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Abstract: The reforestation and stable ecological restoration of tailings dumps resulting from surface
mining activities in the Călimani Mountains represent an ongoing environmental challenge. To assess
the suitability of different tree species for restoration efforts, photosynthetic traits were monitored in
four broadleaf pioneer species—green alder (Alnus alnobetula (Ehrh.) K. Koch), aspen (Populus tremula
L.), silver birch (Betula pendula Roth.), and goat willow (Salix caprea L.)—that naturally colonized the
tailings dumps. Green alder and birch had the highest photosynthetic rate, followed by aspen and
goat willow. Water use efficiency parameters (WUE and iWUE) were the highest for green alder
and the lowest for birch, with intermediary values for aspen and goat willow. Green alder also
exhibited the highest carboxylation efficiency, followed by birch. During the growing season, net
assimilation and carboxylation efficiency exhibited a maximum in late July and a minimum in late
June. The key limitation parameters of the photosynthetic process derived from the FvCB model
(Vcmax and Jmax) were the highest for green alder and exhibited a maximum in late July, regardless of
the species. Based on photosynthetic traits, the green alder—a woody N2-fixing shrub—is the most
well-adapted and photosynthetically efficient species that naturally colonized the tailings dumps in
the Călimani Mountains.
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1. Introduction

Climate change and anthropic activities have given rise to the most serious environ-
mental problems of the 21st century [1]. Today, in an increasing number of ecosystems,
anthropic influences are harming biodiversity and ecosystem functioning. Human activi-
ties change the condition of natural vegetation, leading to disturbances such as degradation
of vegetation, erosion of soil, decline in land productivity and even reduction of ecosystem
services [2].

A large proportion of the Earth’s geological resources (metals, minerals, fuel, etc.)
are underground; mining activities to access these resources damage the above-ground
landscape and have a significant impact on natural ecosystems such as forests, rivers
and lakes [3]. Even after the mining activity is complete (especially in the case of surface
mining), dump areas remain in the place of former natural ecosystems and have the
potential to cause serious environmental problems. Due to social and political pressure to
undertake more sustainable development, the restoration of mining areas has gradually
become an important phase of mining activities [4]. Multiple restoration solutions are
available; of these, soil amendment combined with phytoremediation (reforestation) is the
most environmentally friendly method [5].

Due to high soil degradation (lack of nutrients and organic matter, small edaphic
volume, high concentration of heavy metals), it is important to choose a mix of species that
are well-adapted to the local climate and the unique conditions of the mining habitat [6].
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Successful reforestation of these degraded landscapes depends on the adaptability of
tree species to degraded soil and the capacity of plant associations to contribute to the
restoration of soil proprieties and former environmental conditions [7].

The process of ecosystem reconstruction on degraded mining soils progresses gradu-
ally from dump consolidation and soil amendments to pioneering species installation and
finally climax tree species establishment [8]. In many cases, human interventions through
ecological reconstruction are informed by the natural colonization of pioneer species. The
optimal species composition for reforestation is chosen based on criteria such as adaptative
capacity (survival rate), growth and biomass production (photosynthesis), and the capacity
to cover the land through vegetative or generative regeneration [7].

In mountainous areas (e.g., the Carpathians), pioneer species colonize open soils
on degraded or abandoned lands as part of primary succession. These pioneer species
include green alder (Alnus alnobetula (Ehrh.) K. Koch = Alnus viridis (Chaix) DC), aspen
(Populus tremula L.), silver birch (Betula pendula Roth.), goat willow (Salix caprea L.) and
rowan (Sorbus aucuparia L.) [9]. Green alder, an N2-fixing shrub, plays an important role
in mountain ecosystems due to its capacity to stabilize slopes and prevent erosion [10,11].
On the other hand, silver birch is a fast-growing deciduous species that occurs naturally
throughout most of Europe and is frequently observed on degraded lands [12,13]. Aspen
and goat willow have high ecological amplitudes and are widely distributed throughout
the temperate and boreal areas of Europe and Asia [14,15].

