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Abstract: Afforestation is an effective solution for restoring forest ecosystems and mitigating climate
change in the tropics. In this study, we analyzed the soil respiration (Rs) at four afforested sites with
different tree species exposed to a monsoon climate with frequent typhoon occurrences in southern
Taiwan. The aim of this study is to examine (1) the distinct seasonal variation that strongly affects
the Rs among four tree species at afforested sites, (2) the patterns of Rs that differ among the four
species at the afforested sites, and (3) the influence of typhoons on forest structure and consequently
the degree of Rs. The annual mean Rs among the four tree species at the afforested sites in the
pretyphoon disturbance year was approximately 7.65 t C ha−1, with the post-typhoon year having
an annual mean Rs of approximately 9.13 t C ha−1. Our results clearly show Rs variations in the
four tree species at the young afforested sites under the influence of typhoon disturbances. The
high seasonal variations in Rs were controlled by soil temperature and soil moisture. The different
tree species also led to variations in litterfall production and consequently influenced Rs variation.
Forest structures, such as aboveground biomass and consequently the degree of Rs, were disturbed
by severe typhoon impacts in 2016, resulting in high aboveground biomass with tree height losses
and litterfall accumulation. Furthermore, Rs increased immediately after litterfall input to the soil,
and the addition effect of litter and the soil C release occurred throughout the year after typhoon
disturbances. Our results contribute to understanding impact of typhoon disturbances on the degree
of Rs at tropical afforested sites.

Keywords: afforestation; Asian monsoon; litterfall; soil respiration; temperature sensitivity; typhoon
disturbance

1. Introduction

Forest ecosystems serve as carbon sinks for the atmosphere and impact the global
carbon cycle [1]. Deforestation is the second largest anthropogenic source of carbon in
the world [2]. Deforestation generally leads to continuous carbon losses and is a driver
affecting global climate change. In contrast, alleviating forest degradation and increas-
ing afforestation are some of the main keys to mitigating carbon emissions and climate
change. Afforestation has been demonstrated to be an effective solution for restoring
forest ecosystems, reducing carbon emissions, and limiting climate change [3,4], especially
in tropical regions, where climate conditions are suitable for carbon sequestration and
plant growth [3,5,6]. The area of afforestation globally has increased at an annual rate of
approximately 4.4 million ha, and 46% of the total afforested area in the world occurs in
Asia [7,8]. However, the afforestation growth process is controlled by climate status, and
climate change may cause a decrease in the carbon uptake rate and an increase in soil CO2
emissions, especially in the Asian monsoon region.

Autotropic respiration and heterotrophic respiration contribute to soil respiration (Rs),
and in terrestrial ecosystems Rs reaches 66–100 Pg C y−1 [9–11] and is one of the largest
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carbon flux components. Of the total ecosystem respiration in forests, 60–90% is Rs [12].
It is well-documented that soil temperature and soil moisture are the dominant factors
controlling Rs and thus are well-modeled by empirical functions [13–19]. Vegetation in
a forest also controls Rs through its effect on litter quality and quantity, root exudates
and biomass, the microbial community, and surface soil temperature [20–24]. Changing
tree species composition during afforestation processes may also affect the microbial
community and thus affect the decomposition of litter and soil organic matter and soil
CO2 production [21,25,26]. The role that changing tree species composition plays in soil
CO2 emissions is unclear, especially in terms of afforestation in the Asian monsoon region.
A number of recent studies reported that several key factors influence CO2 release via
changes in Rs after afforestation [16,27]. Therefore, the study of influence magnitudes of
afforestation on Rs should receive more attention in the Asian monsoon region.

