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Abstract: Few plant functional types (PFTs) with fixed average traits are used in land surface models
(LSMs) to consider feedback between vegetation and the changing atmosphere. It is uncertain if
highly diverse vegetation requires more local PFTs. Here, we analyzed how 52 tree species of a
megadiverse mountain rain forest separate into local tree functional types (TFTs) for two functions:
biomass production and solar radiation partitioning. We derived optical trait indicators (OTIs) by
relating leaf optical metrics and functional traits through factor analysis. We distinguished four OTIs
explaining 38%, 21%, 15%, and 12% of the variance, of which two were considered important for
biomass production and four for solar radiation partitioning. The clustering of species-specific OTI
values resulted in seven and eight TFTs for the two functions, respectively. The first TFT ensemble
(P-TFTs) represented a transition from low to high productive types. The P-TFT were separated with
a fair average silhouette width of 0.41 and differed markedly in their main trait related to productivity,
Specific Leaf Area (SLA), in a range between 43.6 to 128.2 (cm2/g). The second delineates low and
high reflective types (E-TFTs), were subdivided by different levels of visible (VIS) and near-infrared
(NIR) albedo. The E-TFTs were separated with an average silhouette width of 0.28 and primarily
defined by their VIS/NIR albedo. The eight TFT revealed an especially pronounced range in NIR
reflectance of 5.9% (VIS 2.8%), which is important for ecosystem radiation partitioning. Both TFT
sets were grouped along elevation, modified by local edaphic gradients and species-specific traits.
The VIS and NIR albedo were related to altitude and structural leaf traits (SLA), with NIR albedo
showing more complex associations with biochemical traits and leaf water. The TFTs will support
LSM simulations used to analyze the functioning of mountain rainforests under climate change.

Keywords: ecosystem productivity; energy fluxes; leaf hyperspectra; functional traits; tree functional
types; tropical forest

1. Introduction

Plant functional types (PFTs) are frequently used in climate change modeling to pa-
rameterize the vegetation in land surface models (LSMs) [1]. They have been primarily
designed to group the high complexity of vegetation into discrete classes that represent
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different feedback types between the ecosystem and atmosphere. LSMs and PFTs con-
tribute to the ongoing debate on carbon sequestration through biomass production of
natural tropical forests [2,3]. They are also applied to answer the question regarding how
climate change interacts with alterations in forest composition, radiation, energy fluxes,
and precipitation recycling [4]. Doughty et al. [5] stressed that global warming will change
forests’ spectral signatures toward a darkening in near-infrared, mediated by changes in
the functional trait specific leaf area (SLA). This underpins the close link between tree
radiative fluxes and productivity (see [6]) via the functional traits of different tree groups.
Productivity depends on net carbon gain through the photosynthetic capacity of leaves,
which is functionally related to several structural leaf traits such as SLA [7], leaf tissue
density, and leaf thickness [8]. Most relevant for productivity via the leaf economics spec-
trum [9] are the leaf biochemical traits such as leaf nitrogen. All functional traits important
for productivity are simultaneously related to leaf optics [10]. Radiation fluxes between
leaves and the atmosphere are particularly determined by spectral leaf albedo/absorbance
in the visible (VIS) and near-infrared (NIR) ranges. The solar radiation absorbed by leaves
is transformed into chemical energy by photosynthesis or thermal energy. The VIS leaf
reflectance spectrum is dominated by the concentration of leaf pigments such as chloro-
phyll, carotenoids, anthocyanins, and brown pigments, whereas in the NIR, leaf water and
the contents of sugar, starch, cellulose, lignin, and proteins are of main importance [11,12].
The effects of leaf chemicals on the leaf spectral response depend mainly on the absorption
features of leaf elements (Table 1). Chlorophyll absorption features are located in the
blue (400–500 nm) and red (650–700 nm) regions of the VIS spectrum. Carotenoids and
anthocyanins absorb light at similar wavelengths [13] and thus might disturb the optical
retrieval of the chlorophyll content with VIS-NIR optical metrics such as vegetation indices
(VIs). However, some VIs were shown to be insensitive to the anthocyanin contents of
tropical tree species and thus are capable of accurately representing chlorophyll contents
of leaves [14]. In addition to the carbohydrate-based leaf constituents and leaf water,
important biochemical leaf traits such as nitrogen exhibit distinct absorption features [12]
in the NIR spectrum. As a consequence, the close relationship between leaf optical metrics
and the absorption bands of structural and biochemical leaf traits has been successfully
used to retrieve functional leaf traits for tropical and extra-tropical forests using different
models based on sensed optical data [15,16].

Because functional traits differ between PFTs, this is expected to hold for optical
metrics related to these traits. This should allow the discrimination of tree functional
types using optical metrics. The spectral classification of tree species using VIS and NIR
wavelengths has been successfully conducted for selected species from the mid-latitudes to
the Amazon lowlands [17,18]. Longwave infrared data were also successfully used for tree
species classification [19]. Based on Fourier transform near-infrared (FT-NIR) spectrometry
on dried leaves, Durgante et al. [20] accurately distinguished 10 Amazonian tree species. FT-
NIR spectrometry (1000–2500 nm) was successfully used in another study to discriminate
13 Amazonian species [21]. Species not being properly detected were attributed to changes
in biochemical leaf traits during the leaf life cycle, such as polysaccharides, proteins, and
phenolic compounds; however, they were not measured simultaneously in the study [21].
Castro-Esau et al. [22] distinguished Mesoamerican trees using hyperspectral leaf spectra,
where the most discriminating functional traits were leaf thickness and chlorophyll content.
However, the analysis based on only a few functional traits experienced difficulties for
classifications between different sites. Clark and Roberts [23] successfully used optical met-
rics derived from hyperspectral data that respond to structural and biochemical leaf traits
to classify seven tropical tree species of a tropical wet forest in Costa Rica with a random
forest classification and an overall accuracy of 86.8%. Because no tissue chemical assays
were available in this study, determining a direct link between the discriminating optical
metrics and the functional traits behind it was not possible. Despite the success of tree
species classification using optical metrics at the leaf level in these discussed studies, some
inherent restrictions of these approaches in classifying functional tree types remain. The
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studies used only a few selected tree species from a larger species pool, and relationships
to functional traits or even ecosystem functions were not part of the investigations, mostly
due to lacking data on simultaneously collected functional leaf traits.