Carbon assimilation, as an indicator of species’ adaptability to specific habitat condi-
tions, is related to biomass production, CO2 storage, competitiveness and survival capac-
ity [16]. Gas exchange measurements play a major role in understanding photosynthetic
processes [17,18]. The performance of forest species in terms of photosynthetic traits is eval-
uated through gas exchange, which is measured under controlled experimental conditions
or in situ conditions [19,20]. Particular growing conditions specific to mining-degraded
soils modify the normal assimilation process [21–23].

To the best of our knowledge, no previous studies have measured gas exchange to
analyse the photosynthetic traits of mountain pioneer species growing in former mining
areas. However, analyses of photosynthetic parameters under different growing conditions
(exposure to ozone, fertilization variants, enriched CO2, etc.) have been performed for
Populus spp. [24–26], Salix spp. [27–29], Betula spp. [30–32], and Alnus spp. [33–35].

Our work aimed to quantify the eco-physiological performance of four broadleaf
pioneer species that naturally colonized a mountain tailings dump area. The following
scientific questions were examined: (i) Which of these four pioneer species is best adapted
for use in reforestation processes from the point of view of photosynthetic traits? (ii) What
are the seasonal patterns of the photosynthetic traits?

2. Materials and Methods
2.1. Study Site

This study took place in the Călimani Mountains (Eastern Carpathians, Romania;
47◦7′24′ ′ N and 25◦13′48′ ′ E; 1500 m a.s.l.) on degraded tailings dumps resulting from
sulfur surface mining that occurred between 1969 and 1997. During this period, the former
natural forest ecosystem (a mixture of Norway spruce and Swiss stone pine) and organic
soil were destroyed, and dumps were formed by the successive storage of tailings. In 2007,
an ecological reconstruction effort began with the stabilization of the slopes with high
slants, alkaline amendment of the soil (debris from former buildings) and afforestation of
some areas with Norway spruce (Picea abies L., H. Karst.) and green alder. Currently, the
upper part of the mining dump is colonized by pioneer forest species (green alder, aspen,
goat willow, birch) in combination with herbaceous species, and the area is characterized
by a primary succession of vegetation [9,36].

The woody species present on the site comprise species specific to the upper moun-
tain area: green alder, Norway spruce, dwarf mountain pine (Pinus mugo Turra), aspen,
goat willow and birch. Shrubby vegetation is represented by blueberry (Vaccinium myr-
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tillus L.), cranberry (Vaccinium vitis-idaea L.), bog blueberry (Vaccinium uliginosum L.) and
rhododendron (Rhododendron myrtifolium Schott & Kotschy).

Air temperature (2 m) and soil water content (10 cm depth) were measured using
dedicated sensors (HOBO U23-001, Onset Computer Corporation, Bourne, MA, USA and
CS650, Campbell Scientific, Logan, UT, USA). The average annual air temperature at the
site in 2019 was 4.3 ◦C and, in the vegetation season, it was 10.7 ◦C (Figure 1). The average
annual precipitation in the study area is 1000–1200 mm. The snow layer is present for an
average of 180–200 days each year, the first snowfall can occur in early October, and the
typical vegetation season starts in the second decade of May until middle October [37].

Forests 2021, 12, x FOR PEER REVIEW 3 of 14 
 

 

The woody species present on the site comprise species specific to the upper moun-

tain area: green alder, Norway spruce, dwarf mountain pine (Pinus mugo Turra), aspen, 

goat willow and birch. Shrubby vegetation is represented by blueberry (Vaccinium myrtil-

lus L.), cranberry (Vaccinium vitis-idaea L.), bog blueberry (Vaccinium uliginosum L.) and 

rhododendron (Rhododendron myrtifolium Schott & Kotschy). 

