer of CNN is replaced by a convolutional layer. Ronneberger et al. [12] proposed
the UNet model based on FCN; UNet consists of a typical down-sampling encoder and
up-sampling decoder structure and a ‘skip connection’ between them. Basaeed et al. [13]
fused inter-band memory and intra-band information to enhance the spatial spectrum of
the image and improve generalization. Kampffmeyer et al. [14] proposed a fully convo-
lutional neural network-based image land-cover-mapping method and achieved precise
segmentation of feature targets of different scale sizes on the ISRPS 2D semantic annotation
dataset [15]. Additionally, for the ISRPS 2D dataset, Audebert et al. [16] proposed a deep
fully convolutional neural network (DFCNN) based on the self-encoder type, the key of
which is the introduction of multicore convolutional layers to achieve multi-scale feature
extraction. The DeepLab family of networks [17–20] put forward by the Google team has
broken through the accuracy in the field of image segmentation time and again. Among
them, DeepLabv3+ [20] further used the Xception model and depthwise separable convolu-
tion and combined atrous spatial pyramid pooling (ASPP) with a simple decoding module
to obtain a larger and stronger encoding–decoding network architecture. Although the seg-
mentation accuracy is enhanced to some extent, the consequent increase in computational
effort hinders its widespread use in real-time image segmentation tasks. Therefore, the
construction of an efficient and lightweight network is also a critical issue that needs to
be addressed.

To solve these problems, researchers are increasingly focusing on the design of effi-
cient network structures, an idea that can reduce computational costs and the number of
parameters while maintaining a better segmentation performance. In particular, based
on multi-scale feature propagation, the pyramid feature attention network (PFA-Net) [21]
maximized the fusion of contextual information, which greatly reduced the number of
parameters, by still obtaining sufficient receptive fields and enhancing model learning
capability, thus striking a balance between speed and segmentation performance. Further-
more, it is shown that the attention mechanism can effectively capture global contextual
information and reduce the computational burden to some extent. Fu et al. [22] proposed
a dual attention network (DA-Net) to integrate local features and global dependencies
adaptively, using the channel attention module and the position attention module to estab-
lish channel dependence and spatial dependence, respectively. In contrast, a deep feature
aggregation network (DFA-Net) [23] attached a fully connected attention module to the tail
of the backbone network in pursuit of higher precision to retain the maximum receptive
field and refine the prediction results. Meanwhile, researchers have focused on the fusion
of different depth features in the network and have successively proposed various methods,
represented by SegNet [24], ENet [25], ICNet [26], etc.

The above image segmentation methods are highly susceptible to noise and light
intensity, are not able to precisely locate forest information and accurately segment forest
areas, and still have some shortcomings. Firstly, the feature map after the convolution of the
above segmentation method lacks a targeted feature information extraction of the process,
for objective factors such as shadows cannot be precisely segmented to confirm whether
they belong to the forest area. Secondly, it is easier to ignore the different feature information
between high-level and low-level features, leading to problems such as discontinuity and
blurred boundaries in the forest area. Finally, with the deepening of the convolutional
network, it is prone to overfitting, and there are also challenges such as difficulties in
training the network with the increasing number of model parameters.

To deal with the above problems, this paper proposes a novel end-to-end image
segmentation method, named the Pyramid Feature Extraction-Unet network (PFE-UNet).
Specifically, following the convolution of the encoder–decoder in the traditional UNet,
an attention mechanism is introduced, so that it can adaptively derive image features.
Meanwhile, irrelevant regions are suppressed and different weight ratios are assigned
to different scales, thus ensuring the network could focus on the features related to the
specific segmentation task. Then, the Pyramid Feature Extraction module (PFE) is adopted
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to obtain high-level features with high receptive fields at multiple scales. The traditional
UNet transition layer is replaced with PFE, the channel-wise attention module (CA) is
used to focus on the high-level features, and the appropriate scales and receptive fields
are selected to generate the prediction result maps. The spatial attention module (SA)
is applied to focus on low-level features, and following different attention mechanisms,
high-level and low-level features are perceived in a complementary way to generate a
feature map. Furthermore, a novel depthwise separable convolutional unit (DSC Unit) is
adopted to reduce the model parameters using depthwise separable convolution, which
divides the depth convolution into two depth convolutions with cascaded kernel sizes. To
integrate contextual information faster, two depth convolutions are inserted separately
before each 1 × 1 convolution to improve the forest image segmentation accuracy by
training a deeper network. The proposed PFE-UNet is capable of accurately segmenting
forest images, which can provide a beneficial reference value for the research of image
segmentation and recognition studies.