To use optical data for the classification of PFTs, Ustin and Gamon [24] proposed a
new method to derive optically distinguishable functional types from remotely sensed data
by considering structural, biochemical, and phenological traits. A comprehensive study on
N-Californian vegetation (18/11 total/tree species) using PCA and clustering resulted in
12 optical leaf functional types that may be related to leaf functions but did not group into
the conventionally used PFTs [25]. In a study on three different temperate, semi-natural
grasslands, Feilhauer et al. [26] compared eight simulated functional traits with measured
spectral data and successfully classified the functional plant composition observed in
the field. The authors suggested further testing with commonly used spectral metrics
and field-derived functional trait data. Functional trait measurements were reported by
Kattenborn et al. [27] for the same system, and the grouping was investigated with regard
to three different PFT schemes and eight measured functional traits, showing that different
functional traits were relevant to reproducing the specific PFT groups, which showed that a
species pool might be grouped into different functional types depending on the ecosystem
function of interest.

The aim of this study was to test if commonly used optical metrics allow the separation
of the tree species of a megadiverse tropical mountain forest in Southern Ecuador into tree
functional groups for two ecosystem functions: biomass production and solar radiation
partitioning by leaves. This included determining the functional importance of optical
metrics. As suggested by Feilhauer et al. [26], we applied commonly used leaf optical
metrics, which are, to a large extent, also applicable to multispectral data. In contrast with
the many previous studies, our analysis relied on a unique, comprehensive data set of
simultaneously measured leaf hyperspectral (4030) and field-derived functional traits (20)
of 52 tree species in one ecosystem.

2. Materials and Methods
2.1. Study Area

The study area is located at the eastern cordillera of the South Ecuadorian Andes.
The region belongs to the Tropical Andes biodiversity hotspot and is an important area
for nature protection and ecosystem services [28–30]. The region is characterized by a
humid tropical climate throughout the year (Table S1), with an exceptionally wet period
between March and July (peak months vary between sites) and a comparatively drier
period from September to December [31,32]. The area is affected by climate change because
significant warminghas been observed during the last decades [29]. Biomass burning in
the Amazon has led to the long-range transport of aerosols and, thus, to the atmospheric
depositions of plant nutrients (e.g., N) into the area, which increase with altitude [33,34].
The forest structure and tree species composition change with elevation, not only due
to strong topographical differences (ravines and ridges) [35] but also due to pronounced
climatic differences in the study area (Table S1). Nine one-hectare forest plots at three
elevation levels were selected in the mountain rain forest of the SE Ecuadorian Andes
(Figure 1 [28]): (i) the Cajanuma site (upper montane forest), which is close to the forest
line at 3000 m above sea level; (ii) the San Francisco site (lower montane forest) at 2000 m
above sea level, located in the Rio San Francisco valley next to the ECSF research station
(Estación Científica de San Francisco, 3◦58′18′ ′ S, 79◦04′45′ ′ W, 1860 m above sea level) [36];
and (iii) the Bombuscaro site (premontane forest) at 1000 m above sea level, located in the
transition zone to the Amazon lowland forest.
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(3000 m above sea level). The DEM is based on SRTM data (USGS, 2006). The inlay shows the position of the research area
in southern Ecuador.

2.2. Workflow and Data

A general overview of the workflow is shown in Figure 2. For sampling purposes,
tree species were selected a priori to represent the tree communities of the three study sites.
From previous studies, we used available data on SLA and wood-specific gravity (WSG) to
select trees that covered the known range of the functional traits space of the study area [37].
Whereas SLA is linked to leaf-scale productivity via the leaf economics spectrum [9], WSG
is related to plant mortality as specified by the wood economics spectrum [38]. The selected
52 tree species included pioneer-stage as well as early-, mid-, and late-successional types
(Table S2). An eight-fold repetition of the sampling was performed for most species. For
all the individuals of the selected species, leaf samples were acquired during February
and March 2019 by harvesting canopy branches. The branches were transported in plastic
bags to the spectrometer laboratory of the ECSF research station to prevent water loss and
stored overnight with moist gauze. Ten mature leaves were used for measurements of
hyperspectral leaf reflectance for each tree.

2.2.1. Leaf Spectroscopy

The hyperspectral measurements were recorded with an OceanOptics spectrometer
HDX, which offers an average spectral resolution of 0.28 nm for VIS (345.76–931.92 nm),
and NirQuest, with an average resolution of 1.5 nm (897.98–1716.64 nm) for NIR, yielding
a number of 2580 narrow hyperspectral bands. The measurement head was equipped
with an integrating sphere and a 20 W stabilized illumination source. The spectra of
five consecutive measurements on each leaf were averaged to increase the signal-to-noise
ratio and stabilize fluctuations in the data. To receive optical metrics for each species,
pre-processing of the raw hyperspectra was required. First, the reflectance spectra were
calculated from raw counts by dividing the measurements of the samples by a reference
measurement with a 25% grey standard (Spectralon), corrected by the dark current signal.
The grey standard was chosen because it resembles leaf reflectance more closely so that
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changes in the gain settings at higher differences of leaf reflectance are not required [37].
The replicated leaf reflectance measurements were then aggregated to the mean species
reflectance. HDX data were binned to a spectral resolution of 1 nm, whereas the NirQuest
data were used with their original resolution. A Savitzky–Golay filter was applied to
remove noise from the spectrum. The data range was trimmed to 475–1695 nm, and the
spectra were merged using the overlapping spectral area from the HDX to NirQuest sensors
because NirQuest provides relatively high photosensitivity at 900 nm wavelength, whereas
the HDX declines to near zero in the overlapping region. The integrated albedo for VIS
wavebands was defined as <700 nm, whereas NIR was defined as ≥700 nm as usually
applied in land surface models, e.g., in [39].
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Figure 2. Study workflow. The hyperspectral leaf data were pre-processed and converted to com-
monly used leaf optical metrics (Table 1). A factor analysis was conducted to aggregate the optical
metrics to optical traits indicators (OTIs), where the indication for the functional traits was docu-
mented by their correlation with species factor scores. A subsequent cluster analysis was used to
assign the species to tree functional types (TFTs).