Air temperature (2 m) and soil water content (10 cm depth) were measured using 

dedicated sensors (HOBO U23-001, Onset Computer Corporation, Bourne, MA, USA and  

CS650, Campbell Scientific, Logan, UT, SUA). The average annual air temperature at the 

site in 2019 was 4.3 °C and, in the vegetation season, it was 10.7 °C (Figure 1). The average 

annual precipitation in the study area is 1000–1200 mm. The snow layer is present for an 

average of 180–200 days each year, the first snowfall can occur in early October, and the 

typical vegetation season starts in the second decade of May until middle October [37]. 

 

Figure 1. Air temperature (a) and soil water content (b) variation during the 2019 growing season 

(vertical lines represent measurements dates). 

The tailings dump soils are characterized by high acidity (pH 3.2) and missing or-

ganic components [9,36]. 

2.2. Gas Exchange Measurements 

Gas exchange during photosynthesis was measured using a portable photosynthesis 

system (LI-6800, LI-COR Inc., Lincoln, NE, USA) equipped with a standard infrared gas-

exchange analyser (IRGA) and a chamber for broadleaf species (area: 6 cm2). Instantane-

ous gas exchange was recorded at three time points in 2019 (29–30 June, 30–31 July and 

30–31 August) between 9 am and 3 pm. Measurements, at each time point during the sea-

son, were performed on one leaf from five different exemplars of each broadleaf species: 

green alder, birch, aspen and goat willow. Due to difficult site accessibility (high mountain 

and degraded land) and the long time required for measurement (multiple dead times for 

stabilization and between measurements), we extended the day measurement period by 

3 h, compared with the standard practice. We planned the experiment, in order to mini-

mize the influence of diurnal variability of photosynthesis, by measuring the first exem-

plar of each species, followed by the second exemplar of each species and so on. We took 

into consideration that increasing the number of measurement days (now limited to two 

Figure 1. Air temperature (a) and soil water content (b) variation during the 2019 growing season (vertical lines represent
measurements dates).

The tailings dump soils are characterized by high acidity (pH 3.2) and missing organic
components [9,36].

2.2. Gas Exchange Measurements

Gas exchange during photosynthesis was measured using a portable photosynthesis
system (LI-6800, LI-COR Inc., Lincoln, NE, USA) equipped with a standard infrared gas-
exchange analyser (IRGA) and a chamber for broadleaf species (area: 6 cm2). Instantaneous
gas exchange was recorded at three time points in 2019 (29–30 June, 30–31 July and 30–31
August) between 9 am and 3 pm. Measurements, at each time point during the season,
were performed on one leaf from five different exemplars of each broadleaf species: green
alder, birch, aspen and goat willow. Due to difficult site accessibility (high mountain and
degraded land) and the long time required for measurement (multiple dead times for
stabilization and between measurements), we extended the day measurement period by
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3 h, compared with the standard practice. We planned the experiment, in order to minimize
the influence of diurnal variability of photosynthesis, by measuring the first exemplar of
each species, followed by the second exemplar of each species and so on. We took into
consideration that increasing the number of measurement days (now limited to two days
for each time point during the season) could induce more variability because climatic
parameters can change significantly (e.g., precipitation or temperature).

All studied species have C3 photosynthetic pathways. The selected trees were saplings,
with a mean height of 1.5–2.0 m for silver birch, goat willow and aspen and 1.0 m for green
alder. Measurements were performed on different leaves from one time point to another,
but from the same exemplars. Selected leaves were completely developed, had no damage
and were located on the upper part of the crown, in full exposure to light.

Instrument calibration was performed at the start of each session following the
manufacturer’s recommendations [38]. To assure measurement accuracy, the gas anal-
yser was matched when the following conditions were met: elapsed time since the last
match >10 min, CO2 measured by the reference analyser have changed by 100 µmol·mol−1

since the last match, difference between CO2 reference and CO2 sample <10 µmol·mol−1,
and difference in H2O <1 mmol·mol−1. While collecting the measurements, the mean
temperature and relative humidity in the measurement chamber were 22.3 ± 1.8 ◦C and
60 ± 1.2%, respectively, the fan speed was 10,000 rpm and the flow rate was 500 µmol·s−1.
The irradiance photosynthetic photon flux density (PPFD) was set to 1000 µmol·m−2·s−1

and was kept constant for all measurements, with following light composition ratio of
0.9 red and 0.1 blue using the LI-COR 6800 light source.