Extreme climate events (such as typhoons, tropical cyclones, or hurricanes) are major
terrestrial disturbances globally and are known to affect forest structure, dynamics and
function [28–30]. Extreme climate events such as typhoons alter the patterns of seasonal
precipitation, especially in monsoon regions [31], but the scientific understanding of the
impact of typhoons on the carbon cycle is still obscure [32]. Typhoons often lead to a large
quantity of deposits of green and immature leaves [33,34], and in comparison to natural
forests, afforested areas can be more vulnerable to typhoon disturbances [35]. Climate
change intensifies typhoon damage to afforested areas and thereby affects Rs. It is necessary
to be able to forecast Rs and its relationship with climate change. However, using the
increase in the intensity and/or frequency of extreme climate events based on climate
change to estimate and predict the soil CO2 emissions from afforested areas is difficult.
Therefore, long-term Rs monitoring is necessary to clarify how the tree species affect
variation of Rs at afforested sites. In this study, we examined patterns of Rs variation for four
tree species at young afforested sites on a tropical deciduous plantation in southern Taiwan.
Taiwan is hit by typhoons at a rate of approximately three per year, and these typhoons
also bring high rainfall amounts [36]. Soil moisture is high during the typhoon season,
especially in forest ecosystems that receive high amounts of rainfall. Performing field
studies in young, tropical afforested areas is challenging because of typhoon disturbances
and high amounts of rainfall, which makes quantifying the values of Rs difficult. We tested
the following three alternate hypotheses: (1) distinct seasonal variation strongly affects
Rs among the four tree species at the afforested sites, (2) patterns of Rs differ among the
four tree species at the afforested sites, and (3) typhoons influence forest structure and
consequently Rs amounts. The results have important management implications regarding
forest carbon budgets for not only the sites in this study but also for young afforested areas
in the Asian monsoon region.

2. Materials and Methods
2.1. Site Description

The research site is a tropical deciduous plantation in southern Taiwan (22◦31′ N,
120◦36′ E, 71 m above sea level). The study area used to be sugar cane farms in the early
1900s [37] and was cultivated until the 2000s. The sugar cane farms were abandoned
(approximately 291 ha) and afforested from 2002–2005 to reduce the net emissions of
greenhouse gases such as CO2 into the atmosphere. Fourteen tree species (Cinnamomum
osmophloeum Kanehira, Terminalia catappa Linn., Pongamia pinnata (L.) Pierre, Fraxinus for-
mosana Hayata, Pterocarpus indicus Willd., Cassia fistula Linn., Melia azedarach Linn., Bischofia
javanica Blume., Swietenia macrophylla King, Sapindus mukorossi Gaertner, Liquidambar for-
mosana Hance, Zelkova serrata Thunb., Cinnamomum camphora (L.) presl, and Calophyllum
inophyllum L.) were planted in a mixed manner in the study area [38], and the initial planted
tree density was 1500 trees per ha. To assess CO2 sequestration of the afforested plantation,
eddy covariance measurements were set up in the center of the study area within a subarea
of 100 ha [39]. Mahogany (Swietenia macrophylla King), Indian almond (Terminalia catappa
Linn.), rose wood (Pterocarpus indicus Willd.), and China berry (Melia azedarach Linn.) were
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selected as forest types for this study. The study plots were located 0.5–0.75 km apart, and
all plot sizes were 6.25 ha. In each plot, four circular subplots (radius 7.2 m) with four repli-
cates were spaced 36.6 m apart in a triangular arrangement, with one subplot in the center.
The study area has a Southeast Asian monsoon climate with on average three typhoon
disturbances per year [36]. Taiwan experienced two typhoons in 2015 (Typhoon Soudelor
in July, and Typhoon Dujuan in September) and two in 2017 (Typhoon Nesat in Julu, and
Typhoon Haitang), but these typhoons were far away our study area. However, there were
3 typhoons that passed close to the study area in 2016 (Typhoon Megi in March, typhoon
Nepartak in April, and typhoon Meranti in July), but only the strongest typhoon, Meranti,
directly hit forests in 2016. Therefore, to distinguish the impact of typhoon disturbance, we
defined the strongest typhoon disturbance in 2016 as typhoon disturbance year, 2015 as
pre-typhoon disturbance year and 2017 as post-typhoon disturbance year.

Daily air temperature exhibited a typical seasonal pattern with a range of 14.4–30.4 ◦C
and peaks in July (Figure 1a). In general, high-intensity rainfall events generally occurred
from April to September and were equal to 90% of the annual rainfall (Figure 1b). The
mean annual rainfall was 2833 mm and showed high seasonal variation from 2015 to 2017,
with the highest amount of 4927 mm in 2016, which increased 73.9% compared to the mean
rainfall in 2015–2017 (Figure 1b). The highest annual rainfall in 2016 was due to Typhoon
Nepartak (category 3) in July and Typhoon Meranti (category 5) in September passing
through southern Taiwan. Specifically, compared to other years, in 2015 a lower rainfall
amount occurred in the growing season (January to May). The soil in the study site is
classified as hyperthermic Udorthent and is over 60% gravel due to the alluvial effect. The
soil pH is 5.5 with low base cations. The soil texture is loam with 50% sand, 31% silt and
19% clay. The topography of the study site is relatively homogeneous, with an average
slope above 5◦.
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Figure 1. The mean (a) daily air temperature, soil moisture, rainfall and (b) monthly rainfall from 2015 to 2017.