2. Related Works
2.1. Attention Mechanism

Nowadays, there are many image segmentation networks using attention mechanisms
to improve segmentation accuracy [27–30], which improve the representational power
of neural networks by extracting key information relevant to the task [31,32], and have
achieved promising breakthroughs. Yu et al. [33] proposed the discriminative feature net-
work (DFN), which added modules such as channel attention and global average pooling
to solve the problem of inconsistent features between classes. Jie H et al. [34] proposed an
attention module named squeeze-and-excitation block (SE), which automatically obtains
the weight of each feature channel. Furthermore, it combined the features of different
stages and enhanced the representation of features. Before splicing the image features
obtained by convolution of the encoder with the corresponding features in the decoder,
Oktay et al. [35] produced an attention gate and readjusted the encoder’s output features,
which was successfully applied to segmentation tasks.

2.2. Depthwise Separable Convolutions

Many deep learning network architectures [36–38] use depthwise separable convolu-
tions to replace standard convolutional blocks as core units. Compared to previous full
rank filters, 3 × 1 filters and 1 × 3 filters are used to approach 3 × 3 filters. This scheme,
where many complex filters are divided into small base filters followed by training the
network from scratch using weight initialization methods, tends to consume fewer param-
eters and improve the performance of semantic segmentation compared to conventional
convolutional kernels in convolutional operations. At the same time, 3 × 3 is the smallest
size that can capture the pixel-eight neighborhood information by stacking small-size
convolutional layers instead of large-size convolutional layers, and the receptive field size
remains unchanged. Therefore, we split the depthwise convolution into two depthwise
convolutions with cascaded kernel size. To construct an efficient and lightweight network
architecture, we factorize the 3 × 3 depthwise convolutional layer into a 3 × 1 depthwise
convolution and a 1 × 3 depthwise convolution. Changing the order of the convolutional
layers allows the network to capture more contextual information to improve performance.

2.3. DropBlock

Motivated by the successful application of DropBlock in recent computer vision
works [39–41], we adopt DropBlock to regularize the network. DropBlock, a structured
form of dropout, can effectively prevent over-fitting problems in convolutional networks.
It drops the units in adjacent areas of the feature map together, instead of dropping random
units. This effectively prevents the overfitting problem in convolutional networks. The
DSC Unit is constructed based on the depthwise separable convolution and DropBlock
mentioned in Section 2.2. We factorize a 3 × 3 depthwise convolutional layer to a 3 × 1
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depthwise convolution and a 1 × 3 depthwise convolution; each 3 × 1 layer and the 1 × 3
layers will be followed by a 1 × 1 convolutional layer. Each convolutional layer is followed
by a DropBlock, a layer of batch normalization (BN), and a ReLU activation unit, as shown
in Figure 1a. The DSC Unit replaces the standard convolution in the UNet network (as
shown in Figure 1b) to construct a U-shaped network as the ‘backbone’ of the overall
network architecture, effectively avoiding the overfitting problem and accelerating the
convergence of the network.
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Figure 1. Network units: (a) Traditional UNet unit; (b) Novel convolutional DSC Unit.

3. Methods
3.1. PFE-UNet Architecture

The PFE-UNet network is composed of two parts, forming a symmetrical structure: the
encoder and the decoder part (Figure 2). The encoder part continuously extracts abundant
forest features for capturing the complete contextual information in the forest images.
However, the decoder is applied to precisely locate the forest area to be segmented in the
input image. The whole architecture consists of 8 DSC Units, 4 pooling layers, 4 SA, 4 CA,
5 PFE, and multiple up-sampling layers. We factorize a 3× 3 depthwise convolutional layer
to a 3 × 1 depthwise convolution and a 1 × 3 depthwise convolution; the pooling layer
size is 2 × 2, and the input image is 512 × 512. The input image goes through a series of
convolution, feature extraction, and feature merging operations to obtain an output image
with the same resolution as the input image. The standard convolutional block in UNet is
replaced by a DSC Unit, and the convolutional layers are reordered to maintain a better
segmentation performance while effectively reducing the computational cost. Meanwhile,
the introduced DropBlock trains deeper networks without degradation, while preventing
overfitting problems in convolutional networks.