To obtain response curves for net photosynthetic rate as a function of intercellular CO2
concentration, a chamber CO2 gradient consisting of 400, 200, 100, 50, 400, 600, 800, 1000,
and 1200 µmol·mol−1 was used. Response curve measurements were performed on one
leaf from five different exemplars for each species. Between each measurement time point
during the season, the exemplars were kept the same, but the leaves differ. Steady-state
values from each leaf at different CO2 concentrations were recorded after 2–3 min, an
interval which allowed the leaf to adjust to the new environmental conditions (a stability
point was reached when the standard deviation for CO2 and H2O differences was ≤0.1 for
20 s) [38,39].

Light-saturated net photosynthetic rate A (µmol CO2·m−2·s−1), transpiration rate E
(mmol H2O·m−2·s−1), stomatal conductance to water vapour gsw (mol H2O·m−2·s−1), and
intercellular CO2 concentration Ci (µmol·mol−1) and leaf temperature Tleaf (◦C) were mea-
sured. Using these measured parameters, three efficiency parameters were then calculated:
water use efficiency WUE (as A/E, µmol CO2·m−2·s−1/mmol H2O·m−2·s−1), intrinsic wa-
ter use efficiency iWUE (as A/gsw, µmol·mol−1) and instantaneous carboxylation efficiency
A/Ci (µmol CO2·m−2·s−1/µmol·mol−1) [40]. During the gas exchange measurements, a
uniform distribution of photosynthesis and transpiration over the leaf was assumed [41].

2.3. The Farquhar–Von Caemmerer–Berry Model

Data from the response curve of net photosynthetic rate to CO2 were analysed using
the Farquhar–von Caemmerer–Berry model (the FvCB model) [42]. This model was devel-
oped to model leaf gas exchange and net photosynthetic rate (A) for C3 plants under any
given environmental conditions. It has been used widely in recent decades to summarise
the dependence of carbon assimilation rate on intercellular CO2 concentration (Ci) because
of its simple form and the comparable metrics of photosynthetic capacity that are provided.
The net photosynthetic rate predicted by the FvCB model is the minimum between the
Rubisco limited rate (Ac), the ribulose 1,5-bisphosphate (RuBP)-regeneration or electron
(e-) transport limited rate (Aj) and the triose phosphate utilization (TPU) limited rate (Ap)
of CO2 assimilation [43,44]. Considering the three limitation phases, the net photosynthetic
rate can be modelled as follows:

A = min(Ac, Aj, Ap) (1)
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In the Rubisco limited phase, the response of net assimilation (Ac) to Ci is defined by:

Ac =
Vcmax ∗ (Ci − Γ∗)

Ci + KC ∗ (1 + O/KO)
− Rd (2)

where Rd is day respiration (µmol·m−2·s−1), Vcmax is the maximum carboxylation rate of
Rubisco (µmol CO2·m−2·s−1), Γ* is the photosynthetic compensation point (µmol·mol−1),
KC is the Michaelis–Menten constant of Rubisco for CO2 (µmol·mol−1), KO is the Michaelis–
Menten constant of Rubisco for O2 (µmol·mol−1), and O is the intercellular partial pressure
of O2 (mmol·mol−1) set to 21 KPa.