2.2. Plot Inventory

Tree biometrics were measured from 2015 to 2017. Tree diameters at breast height
(DBHs) of 1 cm and larger were measured with diameter tape, and tree height (TH) was
measured with a laser hypsometer (Haglof Vertex III, Långsele, Sweden). The measure-
ments of DBH and TH were obtained in late December each year. Litterfall was collected
and measured each month from 2015 to 2017 using the litterfall trap method. Litterfall
traps (1 m × 1 m) were placed 1 m above the ground in the center of each circular subplot,
collected monthly, and then weighed after being oven-dried at 70 ◦C for 72 h.

2.3. Soil Respiration Measurement

Before the Rs measurement, a soil collar (PVC, 10 cm inside diameter, 9 cm in height)
was set in the center of each subplot and inserted 6 cm into the soil with 3 cm left above the
soil surface in late 2014. All living plants in the collars were carefully trimmed regularly
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from the soil surface to exclude aboveground plant respiration. From 2015–2017, each plot’s
Rs was measured once per month on clear days between 8:00 and 16:00 with an LI-8100 (LI-
COR Inc., Lincoln, NE, USA) equipped with a 10 cm survey chamber. Each measurement
took 150 s, and the linear increase in the CO2 concentration in the chamber was used to
estimate Rs. Each Rs was measured in triplicate to minimize the variation. The mean Rs
for each plot was calculated from the four subplots. The soil temperature at a depth of
5 cm was measured adjacent to each collar using a copper thermocouple penetration probe
(LI6000-09 TC, LI-COR Inc., Lincoln, NE, USA) connected to the LI-8100. A volumetric
soil moisture sensor (Decagon EC-5, METER Group, Inc., WA, USA) at a depth of 10 cm
adjacent to each collar was connected to the LI-8100 to measure soil moisture.

2.4. Data Analysis

Each set of monthly measurements was averaged over the four subplots, and nonlinear
regression analyses were performed to investigate the relationship between Rs and abiotic,
biotic, and stand structural factors.

The relationship between Rs and soil temperature was calculated as follows:

Rs =
VP
RST

δC
δt

, (1)

where Rs is the soil respiration (µmol m−2 s−1); V is the chamber volume (m3); P is the
atmospheric pressure (Pa); R is the ideal gas constant (8.314 Pa m3 K−1 mol−1); S is the
soil surface area in the chamber (m2); T is the air temperature in the chamber (K); and
δC/δt is the slope of the CO2 ratio (µmol mol−1 s−1). The chamber volume and soil surface
area were 854.2 cm3 and 83.7 cm2, respectively. For the analysis of the influence of the soil
temperature on Rs, the equation was transformed as follows [40]:

Rs = a× e(b×Tsoil), (2)

where Tsoil is the soil temperature at a depth of 5 cm, a is Rs at 0 ◦C, and b is the temperature
constant and is used to calculate the temperature sensitivity index.

The increase in Rs with a 10 ◦C increase in soil temperature was used to describe the
temperature sensitivity of Rs as follows:

Q10 = e(10×b), (3)

where b is the temperature constant from Equation (2).

2.5. Statistical Analysis

The one-way analysis of variance (ANOVA) was performed on the data, and the signif-
icant differences between the treatment means were calculated by Tukey’s multiple range
test with p < 0.05 probability levels and were compared by descriptive statistics (±SD).

All statistical analyses were performed using SigmaPlot 14.0 software (Systat Software
Inc., San Jose, CA, USA).