The commonly used optical metrics were selected based on a literature survey to
quantitatively respond to structural and biochemical leaf elements, which are considered
important indicators for leaf productivity (e.g., SLA, N, and P) and further relate to quanti-
ties impacting leaf reflectance properties (e.g., leaf carotenoids and water content). Our
preference was for commonly used Vis, which has been successfully applied in the tropics.
Optical metrics and functional traits were all aggregated by species (Table 1).
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Table 1. Selected commonly used leaf optical metrics for the study. R: reflectance at wavelength (nm); D: first derivate
of reflectance at wavelength (nm); AGB: aboveground biomass. (+) and (−) indicate the mathematical direction of the
relationship between leaf optical metrics and functional traits. Selected references describing the expected relationship
between optical metrics and functional traits are provided in the last column. Absorption bands affecting the metrics were
taken from Jacquemoud and Ustin [11], except for tannin absorption, which was taken from Lehmann et al. [40].

Optical Metric Formula Absorption Bands Functional Trait Relation Source

NDVI (R800 − R680)/(R800 + R680) Chlorophyll AGB (+) Tucker (1979) [41]
Clark et al. (2011) [42]

SR680 R800/R680 Chlorophyll Chlorophyll (+) Jordan (1969) [43]
Mielke et al. (2012) [14]

SR705 R750/R705 Chlorophyll Chlorophyll (+) Sims and Gamon (2002) [44]
Mielke et al. (2012) [14]

mCARI ((R750 − R705) − 0.2 × (R750 −
550)) × (R750/705) Chlorophyll Chlorophyll (+) Wu et al. (2008) [45]

Mielke et al. (2012) [14]
SR798 R798/R679 Chlorophyll AGB (+) Clark et al. (2011) [42]
ARI (1/R550) − (1/R700) Anthocyanins Anthocyanin (+) Gitelson et al. (2006) [46]

Mielke et al. (2012) [14]
BlackburnCar2 (R804 − R484)/(R804 + R484) Carotenoids Carotenoids (+) Blackburn (1998) [47]
GitelsonCar1 (R484−1 − R571−1) × R746 Carotenoids Carotenoids (+) Gitelson et al. (2006) [46]
GitelsonCar2 (R484−1 − R689−1) × R746 Carotenoids Chlorophyll Carotenoids (+) Gitelson et al. (2006) [46]

D1040 D1040 Lignin
Proteins Structural carbohydrates (+) Curran (1987) [12]

D1690 D1690 Lignin, sugars, starch,
proteins, N Structural carbohydrates (+) Curran (1987) [12]

D1420 D1420 Lignin Structural carbohydrates (+) Curran (1987) [12]
D1490 D1490 Cellulose Structural carbohydrates (+) Curran (1987) [12]

D1460 D1460
Sugar, starch,
tannins
lignin

Phenolic compounds (+) Lehmann et al. (2015) [40]

NDNI
(log(1/R1510) −
log(1/R1680))/(log(1/R1510) +
log(1/R1680))

N Nitrogen (−) Serrano et al. (2002) [48]

D1510 D1510 N Nitrogen (−) Curran (1987) [29]
D1020 D1020 Proteins Nitrogen (−) Curran (1987) [29]
LWVI_1 (R1094-R983)/(R1094 + R983) Sugar, starch, protein, water Water content per leaf area (+) Galvao et al. (2005) [49]
LWVI_2 (R1094-R1205)/(R1094 + R1205) Cellulose, lignin, starch,

sugar Water content per leaf area (+) Galvao et al. (2005) [49]
WBI R902/R973 Sugar, starch Water content per leaf area (+) Peñuelas et al. (1993) [50]
D970 D970 water Water content per leaf area (−) Curran (1987) [12]
D1200 D1200 Cellulose Water content per leaf area (−) Curran (1987) [12]
D1400 D1400 water Leaf water content (+) Curran (1987) [12]
D1240 D1240 – Heavy metals (+) Rosso et al. (2005) [51]

2.2.2. Leaf Trait Measurements

Leaf functional traits related to leaf morphology (leaf area, SLA, and leaf water content)
and foliar nutrients (C, N, P, Al, Fe, S, Ca, Mg, Mn, and K) were measured on 20 leaves of
the same branches used for the hyperspectral measurements. Another three leaves were
used to determine leaf thickness and toughness. For compound leaves, the morphology
of the individual leaf elements was measured. The number of leaves analyzed per tree
was reduced for species with particularly large leaves (e.g., Cecropia, Graffenrieda, and
Pourouma) due to time constraints during leaf size determination. Leaf area was measured
by scanning fresh leaves, including petioles in color (Canon LIDE 100, 150 dpi), and
leaf silhouettes were retrieved using WinFOLIA 2014a software (Régent Instruments,
Québec, QC, Canada). The fresh leaves were weighed and then dried at 60 ◦C for a
minimum of three days for dry weight and leaf water content determination. SLA was
calculated as the quotient of total leaf area by total leaf dry weight. A digital micrometer
(Mitutoyo M293-240-70, Mitutoyo Germany Ltd., Neuss, Germany) was used to measure
leaf thickness at each side of the main leaf vein between secondary veins. Leaf toughness
(kN m−2) was determined using a digital penetrometer (flat-ended 2.0 mm diameter steel
punch, DS-50N, Imada Inc., Japan). Both leaf thickness and toughness measurements were
averaged. The C and N contents of dry leaf mass were analyzed using a CN elemental
analyzer (vario EL III, Hanau, Germany). Ground leaf material was digested using HNO3
in preparation for ICO analysis (Thermo Scientific iCAP 7000 ICP-OES, Thermo Fisher
Scientific, Dreieich, Germany) to determine leaf Al, Ca, Fe, K, Mg, Mn, P, and S contents.
Leaf-scale susceptibility for herbivory was estimated by dividing the mean area of herbivory
on damaged leaves by the mean area of the complete leaves.
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2.3. Data Analysis
2.3.1. Determination of Optical Trait Indicators (OTI) by Factor Analysis

In a first step, we analyzed the suitability of the data set using Bartlett’s test of
sphericity and the Kaiser–Meyer–Olkin measure of sampling adequacy [52] and conducted
a cross-correlation analysis among the selected optical metrics to unveil their potential
interrelations.