During the RuBP-regeneration or electron transport, the response of net assimilation
(Aj) to Ci is defined by:

Aj =
J ∗ (Cc − Γ∗)

4Cc + 8Γ∗
− Rd (3)

where J is the rate of electron transport (µmol·e−1·m−2·s−1).
In the TPU limited phase, the net assimilation rate (Ap) is defined as:

Ap = 3Tp − Rd (4)

where Tp is the rate of phosphate release in triose phosphate utilization (µmol·m−2·s−1).
The kinetic constants of Rubisco (Γ*, KC, KO), which are temperature-dependent, were

derived using Arrhenius-type equations using the leaf temperature measurements [45,46].
Traits of photosynthetic capacity (Vcmax, Jmax, TPU) were derived from the FvCB model and
were corrected to a temperature of 25 ◦C [47]. More information and details about A/Ci
data fitting can be found in the literature [48–50]. The FvCB model was applied for each
leaf, and coefficients were analysed as mean.

2.4. Data Analyses

Differences between species were analysed using ANOVA followed by post hoc Tukey
tests [51]. The dependence between photosynthetic parameters was quantified using the
Pearson correlation coefficient. Statistical tests were considered significant at the p < 0.05
level. FvCB model parameters were estimated using the R package ‘plantecophys’ [47], and
figures were constructed using the packages ‘ggplot2’ and ‘cowplot’. All data processing
was done using R 4.0.3 software [52].

3. Results and Discussion
3.1. Photosynthetic Parameters for Deciduous Pioneer Species

To compare the eco-physiological performance of the deciduous pioneer species
that naturally colonized the mining dump areas in the Călimani Mountains, the mean
values of photosynthetic traits during the 2019 vegetation period were analysed for CO2
concentration close to the actual environmental concentration (400 µmol·mol−1).

Green alder and birch had the highest net assimilation rate for the entire season among
the four species analysed (Table 1). The lowest net assimilation rate was recorded for goat
willow. The net assimilation rate for green alder was significantly higher than those of
aspen and goat willow, while the net assimilation rate of birch was significantly different
only from that of goat willow. Similar values for net assimilation (ranging from 12.8 to
17.3 µmol CO2·m−2·s−1) have been documented under similar measurement conditions
(1400 µmol·m−2·s−1 PPFD and 320 µmol·mol−1 CO2 concentration) for the seedlings of
different Alnus species [33]. However, our results showed slightly higher net assimilation
values for silver birch compared with the range reported in the literature [31,32,53].
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Table 1. Mean values (± standard deviation) of photosynthetic parameters for the 2019 growing season, at 400 µmol·mol−1

CO2 concentration and 1000 µmol·m−2·s−1 PPFD. Significant differences are shown using letters following the Tukey test
(p < 0.05).

Parameters Green Alder Birch Aspen Goat Willow

A (µmol CO2·m−2·s−1) 17.35 ± 3.62 a 16.62 ± 2.47 ab 14.43 ± 2.93 bc 13.31 ± 4.97 c

E (mmol H2O·m−2·s−1) 2.6 ± 0.78 a 3.44 ± 0.94 b 2.94 ± 1.16 ab 2.75 ± 1.34 ab

gsw (mol H2O·m−2·s−1) 0.24 ± 0.10 a 0.31 ± 0.08 a 0.27 ± 0.10 a 0.25 ± 0.12 a

Ci (µmol·mol−1) 240.76 ± 26.07 a 278.21 ± 13.61 b 272.36 ± 29.13 b 274.16 ± 24.30 b

A/Ci (µmol
CO2·m−2·s−1/µmol·mol−1) 0.07 ± 0.01 a 0.06 ± 0.01 b 0.05 ± 0.01 bc 0.05 ± 0.02 c

WUE (µmol CO2·m−2·s−1/mmol
H2O·m−2·s−1)

6.92 ± 1.08 a 5.07 ± 1.09 b 5.63 ± 2.07 b 5.49 ± 1.78 b

iWUE (µmol·mol−1) 78.05 ± 18.91 a 54.92 ± 8.85 b 60.93 ± 20.73 b 60.9 ± 18.41 b

Birch had the highest rates of transpiration and stomatal conductance. The rates of
transpiration for birch were significantly higher than those for green alder, but stomatal
conductance was not significantly different between species. Similar transpiration rate
(3.4 mmol·m−2·s−1) and stomatal conductance (0.4 mol·m−2·s−1) have been observed for
mountain birch at the treeline on the Tibetan Plateau [54]. Birch proveniences and leaf
types (early vs. late leaves) can induce differences in stomatal conductance [12].