3. Results
3.1. Change in the Inventory of the Four Tree Species before and after Typhoon Disturbances

Interannual variations in tree height, DBH, aboveground biomass, and litterfall from
2015 to 2017 for different tree species are shown in Figure 2. The tree height of mahogany
was significantly higher than all other tree species only in 2015 (p < 0.05, Figure 2a), while
China berry tree heights were significantly lower than the other study species across
all the years. The DBH values of China berry were lower than all other species for all
study years but the difference was only significant in 2015 (p < 0.05, Figure 2b). The
estimated aboveground biomass of mahogany showed the significantly lowest value in
2016 than in other years (Figure 2c). Compared with estimated aboveground biomass of
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four tree species, China berry had the significantly lowest values among the years. The
annual litterfall of all tree species was also significantly higher in 2016 than in 2015 and
2017 (Figure 2d). In contrast, the annual litterfall of mahogany and Indian almond was
significantly higher than that of rose wood and China berry within the same years.
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Figure 2. Interannual variations in (a) tree height, (b) DBH, (c) aboveground biomass, and (d) annual
litterfall from 2015 to 2017 for different tree species: mahogany (Swietenia macrophylla King, red bar),
Indian almond (Terminalia catappa Linn., green bar), rose wood (Pterocarpus indicus Willd., yellow bar),
and China berry (Melia azedarach Linn., blue bar). Different capital letters indicate differences among
years for the same species at p < 0.05. Different lowercase letters indicate differences among species
within the same years at p < 0.05. Error bars indicate standard deviations (n = 4).

3.2. Change in Soil Respiration, Soil Temperature and Volumetric Soil Moisture before and after
Typhoon Disturbances

Generally, Rs showed seasonal patterns among the four tree species, and the maximum
and minimum Rs occurred in August and January, respectively. (Figure 3). The annual
mean Rs of mahogany and Indian almond in 2015 was significantly lower than that in
2016 and 2017 (p < 0.05, Table 1). However, the annual mean Rs of rose wood and China
berry did not show differences among the years. Compared with four tree species, the
annual mean Rs of mahogany and China Berry had the significantly highest and lowest
values among the years, respectively. Furthermore, the annual mean Rs among the four
tree species at the afforested sites in the pretyphoon disturbance year was approximately
7.65 t C ha−1, with the post-typhoon year having an annual mean Rs of approximately
9.13 t C ha−1.
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Figure 3. Monthly variations in soil respiration (µmol m−2 s−1), soil temperature (◦C) and soil
moisture from 2015 to 2017 for the different tree species: (a) mahogany, (b) Indian almond, (c) rose
wood, and (d) China berry. The black, red, and blue solid circles represent the soil respiration, soil
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Table 1. Interannual variations in Rs from 2015 to 2017 for the different tree species: mahogany, Indian almond, rose
wood, and China berry. Different capital letters indicate differences among years for the same species at p < 0.05. Different
lowercase letters indicate differences among species within the same years at p < 0.05. Values indicate means ± standard
deviations (n = 4).

Year Annual Mean Soil Temperature
(◦C)

Annual Mean Volumetric Soil
Moisture

(%)

Annual Mean Soil Respiration
(tC ha−1)