A factor analysis was then conducted to reduce the selected optical metrics (Figure 2,
Table 1) and group them into distinguishable optical trait indicators (OTI). The number of
meaningful factors was determined based on the eigenvalues extracted from the correlation
matrix of the optical metrics. The factor solution was determined by minimizing the
residuals and applying an oblique rotation. The contributions of the optical metrics to
each factor were described by the strength and mathematical sign (direction) through
factor loadings (−1 to 1). The analysis also provided scores for each species and factor
(factor scores) that described the quantitative contribution (strength and direction) of the
individual factor for each species. The factor scores were calculated using Bartlett’s method,
which provided standardized factor scores with zero representing the average score over
all species. The analysis was conducted in R version 3.6.3 [53] using the psych package [52].

To convert the optical factors to optical trait indicators, the factors must be related
to leaf functional traits. This was realized by correlating the factor scores with the leaf
functional traits of the species for each factor using Pearson’s product-moment correlation
coefficient. The significance of the correlation coefficients was tested with t-statistics.
The interpretation of the correlation coefficients finally allowed us to assign dominant
functional traits to each optical factor, thus leading to the optical trait indicators.

2.3.2. Classification of tree Functional Types (TFT) by Cluster Analysis

The final task was to test if the 52 species belonged to distinguishable tree types that
are related to the ecosystem functions of productivity and solar radiation partitioning.
For this task, we used the affinity propagation cluster algorithm (APA), in which the
number of clusters is determined by the algorithm, and the procedure is insensitive to
outliers [54]. The cluster analysis was conducted with the species factor scores of the
selected, functionally relevant factors. As a result, the species were assigned to functional
tree types related to the two ecosystem functions. The grouping in APA was based on
similarities between the species factor scores. As proposed by Frey and Dueck [55], the
squared negative distance matrix was taken as a measure for similarities between species,
as represented by their factor scores. The algorithm starts with each species forming its
own cluster, then iteratively reduces the number of clusters by identifying species for which
the combination of factor scores is similar to their neighboring species within the distance
matrix. A general, more detailed description of the algorithm can be found in Frey and
Dueck [55]. The method was used as implemented in the R-package apcluster [56].

To assess the strength of the clustering, the average distance of the species within and
between the tree functional type clusters was calculated together with the silhouette width,
which is a measure of the similarity of species within their own cluster with respect to other
clusters. The silhouette width ranges between −1 and +1, with negative values indicating
random grouping, whereas increasing positive values indicate a growing discriminabil-
ity. Values >0.25–0.5 indicate a weak, >0.5–0.7 a moderate, and >0.7 a strong structuring
of the data set, which means well-separated and compact clusters [57,58]. Longer dis-
tances between the clusters indicate a good separation, whereas shorter distances within
a cluster indicate similar trait characteristics of the species within tree clusters and, thus,
good compactness.

3. Results
3.1. Relating Optical Metrics to Functional Traits

As expected, high correlations between the leaf optical metrics representing similar
absorption features were found (Figure S1). Clear relations were detected between the
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metrics covering the chlorophyll absorption bands (NDVI to SR798), the absorption bands
for leaf pigments (ARI to GitelsonCar2), and the absorption bands related to carbohydrates
and proteins (D1040 to WBI). As a consequence, the factor analysis reduced the optical
metrics space to four factors (F1–F4) with a total variance explanation of 87%. The four
individual factors explained 38%, 21%, 16%, and 12% of the variance, respectively. As
shown in Table 2, the first factor explained leaf traits that related to leaf carbon (sugar
and starch), leaf structure (lignin and cellulose), and leaf proteins and nitrogen (Table 1).
The second factor included leaf optical metrics relevant for photosynthesis and biomass
production (e.g., leaf chlorophyll and water), whereas the third factor loaded on optical
metrics related to leaf pigments (carotenoids and anthocyanins). The fourth factor mainly
encompassed leaf optical metrics related to the amount of leaf water but also to specific
leaf constituents such as heavy metals and phenolic compounds, which are known to be
important for leaf defense against herbivory.

Table 2. Factor loadings. Strong loadings on a factor are printed in bold, indicating the strength
and direction of the impact of the optical metric on the respective factor Factors F1 to F4 explained
38%, 21%, 16%, and 12% of the variance, respectively. The loadings of F1 were strong for optical
metrics related to carbohydrates, nitrogen, and water, whereas F2 loadings were strong for optical
metrics related to photosynthetic pigment concentration and productivity. Optical metrics related to
photo-protective pigments showed especially strong loadings on the F3 factor, whereas the F4 factor
was mostly determined by optical metrics related to leaf water, phenolic compounds, and heavy
metal concentrations.