Diffusion of CO2 into the intercellular spaces inside leaves occurs mainly through
stomatal pores [55]. Stomatal density and distribution on leaves differ among species.
As a result, we obtained different Ci values even though the CO2 concentration in the
measurement chamber (400 µmol·mol−1) was similar for all species. Green alder had the
lowest intercellular CO2 concentration, which was significantly different from those of the
other species. The variation in intercellular CO2 concentration allows us to understand
whether the decline in net photosynthesis rate is due to stomatal limitations or to the
reduction of photosynthetic activity in the leaves’ cells [56].

Instantaneous carboxylation efficiency was the lowest for aspen and goat willow and
the highest for green alder. This photosynthetic parameter can be considered as an estimate
of Rubisco activity; generally, higher intercellular CO2 concentration is associated with
lower stomatal conductance. Water use efficiency (WUE and iWUE) was also the highest
for green alder and differed significantly from those of the other species.

Regardless of the species, the highest correlation was observed between transpira-
tion rate and stomatal conductance (Table 2). For birch only, a negative correlation was
found between net assimilation rate and intercellular CO2 concentration. The correlation
coefficient between net assimilation rate and transpiration rate varied from 0.74 (birch) to
0.93 (goat willow) and was significant in all cases. Similar significant negative correlations
between Ci and A have also been found for birch in a Lithuanian forest (boreal zone) [40].

3.2. Variability of Photosynthetic Parameters during the Vegetation Season

For broadleaf species, the chlorophyll content of leaves changes throughout the grow-
ing season, which induces variability in eco-physiological processes. Because of these
biochemical changes in leaves, it is important to explore the variation in individual photo-
synthetic parameters during the vegetation season [12]. To avoid the systematic influence
of diurnal variation, the gas exchange measurements were distributed during the day from
9 am to 3 pm. The net assimilation rate varied across the season for all four species, with
the lowest values recorded at the end of June (Figure 2a). The lowest net assimilation
rate was observed for goat willow at the end of June (7.55 µmol CO2·m−2·s−1) and was
significantly different from the values in other months. For green alder, the maximum
value of net assimilation was measured at the end of July (18.64 µmol CO2·m−2·s−1), and
the minimum was recorded at the end of June (14.93 µmol CO2·m−2·s−1). A similar trend
in variation was found for goat willow. On the contrary, net assimilation rates for birch
and aspen increased continuously during the season.
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Table 2. Pearson correlation coefficients for relationships between gas exchange parameters
(A–net photosynthetic rate, E–transpiration rate, gsw–stomatal conductance, Ci–intercellular
CO2 concentration).

Parameters E gsw Ci

Green alder

A 0.80 ** 0.87 ** 0.73 **
E 0.88 ** 0.84 **

gsw 0.93 **

Birch

A 0.74 ** 0.77 ** −0.13
E 0.94 ** 0.46 *

gsw 0.52 **

Aspen

A 0.84 ** 0.84 ** 0.66 **
E 0.96 ** 0.82 **

gsw 0.87 **

Goat willow

A 0.93 ** 0.94 ** 0.45 *
E 0.97 ** 0.66 **

gsw 0.67 **
** Significance at p < 0.01; * Significance at p < 0.05.

Studies in boreal forests indicate that, for birch, the highest rates of leaf-mass net
assimilation occur under light-saturated conditions in early May after the leaves unfold,
and there is minimal variation during the vegetation season [12]. For other species, the
maximum leaf-area net assimilation occurs in late June and early July [31]. Studies on
different Salix spp. have highlighted a weak correlation between biomass yield and
photosynthetic rate and a positive influence of total leaf area per plant [27].