In addition, to be able to derive forest information from the feature mapping convolved
by the encoder, we use a spatially oriented attention module after each DSC Unit to
adaptively extract image features. The Pyramid Feature Extraction module is adopted in
the transition layer of the network to sense contextual information for capturing high-level
features with multi-scale and multi-receptive fields. Before each up-sampling feature fusion
operation, a channel-wise attention module is adopted to refine the feature information
details. To acquire the output segmentation map, 1 × 1 convolution and sigmoid activation
function are obtained at the final layer.
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3.2. Pyramid Feature Extraction

Feature extraction is of great importance for image segmentation tasks. Many re-
searchers have proposed convolutional neural network models to perform feature learning
in images by simply stacking convolutional and pooling layers, which may not be able to
effectively handle these complicated variations. Atrous convolution, in contrast to tradi-
tional methods, can be used to obtain features with the same scale but different receptive
fields [42]. Specifically, the Pyramid Feature Extraction module is added to the transition
layer of the UNet network, as shown in Figure 3. To acquire semantic information for more
global and abstract high-level feature maps, atrous convolution with different dilation
rates of 3, 5, and 7 is adopted to capture multi-receptive-field contextual information. As
the output of the Pyramid Feature Extraction module, the feature mappings from differ-
ent atrous convolution layers and a 1 × 1 dimension reduction feature are combined by
cross-channel concatenation.
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Figure 3. The detailed structure of Pyramid Feature Extraction. A Pyramid Feature Extraction module
takes a feature from a side of the SA module as input, and it contains three 3 × 3 convolutional layers
with different dilation rates and a 1 × 1 convolution layer.
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3.3. Spatial Attention

The spatial attention mechanism, which plays an important role in enhancing the rep-
resentational power of image segmentation models, is adopted into the model architecture
of the network as part of the convolutional attention module that uses the spatial relation-
ships between features to produce spatial attention maps. To calculate the spatial attention,
SA is first taken along the channel axis for the average-pooling and max-pooling, respec-
tively, and the feature maps of both are connected to produce efficient feature descriptors,
as shown in Figure 4. Input features F ∈ RH×W×C generate features FS

mp ∈ RH×W×1 and
FS

ap ∈ RH×W×1 through max-pooling and average-pooling of the channel axes, respectively.
Then, the spatial attention map MS(F) ∈ RH×W×1 is generated by using a convolution
layer followed by the sigmoid activation function on the concatenated feature descriptor.
In short, the following calculation equation for spatial attention is shown as:

FS = F ·MS(F)

= F · σ
(

f 3×3([MaxPool(F); AvgPool(F)])
)

= F · σ
(

f 3×3
([

FS
mp; FS

ap

])) (1)

where f 3×3(·) denotes a convolution operation with a kernel size of 3 and σ(·) represents
the sigmoid function.
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3.4. Channel-Wise Attention

The channel attention mechanism in convolutional neural networks can maintain the
mapping relationship between different channels. After the Pyramid Feature Extraction,
the channel-wise attention module [43] is provided to the transition layer, leading to better
learning of the spatial distribution of images to capture multi-scale multi-receptive-field
high-level features. We unfold high-level features f h ∈ RH×W×C as f h =

[
f h
1 , f h

2 , . . . , f h
C

]
,

where f h
i ∈ RH×W is the i-th slice of f h and C is the total channel number. As shown in

Figure 5, the global average pooling operation is adopted to transform the feature map with
the dimensions H ×W × C into a dimensional shape of 1 × 1 × C in one step. Connect
two fully connected layers to capture channel dependencies. Then, the normalization
processing measures are implemented to the encoded channel-wise feature vector mapped
to (0,1) using the sigmoid operation:

CA = F
(

vh, W
)
= σ1

(
fC2

(
δ
(

fC1

(
vh, W1

))
, W2

))
(2)

where W refers to parameters in the channel-wise attention module, σ1 refers to sigmoid
operation, fC refers to FC layers, and δ refers to the ReLU function.
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3.5. Loss Function

Cross entropy is widely used in image segmentation tasks. As shown below:

L = − 1
N

N

∑
i=1

[
P̂i log Pi +

(
1− P̂i

)
log(1− Pi)

]
(3)

where Pi refers to the predicted probability of pixel i, while P̂i represents the truth standard,
and N represents the number of samples.