F1 F2 F3 F4

NDVI 0.10 0.86 0.19 0.12
SR680 0.09 0.83 0.21 0.14
SR705 0.23 0.64 0.17 0.14

mCARI −0.27 0.94 −0.32 0.06
SR798 0.09 0.83 0.22 0.14
ARI 0.22 −0.42 0.78 0.07

BlackburnCar2 0.23 0.14 0.85 0.05
GitelsonCar1 −0.22 0.13 0.93 0.01
GitelsonCar2 −0.19 0.08 0.98 0.00

D1040 0.92 0.02 −0.02 0.21
D1690 0.82 −0.07 −0.03 0.37
D1420 0.70 0.01 −0.05 0.08
D1490 0.57 0.29 0.08 0.38
D1460 0.23 0.34 0.12 0.65
NDNI 1.00 0.03 −0.02 −0.15
D1510 0.88 0.24 0.06 −0.15
D1020 0.89 0.15 0.00 0.17

LWVI_1 0.96 −0.07 −0.05 0.00
LWVI_2 0.99 0.15 −0.01 −0.14

WBI 0.97 −0.29 0.02 −0.11
D970 −0.30 −0.83 −0.06 0.24

D1200 −0.72 −0.02 −0.06 −0.26
D1400 0.04 0.04 −0.03 −0.97
D1240 0.06 −0.12 −0.05 −0.67

The correlation of the species factor scores with their functional leaf traits converted
the factors to optical trait indicators (Figure 3). We found that F1 is mainly related to
structural leaf traits (SLA, mean leaf area and thickness, and force to punch), the leaf area
density of biochemical traits (C, N, P, Mg, Mn, and Al), and leaf water, the mass fraction
of biochemical traits (C, N, P, Ca, Fe, and Mn), and the C/N ratio, the latter regulating
photosynthesis [59]. F2 particularly described a positive relation of the factor to the area
density and/or the mass fraction of some essential trace leaf traits (Fe, Al, and Ca) and
the N/P ratio, the latter of which is important for describing N and P limitations on
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plant growth with a usual negative correlation to biomass production [60]. Anthocyanin-
and carotenoid-associated optical metrics represented by F3 (Table 2) revealed significant
negative correlations with mean total leaf area. The fourth factor (F4), which included
optical metrics associated with heavy metals and leaf water content (Table 2), was related
to Al, N, and the leaf water mass fraction (Figure 3). No significant associations of the four
factors could be found for the area density and the mass fraction of some biochemical traits
(S and K) and herbivory.
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The result of the factor analysis revealed that the first two factors were optical trait
indicators for the ecosystem function biomass production. The first factor included all
structural traits, carbohydrates, and important leaf nutrients related to the biomass stock.
The second factor comprised metrics related to leaf chlorophyll, a functional trait that was
not explicitly sampled during the field work. However, the N/P ratio relates to biomass
production [60,61], and leaf Ca, Al, and Fe were considerably important for the chlorophyll
content of leaves and/or photosynthesis, particularly in different crops (e.g., as shown
in [62–64]).

With regard to solar radiation partitioning between leaves and the atmosphere, VIS
and NIR albedos were significantly correlated to all four factors, so are thus relevant as
optical trait indicators. In F1, the VIS albedo showed a significant negative correlation
compared with the positive of leaf thickness and C, which means the greater the biomass,
the greater the absorption of VIS light. The NIR albedo revealed the contrary: the more
the structural components, the higher the reflectance. In F2, NIR albedo was positively
correlated to chlorophyll, pointing to an impact of the well-known red edge reflection
enhancement through chlorophyll in the NIR [65]. F3 showed a negative correlation of VIS
albedo in the absorption bands of leaf pigments. In F4, a positive correlation of NIR albedo
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was mainly related to a negative correlation with the mass fraction of leaf water. A high
leaf water content thus reduced NIR albedo due to the NIR water absorption bands mainly
around 1400 nm (D1400 metrics) represented by F4.

3.2. Classification of Leaf Optical Trait Indicators to Tree Functional Types (TFTs)

Because the factor analysis revealed different optical trait indicators explaining biomass
production (F1–F2) and VIS-NIR albedo-mediated partitioning of solar radiation (F1–F4), two
separate cluster analyses were conducted. The resulting tree functional types are hereinafter
referred to as P-TFT (function productivity) and R-TFT (function radiation partitioning).

Clustering in the bivariate trait space based on species factor scores for F1 and F2
resulted in seven P-TFTs (Table 3). The delineation of the TFTs was described by an average
silhouette width of 0.41, which indicated a weak to moderate clustering of the data, with
higher compactness and separability of clusters P-TFTs 2 and 5 (Figure S2).

Table 3. Cluster properties and quality metrics of TFTs for the ecosystem function productivity. TFTs are described by their
average species factor scores for F1 and F2. TFT size is the number of species assigned to the respective TFT. Bold values of
silhouette width represent moderately well-separated and compact clusters. The average within cluster distance could not
be calculated for P5, since it only contains one species.

TFT No. No. Species F1 F2 Avg. within
Cluster Distance

Avg. between
Cluster Distance

Avg. Silhouette
Width Productivity

P1 3 1.95 1.51 0.78 2.45 0.49 very low
P2 8 0.56 −0.48 0.33 1.75 0.65 low

P3 11 1.04 0.22 0.60 1.81 0.35 low,
P-limited

P4 5 0.28 −1.70 0.53 2.44 0.62 intermediate

P5 1 −0.06 3.38 NA 3.17 0.00 high,
P-limited

P6 15 −0.78 0.32 0.71 1.88 0.41 high
P7 9 −1.22 −0.64 0.75 2.24 0.36 very high

The individual P-TFTs revealed different expressions of the dominant functional traits
related to productivity (Figure 4). In general, TFTs P2-P4 showed a lower variation in the
functional traits around the median compared with the remaining TFTs P1 and P5–P7.
Thus, a stronger deviation from mean ecosystem productivity was expected from species
within these clusters.

The P1-TFT was characterized by thin leaves and low SLA. Furthermore, its C/N ratio
was higher due to high C and low N contents. The small decrease in the N/P ratio suggested
a minor limitation of productivity by P availability. The TFT included Clusia elliptica, a
species whose habitat extends into the sub-paramo [35], where tough leaves are required
due to a high amount of shearing stress related to high wind speeds [66]. It is thus
considered to exhibit very low productivity.

P2 showed a decreased SLA, although to a lesser degree than P1-TFT, as it comprised
species with thinner leaves and higher leaf area. This TFT showed the highest increase in
leaf C, while exhibiting lowered N content. An increased C/N was combined with a minor
decrease in the N/P ratio, which showed fewer restrictions due to nutrient availability.
Due to its leaf morphology, it was still considered a low-productivity TFT.