2015 2016 2017 2015 2016 2017 2015 2016 2017

Mahogany 24.5 ± 2.8
Aa

24.2 ± 3.3
Aa

25.7 ± 3.5
Aa

22.5 ± 2.3
Ba

24.9 ± 2.8
Aa

22.5 ± 2.2
Ba

9.1 ± 0.6
Aa

11.3 ± 1.2
Ba

11.7 ± 0.6
Ba

Indian
almond

24.8 ± 3.5
Aa

24.1 ± 3.9
Aa

24.4 ± 3.5
Aa

23.3 ± 2.4
Ba

25.2 ± 2.6
Aa

22.6 ± 2.4
Ba

8.1 ± 0.5
Aab

9.9 ± 0.7
Ba

10.1 ± 0.4
Bab

Rose
wood

24.5 ± 3.8
Aa

23.3 ± 4.0
Aa

24.7 ± 3.6
Aa

22.0 ± 2.1
Ba

24.1 ± 1.8
Aa

22.7 ± 2.1
Ba

7.5 ± 0.5
Ab

8.4 ± 0.7
Aab

8.5 ± 0.4
Ab

China
berry

24.7 ± 3.4
Aa

23.5 ± 3.8
Aa

24.4 ± 3.7
Aa

21.7 ± 2.1
Ba

24.6 ± 2.7
Aa

21.4 ± 1.7
Ba

5.9 ± 0.4
Ac

6.3 ± 0.5
Ab

6.2 ± 0.3
Ac
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Monthly soil temperature at 5 cm depths also exhibited a typical seasonal pattern
with a range of 16.5–31.7 ◦C and peaks in July for the four tree species (Figure 3). The
lowest soil temperature among the four tree species occurred in January 2016. The annual
mean soil temperature did not show differences among tree species and years (Table 1).
Monthly volumetric soil moisture at 10 cm depth varied between 18.1 and 31.5%, with
peaks generally occurring on months with large rainfall amounts. The volumetric soil
moisture gradually decreased from 28.5–21% because of a lack of rainfall from October to
March. The annual mean volumetric soil moisture in 2016 was significantly higher than
that in 2015 and 2017 (p < 0.05, Table 1).

The average relative ratio of the annual means of the environmental factors in 2016–2017
to that in the pretyphoon disturbance year for the four tree species is shown in Table 2.
The annual mean soil temperature (MAT) significantly decreased by 1.6–5.2% (−0.39 to
−1.28 ◦C) among the four tree species in 2016 compared to that in the pretyphoon dis-
turbance years, but the MAT significantly increased by 4.7% in the post-typhoon year
(2017; +1.16 ◦C, Table 2). At the same time, the annual mean volumetric soil moisture
(MSM) significantly increased by 9–13% (2.19–2.95%) in 2016 compared to that in the prety-
phoon disturbance years, but the MSM did not significantly change in the post-typhoon
disturbance year. Finally, the annual mean Rs in both 2016 and 2017 significantly in-
creased by 5.1–31% (0.41–2.53 t C ha−1) compared to that in the pretyphoon disturbance
years (Table 2).

Table 2. Average relative ratio of the annual means of the environmental factors in 2016–2017 to that in the pretyphoon
disturbance years for the four tree species: mahogany, Indian almond, rose wood, and China berry. The averages of the
factors in the post-typhoon disturbance year (2017) were also compared with those of the pretyphoon disturbance year
(2015). Values indicate means ± standard deviations (n = 4).

Year Annual Mean Soil Temperature
(◦C)

Annual Mean Volumetric Soil
Moisture

(%)

Annual Mean Soil Respiration
(t C ha−1)

2016 2017 2016 2017 2016 2017

Mahogany 0.984 ± 0.061 1.047 ± 0.041 *** 1.112 ± 0.103 ** 1.003 ± 0.032 1.242 ± 0.405 * 1.310 ± 0.192 ***
Indian

almond 0.967 ± 0.047 * 0.984 ± 0.032 1.131 ± 0.085 *** 1.011 ± 0.047 1.231 ± 0.241 ** 1.272 ± 0.096 ***

Rose
wood 0.948 ± 0.048 ** 1.007 ± 0.048 1.098 ± 0.058 *** 1.035 ± 0.044 * 1.107 ± 0.232 1.152 ± 0.178 **

China
berry 0.948 ± 0.047 *** 0.985 ± 0.040 1.132 ± 0.06 *** 0.985 ± 0.053 1.051 ± 0.127 1.066 ± 0.104 *

*, **, and *** represent significant differences of the indicated factors compared with the pretyphoon disturbances years at p< 0.05, p < 0.01,
and p < 0.001, respectively.

3.3. Variation in Rs with Soil Temperature, Temperature Sensitivity and Soil Moisture

Rs exhibited a significant exponential relationship with soil temperature at the 5 cm
depth for the four tree species between 2015 and 2017 (p < 0.001, Figure 4). The coefficient
of determination (R2) of Rs among the four tree species between 2015 and 2017 varied from
0.40 to 0.97 (Figure 4). The mean annual Q10 value ranged from 1.79 to 2.34, 1.57 to 2.61,
and 1.49 to 1.68 between 2015 and 2017 for mahogany, Indian almond, rose wood, and
China berry, respectively (Table 3). Specifically, all of the annual Q10 values in 2017 were
significantly lower than those in 2015 and 2016 (p < 0.05). Significant relationships between
Rs and volumetric soil moisture were observed over the 3 years (p < 0.05, Figure 5). The
coefficient of determination of Rs between 2015 and 2017 varied from 0.31 to 0.95 (Figure 5).
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Figure 4. Relationships between monthly mean soil respiration (Rs, µmol CO2 m−2 s−1) and soil temperature at a 5 cm
depth (◦C) for studied tree species in (a) 2015 (b) 2016, and (c) 2017. Asterisks indicate a significance: * p < 0.05, *** p < 0.001.
Values are presented as the mean ± standard errors, n = 4.