However, in actual forest segmentation, the unbalanced ratio of forested and non-
forested areas is likely to cause missed segmentation of detailed areas of the forest. To
avoid the above problem, an additional weighting factor wclass

i . is introduced to weight the
original cross entropy loss function, as shown in the following equation:

L = − 1
N

N

∑
i=1

wclass
i

[
P̂i log Pi +

(
1− P̂i

)
log(1− Pi)

]
(4)

wclass
i =

N − ni
ni

(5)

where ni presents the number of pixels belonging to class i.

4. Experiment
4.1. Dataset and Implementation

In this experiment, we use the DeepGlobe dataset, a publicly available dataset that pro-
vides high-resolution sub-meter satellite imagery, to delineate forest areas. The dataset con-
tains 803 RGB satellite images divided into training/validation/test sets of 803/171/172 im-
ages each (corresponding to 70%/15%/15% segmentation). The image space resolution
size is 2448 × 2448 and the imagery has 50 cm pixel resolution, collected by Digital Globe’s
satellite. Each satellite image is paired with a mask image for forest cover annotation.
The solution is expected to predict an RGB mask for the input, i.e., a colored image of
the same height and width as the input image. The expected result is a forest cover map
of the same size in pixels as the input image, where the color of each pixel indicates its
class label. Figure 6 shows a few samples of forest images and ground truth. To enhance
the training efficiency, the image size is uniformly changed to 512 × 512 as input and the
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Labelme image label tool is used for labeling the images. Data augmentation is crucial for
the performance evaluation of PFE UNet since there are not enough training samples. The
input image and the corresponding labels are simultaneously rotated at an angle or scaled
up or down to expand the data set.
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The PFE UNet network proposed in this paper is trained using a GPU (GTX 960M 2G),
and the experimental environment is shown in Table 1. During training, the learning rate
of PFE UNet is set to 0.00008, Adam optimization algorithm is selected, batch-size is set to
16, and the size of the discard blocks of DropBlock is set to 7. There are 100 epochs during
the training. The specific parameters for training are shown in Table 2.

Table 1. Experimental hardware and software environment settings.

Hardware Environment Software Environment

CPU Intel(R) Xeon(R) Bronze
3204 CPU 1.90 GHz Operating System Windows 10

Graphics
Card NVIDIA GeForce RTX 3090 Python 3.6.5

Memory 128 GB
Opencv 3.4.2

Framework Pytorch-gpu-1.8.1

Table 2. Parameter settings and corresponding introduction in network training.

Related Parameter Value Meaning

Batch size 16 Number of pictures per training
Learning rate 0.00008 Initial learning rate

Epoch 100 Training iteration times
CUDA Enable Computer unified device architecture

CUDNN Enable A GPU acceleration library for deep neural networks

4.2. Evaluation Metrics

To evaluate the performance of the proposed model, the segmentation results are
compared with the corresponding ground truth and the comparison results for each pixel
are grouped into true positive (TP), false positive (FP), false negative (FN), and true negative
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(TN). Then, the performance of the model is evaluated with the F1-score (F1), precision,
recall, and accuracy (ACC). F1 represents the harmonic mean of precision and recall. They
are calculated as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

F1 = 2× precision× recall
precision + recall

(7)

while
precision =

TP
TP + FP

(8)

where TP, TN, FP, and FN denote the amount of true positive, true negative, false positive,
and false negative, respectively.