The P3-TFT had thicker, smaller leaves than P2; however, its SLA was higher. Whereas
the leaf N content was decreased, its C content showed only a slight increase. However,
the C/N ratio was elevated, whereas its decrease in N/P ratio showed minor limitations
due to P availability. P2 combined high-elevation species with mid-elevation species
like Alzatea verticillata and Podocarpus oleifolius, which favor nutrient conservation over
productivity and, as such, are slow-growing. Thus, it was considered a P-limited low
productivity TFT.
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P4 similarly had small leaves but with a below-average thickness. Its SLA was
slightly increased. Its nutrient traits showed nearly no deviation from average, except a
decreased N/P ratio, which suggested it may be more N-limited. It was hence considered
an intermediate productivity TFT.

The low-elevation species Miconia aff punctata was assigned into a separate P5-TFT.
Although it had only slightly thinner leaves than P4, it exhibited much larger leaves and a
higher SLA. Leaf carbon was slightly increased. Although a strong increase in N content
leading to a low C/N ratio was observed, its N/P ratio suggested a high limitation by P
availability. Thus, it was considered a P-limited, high-productivity TFT.

The P6-TFT showed an increased SLA and leaf area, while leaf thickness was strongly
decreased. The leaf biochemical composition of P6 was characterized by a slight decrease
in carbon content and an increased N content. The C/N and N/P ratios were lower than
the average, which suggested a minor P limitation. Therefore, the P2-TFT was interpreted
as a high-productivity TFT.

P7 was characterized by the highest SLA and total leaf area in combination with low
leaf thickness. It showed strong derivations in biochemical leaf traits, especially for the
C/N ratio, nitrogen, and N/P ratio (Figure 4). Although the increased N/P ratio showed
P limitations for productivity, the generally high N content in combination with large,
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thin leaves could be interpreted as increased productivity. This is further corroborated
by a lowered C/N ratio, which argues for increased photosynthesis per unit leaf area.
This agrees with the fast-growing pioneers (Heliocarpus americanus or Tapirira guianensis)
species comprising P1-TFT (Table S3). It could thus be described as a TFT with very
high productivity.

The P-TFTs exhibited a distinct difference in productivity between high- and low-
elevation species (Figure S4), whereas mid-elevation species were assigned to P-TFTs
ranging from low to very high productivity. It is likely that the higher N content of P2
compared with P3 originated from the higher number of mid-elevation species (Figure 4).
Altogether, P-TFTs showed a transition from low (P1, P2, P3, and P4) to high and very high
productivity (P5, P6, and P7) types.

With regard to solar radiation partitioning between leaves and the atmosphere, the
relevant traits, VIS and NIR leaf albedo, were found to be related to all four optical trait
indicators in the factor analysis (Figure 3). Thus, clustering was conducted based on the
species factor scores for F1 to F4, resulting in eight TFTs for solar radiation partitioning
(R-TFTs, Table 4, Figure S3). The separation quality of the clusters was described by an
average silhouette width of 0.28, indicating a generally weak structuring of the data space,
also compared with the function productivity. Only two R-TFTs (R2 and R8) showed better
separability and compactness.

Table 4. Cluster properties and quality metrics of TFTs influencing radiation partitioning between leaves and atmosphere
(R-TFT). The TFTs were described according to average species factor scores for F1–F4. R-TFT size is the number of species
assigned to the respective TFT. Bold values of silhouette width represent moderately well-separated and compact clusters.
The average within cluster distance could not be calculated for R1 and R3, as they only consist of one species.