Table 3. The Q10 values (n = 4) as a function of soil temperature (◦C) at 5 cm depth from 2015 to 2017.
Different capital letters indicate differences among years for the same species at p < 0.05. Different
lowercase letters indicate differences among species within the same years at p < 0.05.

Species Q10 Value

2015 2016 2017

Mahongany 2.34 Aa 2.61 Aa 1.68 Ba
Indian almond 1.70 Ab 1.65 ABb 1.49 Bb

Rose wood 1.82 Ab 1.57 Bb 1.52 Bb
China berry 1.79 ABb 1.88 Ab 1.65 Bac
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Figure 5. Relationships between monthly mean soil respiration (Rs, µmol CO2 m−2 s−1) and volumetric soil moisture at
a 10 cm depth (%) for studied tree species in (a) 2015, (b) 2016, and (c) 2017. Asterisks indicate a significance: * p < 0.05,
** p ≤ 0.01, *** p < 0.001. Values are presented as the mean ± standard errors, n = 4.
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3.4. Relationships between the Annual Litterfall and Annual Rs

Significant relationships between the annual litterfall and annual Rs were observed for
the four tree species from 2015 to 2017 (R2 = 0.65, p = 0.001, Figure 6). On the other hand, the
annual Rs for mahogany in 2017 was outside the 95% prediction interval and was higher
than the values estimated from the annual litterfall–annual Rs relationship (Figure 6).
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Figure 6. Relationships between annual litterfall and annual soil respiration. Dashed curves represent
a significant relationship between annual litterfall and annual Rs, including all measurement data
from 2015 to 2017. Pairs of gray curves show the 95% prediction intervals based on regression
analysis. Values are presented as the mean ± standard errors, n = 4.

4. Discussion
4.1. Typhoon Disturbance Impact on the Aboveground Biomass and Litterfall

Typhoons often cause the quantity of litterfall to increase [28]. In this study, the
Typhoon Meranti (category 5) disturbance resulted in decreases of tree height and above-
ground biomass, and increases of annual litterfall (Figure 2a,c,d). The vulnerability of
taller trees to being blown over has resulted in short-stature forests after typhoon distur-
bances [28,41]. After a typhoon disturbance, taller trees such as mahogany subsequently
recover growth (Figure 2c). Moreover, forests frequently disturbed by typhoons use de-
foliation mechanisms to reduce tree removal. Defoliation is the most common and most
important effect of typhoons on biogeochemical processes and is well-demonstrated in
many studies [28,34,41]. Taller trees such as mahogany are blown over and have increased
litterfall, likely from defoliation mechanisms. Shorter trees such as China berry are resistant
to typhoon disturbances, likely initiating defoliation mechanisms to reduce the impact of
tree-removing disturbances, such as uprooting and bole snapping. The research results did
not show significant differences in tree height, aboveground biomass or annual litterfall
from the pre- to post-typhoon disturbances (p > 0.05 Figure 2a–d).
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4.2. Impact of Typhoon Disturbances on the Soil Temperature, Soil Moisture and Rs Response of the
Four Tree Species at the Afforested Sites