Stomatal conductance increased continuously from the beginning of the season to
autumn for all species, except goat willow (Figure 2b). A similar pattern was observed
for transpiration rate, but with a higher rate of increase from the beginning to the end of
the season. These two parameters had a similar trend in variation because transpiration is
regulated mainly by stomatal conductance [56]. The stomatal conductance of aspen and
goat willow in June was significantly different from that measured in July or August. The
maximum values for transpiration rate were measured in August for green alder (2.96 mmol
H2O·m−2·s−1), aspen (3.93 mmol H2O·m−2·s−1) and birch (4.22 mmol H2O·m−2·s−1) and
in July for goat willow (3.35 mmol H2O·m−2·s−1) (Figure 2c).

iWUE and WUE decreased during the vegetation season for all studied species,
possibly linked with the lower soil water content during the measurements in July and
August (see Figure 1). Water use efficiency parameters were significantly different between
all three measurement timepoints only in the case of aspen. Similarly, differences between
monthly values of WUE have been reported for another poplar species (Populus angustifolia)
from North America [57]. Goat willow exhibited a different trend in variation, with slightly
higher iWUE values at the end of August compared to July. Green alder had the highest
values of both WUE and iWUE compared to other species.
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Variation in iWUE and WUE during the season is a consequence of both changing
environmental conditions and physiological changes in leaf structure due to ageing [58].
Both parameters reflect water use efficiency (how much carbon is fixed per unit of water
loss), but WUE can also be used as a water stress indicator (drought indicator) [59]. Higher
values of iWUE or WUE can be achieved through lower stomatal conductance or transpira-
tion rate, higher assimilation capacity or a combination of both [60]. Water supply is one
factor that can cause plants to have a lower stomatal conductance and higher WUE [12].
Our study was conducted in a mountain area where precipitation is not a limiting factor,
but variations in WUE may still occur due to particular conditions induced by precipitation
variation during vegetation season. In the second and third measurement time points, low
soil water content was reported (see Figure 1), which may induce a decrease in water use
efficiency parameters.

Green alder also demonstrated the highest instantaneous carboxylation efficiency
compared with other deciduous pioneer species, with a maximum in late July (Figure 2e).
It had a lower intercellular CO2 concentration but maximum values for assimilation rate.
One possible explanation for this is that green alder is in its optimal distribution range,
is acclimatized to cold environments and uses resources more efficiently. The maximum
instantaneous carboxylation efficiency occurred in July for goat willow and at the end of
August for aspen and birch.

The mining dump areas are exposed to high light intensity, large temperature vari-
ability and low nitrogen availability. Low availability of soil nitrogen can be an important
limiting factor of photosynthesis [19,21]. N2-fixing plants that are capable of fixing atmo-
spheric nitrogen, like green alder, can be more performant in terms of photosynthetic traits
on degraded soils compared with other pioneer species [61]. Leaf size and structure, com-
bined with crown size and branching patterns, play an important role in the assimilation
performance of different species [62]. Field observations confirm that the leaf area and
crown development of green alder are greater than for the other species.

3.3. Photosynthesis Response Curve under Increasing CO2 Concentration

Using a variable concentration of CO2 to understand assimilation performance is more
efficient than using a constant CO2 concentration [63]. An A/Ci curve can be constructed
to understand and interpret the biochemical processes of leaf photosynthesis under various
environmental conditions. The measured values of net assimilation at different CO2 concen-
trations are used to estimate photosynthetic limitations and parameters of photosynthetic
performance using two key parameters from the FvCB model: Vcmax and Jmax.

The response curve for the relationship between assimilation and CO2 concentra-
tion shows an initial increase followed by a relatively constant variation caused by light
limitation (Figure 3). A clear difference between the three measurement time points was
observed for all species, except for birch in June and July. The limitation of assimilation
rate due to light availability occurred after reaching an intercellular CO2 concentration of
500 µmol·mol−1. After passing this threshold, the highest assimilation rate was measured
in August for all four species. For goat willow and aspen, variation in WUE in relation to
CO2 concentration was higher in June.