R-TFT No. No. of
Species F1 F2 F3 F4

Avg. within
Cluster

Distance

Avg. between
Cluster

Distance

Avg.
Silhouette

Width
Albedo

Difference

R1 1 −0.06 3.38 1.33 2.40 NA 4.17 0.00 very high NIR
intermediate VIS

R2 5 0.80 0.82 0.68 1.61 1.05 2.87 0.49 high NIR
low VIS

R3 1 2.17 2.04 0.47 −0.80 NA 3.40 0.00 high NIR
very low VIS

R4 15 0.80 −0.33 0.30 0.10 1.28 2.56 0.27 intermediate NIR
low VIS

R5 4 −1.00 0.33 −2.30 −0.66 2.22 3.67 0.21 low NIR
very high VIS

R6 12 −0.93 0.20 0.77 0.02 1.50 2.82 0.33 very low NIR
intermediate VIS

R7 9 −0.68 0.10 −0.47 −1.36 1.67 2.99 0.26 very low NIR
high VIS

In general, the VIS albedo of the R-TFT space (median = 7.4%) was lower than the NIR
albedo (median = 21.9%) due to the strong absorption features in the visible spectrum. As
a consequence, the deviations in the NIR albedo from the average of all R-TFTs were also
higher compared with the VIS region (Figure 5). Two TFTs (R4 and R8) revealed a negative
deviation in both VIS and NIR albedo, whereas, for the other types, the mathematical sign
of the VIS/NIR deviations was inverted, which was expected from the negative correlation
between VIS and NIR albedo (Figure S5). Positive VIS at negative NIR deviations occurred
for R5, R6, and R7, whereas the contrary held for R1, R2, and R3. R4 laid close to the
ecosystem average median albedo in the NIR and R1 and R6 in the VIS. The strongest
positive deviation for NIR albedo was found in R1 (represented by one species only), and
an exceptionally pronounced positive VIS albedo deviation was found for TFT R5. The
absolute range of ecosystem albedo variations in the R-TFT space was 2.8% for VIS albedo
and 5.9% for NIR albedo.
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The different optical properties of the TFTs could be explained by the optically effective
functional leaf traits (Figure 6, Table S4). Although the differentiation of VIS albedo
deviations was less clear between the R-TFTs, a continuous decrease in NIR albedo from
R-TFT 1–8 was visible. R1 showed an average behavior in VIS albedo but the strongest
positive deviation in NIR albedo. This was not expected because the pioneer species
Miconia aff punctata forming this TFT cluster is characterized by thinner and larger leaves
at average leaf water. However, the positive NIR albedo deviation might be related to the
exceptionally positive deviation of the leaf N/P ratio (33.7, deviation +73.8%). The positive
leaf N causing this ratio (Figure 6) supports an increased leaf chlorophyll content and, thus,
a higher NIR reflectance in the transition from red to NIR wavelength (red edge effect). R2
was characterized by thicker and small leaves (Figure S6) with reduced leaf water (Figure 6).
The combination of lower water absorption and a thicker leaf with a higher cross-section of
structural leaf components explains the enhanced NIR albedo. The thickness of the leaves
promotes the absorption of VIS radiation, reducing VIS albedo. The TFT group R3 revealed
the highest leaf thickness at the lowest leaf area (Figure 6 and Figure S7). The cluster
only consisted of the high-elevation sclerophyllous tree species Clusia elliptica. The high
leaf structural components and the positive leaf water deviation led to positive/negative
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deviations in NIR/VIS albedo. R4 was the biggest R-TFT group, consisting of 15 mid- to
high-elevation species with relatively thick but small leaves (Figure 6, Figure S7). The
strong negative correlation with leaf thickness (Figure S5) was the reason for the negative
deviation of the VIS albedo in this R-TFT group. The weaker positive relation of structural
elements with NIR albedo in combination with negative deviations of N most likely reduced
the red-edge effect through lower leaf chlorophyll content, finally leading to a close-to-
average NIR albedo. R-TFT 5 included four mid- to high-elevation species, characterized
by the biggest and thinnest leaves (Figure S6), with minor positive deviations in leaf water
(Figure 6) and the highest positive leaf Ca deviation (+48%). The latter is known to support
high leaf water throughput [67]. The lacking reflective cross-section of leaf structural
elements and the increased leaf water absorption were the reason for the negative deviation
in NIR albedo (Figure 5). Exceptionally high was the increase in VIS albedo. This could be
explained by weak absorption. The leaf nutrient contents of N (Figure 6) and, particularly,
P (high positive deviation of 24.5%), as well as an exceptionally high positive deviation
in leaf Fe (+48.3%) supported increased leaf chlorophyll concentration. Leaf Fe positively
influences the chlorophyll leaf content, where a considerable increase in leaf reflectance,
particularly around 550 nm, with leaf Fe level was reported [68]. R6 comprised 12 mostly
lowland species with smaller and thin leaves. Consequently, the cluster showed a reduced
NIR reflectance mainly due to thin leaves. The VIS albedo was slightly positive. Obviously,
the high leaf N (Figure 6) and P contents, the latter having the highest positive deviation of
39.5%, supported the leaf chlorophyll level so that VIS albedo could be slightly enhanced,
particularly in the green band. R-TFT 7 encompassed nine low- to mid-elevation, large-
leaved species with below-average leaf thickness (Figure 6, Figure S7). VIS albedo showed
a positive deviation at average leaf N. The highest positive leaf water content at below-
average thickness increased NIR absorption so that the NIR albedo was clearly reduced.
Leaf water could support photosynthesis and chlorophyll content, enhancing green albedo.
R8, consisting of five mid- to high-elevations species with small leaves of intermediate
thickness, showed relatively moderate deviations in both the functional leaf traits and VIS
albedo (slight negative deviation), but the strongest negative deviation in NIR albedo. The
slight negative deviation of the VIS albedo is mainly explained by the intermediate leaf
thickness, but also by the strongest negative deviation in leaf Ca (−36.9%), which revealed
a strong positive relation with VIS albedo (Figure S5). The strongest negative deviation of
NIR albedo was hard to explain with the average behavior of the majority of the functional
traits. However, NIR albedo was negatively correlated with leaf P and Mg (Figure S5). Leaf
P showed a higher positive deviation for cluster 8 (+17.9%), and Mg particularly revealed
an exceptionally high positive deviation of all clusters (+39.9%), so that the latter explained
the strong negative deviation of the NIR albedo.

Figure S7 shows that that the individual R-TFT clusters were organized along the
altitudinal gradient. No cluster included species belonging to all three elevational levels.
The 1000 and 3000 m plots were included in four clusters each, while the transition level
at 2000 m belonged to six clusters. By including elevation into the cross-correlation of
the R-TFT optical (albedo) and functional traits (Figure S5), we found a clear increase
in VIS albedo with altitude. This mainly occurred due to the increase and decrease in
the absorbing structural traits leaf thickness and SLA, respectively, of the R-TFT species.
Conversely, there was no pronounced correlation of NIR albedo with altitude. NIR albedo
seems to be related to a complex balance between structural (e.g., leaf thickness, SLA) and
biochemical traits, where some of the correlating traits are also height-related. However,
when excluding the single-species cluster 1, a superordinated relation between NIR albedo,
SLA, and elevation became obvious (Table S5).

Even if the cluster separation only shows a weak structuring, the eight R-TFTs would
have different impacts on solar radiation partitioning between leaves and the atmosphere.
Because absorbed VIS radiation is more converted into chemical energy, whereas absorbed
NIR is converted into heat, it was important to differentiate the groups accordingly (Table 4).
The first three R-TFTs (R1: very high NIR albedo, intermediate VIS albedo; R2: high NIR,



Forests 2021, 12, 649 15 of 21

low VIS; R3: high NIR, very low VIS) primarily absorb VIS but, to a greater extent, reflect
NIR radiation, which means that more VIS energy was used for photosynthesis than NIR
for heating. More balanced is R4 (intermediate NIR, low VIS), whereas R5 (Low NIR,
very high VIS) reflected the highest portion of incoming VIS radiation. Types with higher
NIR absorption with different behavior of VIS albedo were R6–R8 (R6: very low NIR,
intermediate VIS; R7: very low NIR, high VIS; R8: very low NIR, low VIS).
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all R-TFTs were: SLA = 83.0 cm2/g, leaf thickness = 0.32 mm, N = 17.3 mg/g, and leaf water content (LWC) = 642.8 mg/g.
Significant differences between the TFT traits and the average TFT median trait are marked corresponding to the
p-value < 0.05: *; p-value < 0.01: **; p-value < 0.001: ***. The TFTs R1 and R3 were not tested, as they were only com-
prised of a single species.