5. Results and Discussion
5.1. Performance and Comparative Analysis

Figure 7a shows the loss of the proposed PFE-UNet on the training and test sets, and
it can be observed that the network converges faster, and the trend of both changes is
consistent and not much different. It is shown that PFE-UNet has a well-generalized ability
to iterate until the loss converges to near 0.1. Figure 7b shows the variation of the accuracy
of PFE-UNet on the training and test sets for different iterations. Both values improve at
the beginning of network training rapidly, and the improvement slows down with the
increase in iterations. After 100 iterations, the model performance remains stable and the
accuracy rate reaches 94.23%.
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In the experiments, the segmentation results of UNet [12], DA-Net [22], DFA-Net [23],
and our proposed PFE-UNet are quantitatively analyzed, and the segmentation results are
shown in Figure 8. It could be seen that the UNet, DA-Net, and DFA-Net segmentation
areas occur as over-segmentation or under-segmentation. In contrast, our proposed PFE-
UNet model successfully circumvents these errors. Furthermore, the segmentation results
can be seriously affected by relatively small buildings, blurred forest boundaries, and
large shadow areas. It can be seen that the UNet model performs the worst, not only
ignoring the forest area but also leading to the typical under-segmentation errors. DA-Net
and DFA-Net, although showing significant advantages in dealing with forest areas, still
occur with insufficient segmentation. Regarding the indistinguishable background areas
in the forest image, such as intricate shadows, their pixel values as well as shape and
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size are very close to those of the forest. The other three models will misclassify some of
the shadows as forest, and the segmentation results have a larger coarse error. However,
our proposed PFE-UNet model can identify the boundary well and separate the forest
from the shadow with great segmentation performance. In addition, the model effectively
combines the recognition function of deep convolutional neural networks with the function
of channel-wise attention and spatial attention to fuse contextual information, which makes
the forest area contour more specific and segments the forest area well. It is experimentally
proven that UNet and DA-Net cannot handle segmentation in complex scenes well, and
DFA-Net has a better performance compared with UNet and DA-Net. However, it has a
few segmentation errors in the border and shaded parts. The PFE-UNet model avoids the
above errors to accurately segment the forest area, thanks to the introduction of the PFE
module and attention mechanism.
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According to the above parameter settings, the trained model is used to segment the
test. With the purpose of testing the performance of the model, four sets of comparison
experiments were performed: the first group experimented with the segmentation perfor-
mance of UNet on forest images; the second group experimented with the segmentation
performance of DA-Net; the third group experimented with the segmentation performance
of DFA-Net; and the fourth group experimented with the performance of the proposed PFE-
UNet. Table 3 shows the segmentation results for each of these four groups of experiments.
Among them, the accuracy of PFE-UNet is improved by 5.48% compared with UNet, and
3.41% and 2.67% compared with DA-Net and DFA-Net, respectively. For other parameters,
such as recall and F1, the recall of PFE-UNet is 93.86%, which is 4.13% higher than DA-Net
and 2% higher than DFA-Net. On the one hand, it is due to the introduction of the attention
mechanism, focusing on the forest information while suppressing irrelevant forest regions,
which enables accurate prediction of the class of each pixel in the original image. On
the other hand, the introduction of different dilation rates of convolution in the Pyramid
Feature Extraction module can capture multi-receptive-field contextual information, which
can restore the information of the original image to the maximum extent, which makes
PFE-UNet well able to handle segmentation problems in complex scenes such as small
forest areas, blurred forest edges, and shadow-obscured areas. Therefore, the PFE-UNet
network can precisely locate the forest area and accurately delineate the forest information.

Table 3. The evaluation results of different deep learning models on the DeepGlobe dataset.

Models F1 Precision Recall Accuracy

UNet 0.8769 0.8971 0.8823 0.8875
DA-Net 0.9023 0.9035 0.8973 0.9082
DFA-Net 0.9004 0.9103 0.9186 0.9156

PFE-UNet (Ours) 0.9328 0.9418 0.9386 0.9423

Figure 9 shows the loss and segmentation accuracy of four deep learning models on
the DataGlobe dataset. The loss result in Figure 9a shows that PFE-UNet can rapidly be
converged and stabilized around 0.103. The loss trends of UNet, DA-Net, and DFA-Net
are consistent and not much different. However, the network converges slowly and does
not adapt well to the dataset. Figure 9b presents iterations with a different accuracy of
each network. The results demonstrate that the accuracy of the PFE-UNet model is up to
94.23%, while the accuracy of the UNet, DA-Net, and DFA-Net models is 88.75%, 90.82%,
and 91.56%, respectively, and the segmentation accuracy does not achieve the expected
standard. In contrast, the PFE-UNet model outperforms other deep learning models,
showing relatively significant robustness in handling complex segmentation problems
such as small forest areas, discontinuous forest areas, and blurred forest boundaries.
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5.2. Ablation Study
5.2.1. Reorder the Convolutional Layers or Not