Based on the FvCB model, the limitations of the photosynthetic process are character-
ized by two main parameters—Vcmax and Jmax—and occasionally also by TPU. Estimation
of these parameters is regulated by the limitations of one of three curves of the FvCB
model. Vcmax is the maximum rate of Rubisco activity and reflects a limitation in RuBP-
regeneration [48]. For green alder, the highest values of Vcmax were recorded in July, and
the lowest in June, without significant differences during the season (Figure 4a). For birch
and aspen, there were no significant differences in Vcmax during the season. The lowest
Vcmax for goat willow was recorded in June, statistically different from the rest of the season,
and was associated with lower assimilation levels. To derivate the seasonal mean of Vcmax,
it is recommended to perform measurements in midsummer. Maximum values of Vcmax
were obtained in the middle of the vegetation season (end July).
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tains: (a) Vcmax—maximum rate of Rubisco activity; (b) Jmax—maximum rate of electron transport for RuPB-regeneration
(whiskers represent standard errors, and letters represent significant differences).

Jmax represents the maximum rate of electron transport for RuPB-regeneration at
the light intensity used in the study (1000 µmol·m−2·s−1) (Figure 4b) [64]. Jmax was the
lowest in June and highest in August, regardless of the species. With exception of aspen,
the Jmax differs significantly between time points during the season. Vcmax and Jmax are
correlated with Amax (the maximum value of assimilation) because these parameters all
reflect limitations in photosynthetic processes. Green alder exhibited the highest values
of Vcmax and Jmax and also had the highest rate of photosynthesis at both ambient and
saturating CO2, while goat willow presented the lowest values for all of these variables.
The ratio of Jmax to Vcmax varied in the typical range (1.5 to 2.5) observed for other woody
species [65].

TPU limitation occurred in less than half of the samples, as it generally requires a
higher Ci concentration than that used in our study. This third state of photosynthesis
limitation occurs when the chloroplast system’s reaction is greater than the possibility of
the leaf using the triose phosphate [43]. This is more likely to happen under experimental
conditions than in natural situations, and this limitation state has not been taken into
account in many studies [66].

Light dependence of Jmax varied by up to 40% across the different leaves of birch [30].
Meanwhile, Vcmax is dependent on the temperature and increases at higher temperatures,
but with limitations at very high temperatures [30]. For Populus species, multiple studies
have documented Vcmax and Jmax values lower than those reported in this study, even
though the light radiance used was higher, at 200–500 µmol·m−2·s−1 [25]. A global study
that analysed more than 350 species highlighted that, for tree species, the mean values of
Vcmax and Jmax were 66.6 µmol·m−2·s−1 and 114.4 µmol·m−2·s−1, respectively [67].

4. Conclusions

Reforestation and the stable ecological restoration of tailings dumps resulting from
surface mining activities in the Călimani Mountains have been a high priority for regional
and national administrations in the last two decades. Even though several solutions have
been implemented (dumps stabilization, soil amendments, etc.), the complete recovery
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of the degraded habitats is still a challenge. Gaining a better understanding of natural
colonization with pioneer woody species, such as through studying primary natural
succession, can offer valuable knowledge about the species that are most adapted to these
particular environmental conditions.

The most productive pioneer species in terms of photosynthetic traits was the green
alder, a woody N2-fixing shrub. It showed the highest rates of net assimilation, carboxyla-
tion efficiency and water use efficiency and can be a suitable species for reforestation based
on the study conditions. During the growing season, this species’ maximum photosynthetic
capacity is generally observed at the end of July, with a minimum in late June.

A detailed understanding of the variability and dynamics of the photosynthetic
capacity of pioneer species that naturally occur on tailings dumps is essential, offering
valuable data to the process of characterizing suitable species for ecological restoration
systems to heal these open wounds in the landscape.
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