We compared the response of Rs to 3 years of pre- and post-typhoon disturbances
at afforested sites with four tree species. All afforested sites showed a similar seasonal
pattern of Rs, with high rates during the growing season (rainy season) from April to
October and the lowest rates during the dry season (November–March) (Figure 3). Soil
temperature and soil moisture are the main drivers of Rs on a global scale [42,43], and
the pattern we observed across all tree species reflects differences among the typhoon
disturbance years (Figure 3). The annual Rs values in the pretyphoon disturbance years in
this study ranged from 5.9 to 9.1 t C ha irrespective of the tree species, which is similar to
reported values for other tropical forests [18,19,44,45]. The study results also demonstrated
that soil temperature was correlated to Rs for the four tree species in the afforested areas
(Figure 4), which is similar to the results for other tropical forests [35,46–51]. However,
although the temperature sensitivities of the Rs values (Q10) for the four tree species at
the afforested sites were similar to those in other tropical forests [45,52,53], it must be
noted that the Q10 values were significantly lower in the post-typhoon year than in the
pretyphoon year (p < 0.05, Table 3). This result suggested that the forest was disturbed
by typhoons and that changes in forest structure, such as bole snapping and uprooting,
resulted in soil temperature and moisture increases in the post-typhoon year (Table 2).
Typhoon disturbances significantly increased MATs by 1.16 ◦C (4.7%) for mahogany at the
afforested sites in 2017 compared to the pretyphoon disturbance years, possibly due to
the light environment being enhanced after the typhoon disturbances (p < 0.001, Figure 4,
Tables 1 and 2). Some studies also reported similar results: typhoons caused defoliation
and an enhanced light environment [28] or a lack of vegetation recovery [54], consequently
increasing soil temperature variation. Decreasing tree height with increasing temperature
was also found in monsoon Asian forests after typhoon disturbances [55], therefore leading
to an increase in annual Rs.

In contrast, the volumetric soil moisture for all tree species was significantly higher in
the typhoon disturbance year than in the pretyphoon disturbance years because typhoons
contributed high rainfall (p < 0.01, Figure 5 and Table 2). The annual Rs increased with
increasing volumetric soil moisture, suggesting that the general Rs declined in the dry
season [56]. On the other hand, pulse increases in Rs and volumetric soil moisture after
rainfall events were demonstrated [15,17,24] due to the high sand contents and soil pore
capacity at this study site. Nevertheless, Rs values in the typhoon disturbance years were
less related to volumetric soil moisture than in the pre- and post-typhoon disturbance years
(Figure 5), and Rs showed the highest value in the typhoon disturbance month (Figure 3).
This result was most likely because microbes and roots of soil are more sensitive to rapid
changes in volumetric soil moisture conditions under a constant soil temperature [47].

4.3. Response of Aboveground Biomass Increment, Litterfall and Rs to Typhoon Disturbances

Despite the fact that the seasonal pattern in Rs was strongly collated to soil tempera-
ture and soil moisture in this study, Rs also quickly responded to changes in aboveground
biomass, and greater litterfall occurred in typhoon disturbance years than in pretyphoon
disturbance years, as the canopy recovered from defoliation. In the typhoon disturbance
years, the aboveground biomass and litterfall over the whole plantation decreased by
approximately 20% and increased by 60% compared to those in the pretyphoon distur-
bance years at this study site, respectively [39], resulting in an increase in Rs (Figure 6).
Litter represents a major carbon flux from vegetation to soil [56], is the substrate of soil
microbial metabolic activity and is an important factor regulating Rs [34]. Furthermore,
the differences in quantities and qualities of litter derived from different tree species led to
Rs variations [25,26,34], as observed in some studies that compared different vegetation
types [20,21,23,34,56]. Moreover, forests were disturbed by typhoons and produced fresh
litterfall, Rs increased immediately after litterfall input in soil, and the addition effect of
litter and the soil C release occurred throughout the post-typhoon disturbance year. The
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links between typhoon disturbances and litterfall addition suggest that the more frequent
extreme events expected under climate change will have the potential to significantly
alter Rs.

5. Conclusions

Our results clearly show soil respiration variations among the four tree species in
the young afforested areas under the influence of typhoon disturbances. In accordance
with our first hypothesis, there were high seasonal differences in Rs, soil temperature
and volumetric soil moisture, which showed higher values during the summer season
than during the winter season. Different tree species also led to litterfall production
and consequently controlled Rs variation. In accordance with the last hypothesis, forest
structure and consequently Rs magnitude were influenced by typhoon disturbances.

The aboveground biomass was strongly impacted by severe typhoons in 2016, re-
sulting in high aboveground biomass with tree height losses and litterfall accumulation.
Furthermore, Rs increased immediately after litterfall input to the soil, and the addition
effect of litter and the soil C release occurred throughout the years of post-typhoon distur-
bances. Our results contribute to the understanding of the degree to which Rs is impacted
by typhoon disturbances in tropical afforested areas.
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