In the DSC Unit, we factorize a 3 × 3 depthwise convolution layer to a 3 × 1 depth
convolution and a 1 × 3 depthwise convolution. Figure 10a shows the DSC Unit before
reordering and Figure 10b shows the DSC Unit after reordering. We change the order of the
convolutional layers to a 3 × 1 depthwise convolution layer, a 1 × 1 convolution layer, a
1 × 3 depthwise convolution layer, and a 1 × 1 convolution layer. Each convolutional layer
is followed by a DropBlock, a layer of batch normalization (BN), and a ReLU activation unit.
Adjusting the order of the convolutional layers enhances the flow of information through
the convolutional layers, applying a single filter to an input channel, convolving point by
point, and finally combining the output results. If no reordering of the DSC Unit is done,
the semantic information can only flow from one channel to another between the 1 × 3
depthwise convolutional layer and the 3 × 1 depthwise convolutional layer, destroying the
principle of information flow. After reordering the DSC Units, a 1 × 1 convolutional layer
is inserted between each 3 × 1 convolution and 1 × 3 convolution to facilitate combining
information from all output channels of the depthwise convolutional layers. Reordering of
the convolutional layers improves the performance of the network.
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5.2.2. Different Components Combinations

To investigate the effect of different modules on model performance, a comparison of
different module combinations was conducted. From Table 4, it can be concluded that the
PFE-UNet model (containing Pyramid Feature Extraction (PFE), spatial attention (SA), and
channel-wise attention (CA)) achieves the best performance, which demonstrates that all
components are necessary for the PFE-UNet to obtain the best segmentation results. The
network with a DSC Unit replacing the standard convolutional blocks is adopted as our
basic model (backbone) with an ACC of 0.8932. First, ACC is enhanced by adding PFE to
the basic model. Furthermore, the added SA yields an increase of 4.43% in the ACC relative
to the backbone. On this basis, after adding CA, ACC increased by 5.49% over the basic
model, and the best results were obtained, which proves the effectiveness of multi-scale
pyramid feature fusion.

Table 4. Ablation study using different component combinations. Backbone means using the DSC
Unit to replace the network of standard convolutional blocks, PFE means using Pyramid Feature
Extraction after backbone, SA means using spatial attention after PFE, and CA means using channel-
wise attention after SA.

Backbone PFE SA CA ACC
√

0.8932√ √
0.9156√ √ √
0.9328√ √ √ √
0.9423

5.3. Training Time and Prediction Time

As is shown by the operation times of the five deep learning models in Table 5, the
UNet model obtained better results. DFA-Net performed in 3756.23 s, which is 271 s faster
than DA-Net, while the PFE-UNet model proposed in this paper performed in 3667.15 s.
However, due to the attention mechanism, it can be seen that the training times of DA-Net,
Attention UNet [35], and PFE-UNet are all longer than that of UNet. Furthermore, the
prediction times for single images show no significant differences between each model,
whereas the PFE-UNet model has a slightly shorter prediction time than most models,
performing for 1.58 s.

Table 5. Training time and prediction time of various segmentation models.

Method Training Time (s) Prediction Time (s)

UNet 3390.82 1.49
Attention UNet 3931.44 1.62

DA-Net 4027.65 2.01
DFA-Net 3756.23 1.76

PFE-UNet (Ours) 3667.15 1.58

6. Conclusions

In this paper, a novel end-to-end image segmentation network—Pyramid Feature
Extraction-UNet (PFE-UNet)—is proposed. Pyramid Feature Extraction, spatial attention,
channel-wise attention, and depthwise separable convolution are added to the traditional
UNet. Among them, the SA module can adaptively extract forest features and simultane-
ously suppress irrelevant areas, so that the network can aggregate low-level features of
the forest regions. The PFE module is considered to be applied in the transition layer of
the network, which contains multi-scale atrous convolution. The CA module is used to
pay attention to the high-level features of the network so that the higher-level features are
perceived complementarily with the lower-level features. To improve the network train-
ing speed and reduce the computational cost, the standard convolution block is replaced
by a novel DSC Unit, integrating depthwise separable convolution, DropBlock, BN, and
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ReLU. Furthermore, the flexibility and robustness of our proposed network are verified
on the DeepGlobe dataset. The introduction of the attention mechanism, Pyramid Feature
Extraction, and depthwise separable convolution leads to significant advantages of the
PFE-UNet model in dealing with small forest areas, discontinuous forest areas, and fuzzy
forest boundaries. The experimental results show that the accuracy of the PFE-UNet net-
work is as high as 94.23%, which is higher than the accuracy of other image segmentation
networks. Therefore, the PFE-UNet model proposed in this paper can precisely locate
forest information and accurately segment the forest area, which has potential application
value in forest image segmentation.
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