4. Discussion

Here, we delineated functional tree types for two different ecosystem functions, pro-
ductivity, and solar radiation partitioning, by clustering species factor scores of a few
optical trait indicators (OTIs), which were derived from commonly used optical metrics
and leaf functional traits.

The indicator function of the OTIs (F1–F4) for the two ecosystem functions was
in accordance with other studies. The correlation of F1 with several traits of the leaf
economics spectrum describes leaf-scale productivity ranging from conservative resource
use and lowered productivity to fast nutrient acquisition and increased productivity [9,43].
The chlorophyll-related optical metrics contributing to F2 positively influence leaf-scale
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productivity because chlorophyll is increased to optimize pigment concentrations for
photosynthesis [69]. Chlorophyll contents have been found to enhance photosynthetic
capacity [69–71] and light-use efficiency [72]. As a consequence, leaf carbon gain increases
with increasing chlorophyll content [73,74]. With regard to radiation partitioning, the
correlation of F1 with functional traits represents the prevalent influence of non-pigmental
leaf constituents and leaf structural properties on leaf reflectance [11]. The influence of leaf
pigments on reflectance was divided into two separate OTIs related to chlorophyll (F2) and
photo-protective pigments (F3). This originates from different impacts on leaf reflectance,
as anthocyanins and carotenoids absorb strongly in the green region and weakly in the blue
and red regions (various sources in [11,75,76]). F4 indicates the impact of leaf water content
on NIR albedo [77]. Altogether, we found that the two selected ecosystem functions of the
mountain rainforest in SE Ecuador could be represented by different OTI combinations,
which coincides with other studies that also used different trait sets to explain ecosystem
functions [78,79].

Based on the different OTIs used for the two ecosystem functions, the clustering
approach also resulted in two TFT sets with a differing assignment of the 52 tree species.
The productivity-related P-TFTs in the mountain rainforest showed a separation in high- to
mid-elevation and mid- to low-elevation TFTs, primarily due to a trend from low (P1–P4) to
high acquisitive functional leaf traits (P5–P7), which indicates higher productivity at lower
elevations. This corresponds to a study in the Peruvian Andes, which found a decrease
in productivity with increasing elevation [80]. The difference between productivity at
high and low elevation was also confirmed by a stand-level study in the same region,
showing a sharp decrease in net primary production (NPP) from 1000 to 3000 m [81].
This was also supported by general elevation trends in productivity-related leaf traits,
namely SLA and N, which decrease from the mid- to low-elevation TFT P7 to the high-
elevation TFT P1. Wallis et al. [81] found a comparable decrease in SLA from high to low
elevation. They also found that foliar N was reduced at high elevation but that similar
levels occurred at 1000 and 2000 m elevation. Our new, more comprehensive trait data set
revealed an average decrease in foliar N also between 1000 and 2000 m, thus supporting
the superordinated grouping of P-TFTs for productivity along the elevation gradient. In
addition to this elevational trend, further cluster separation may result from the local
environmental conditions, such as soil nutrient pools, that influence productivity. The
high number of mid-elevation species assigned to the low-productivity TFTs P2 and P3
corresponds to the differences in foliar N, which were also found by Moser et al. [82] at
the same elevation level. Thus, P-TFTs characterizing less acquisitive slow-growing and
high acquisitive fast-growing species could generally occur on the same elevation level
where the cluster separability is related to differences in soil nutrient availability [83–86].
In extreme cases, the superordinated elevation P-TFT grouping might be masked by strong
local nutrient gradients observed in related leaf traits such as leaf N [87]. This might
explain why other studies in Andean mountain rainforests found no clear altitudinal
trend in productivity [88]. Our P-TFT grouping revealed that no complete masking of the
elevation (climate) effects along the elevation gradient occur for the mountain rainforest
in SE Ecuador, but that local nutrient gradients lead to a functional subgrouping of tree
species at the same elevation level. This combined influence of elevation (through climate)
on productivity was recently investigated for two Ecuadorian mountain forests by Homeier
et al. [89], including our study site.

The second set of TFTs was delineated to describe impacts on solar radiation turnover
at the leaf level for both VIS and NIR wavelengths. The R-TFTs showed a decrease in VIS
albedo with increasing elevation, whereas NIR showed a less distinct direct differentiation
with elevation. The R-TFTs were separated based on all OTIs relating to leaf structure and
nutrient status (F1), pigment concentrations (F2 and F3), and interactions between NIR
albedo and leaf water status (F4). The clusters revealed a clear decrease in VIS albedo
with increasing elevation, whereas NIR initially showed a less clear differentiation with
elevation. However, alterations in NIR albedo were attributed to elevational changes in
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SLA by Doughty et al. [5]. Particularly when the single-species cluster of the pioneer tree
Miconia aff punctata was excluded from cross-correlation (Table S5), the relation of the RTF
clusters’ NIR albedo with elevation, SLA, and leaf water became much more dominant
and showed the same direction as in [5]. Further variations are due to biochemical traits
and leaf water. This showed that traits of individual species could mask the general
altitudinal orientation of the optical cluster. The VIS albedo of the R-TFTs revealed a clear
relation to elevation, mediated mainly by leaf structural traits and individually modified
by biochemical traits, such as leaf N for R8. This finding contrasts those of Doughty
et al. [5], who did not find a clear elevational dependence of VIS albedo for another tropical
mountain forest. Poorter et al. [90] showed that SLA correlated positively and chlorophyll
negatively with the availability of light. Because the high-elevation clusters R2, R3, and
R8 were located in an area of very high cloud coverage of around 80% [91], light is scarce.
The expected light adaptation is visible in the reduced VIS albedo (increased absorbance
for photosynthesis) of these clusters, but only in R8 for NIR albedo. Altogether, the R-TFT
groups showed a superordinated orientation of both VIS and NIR albedo to altitude and
structural traits, modified by specific species with diverging biochemical properties. Mid-
elevation species were present in nearly all R-TFTs, which argues for a high diversity of leaf
spectral responses at this altitudinal level. Göttlicher et al. [92] clustered leaf reflectance
and transmittance of species in a montane rainforest at 2000 m into seven groups, also
supporting our cluster results.

Despite the functional reasonableness of our TFT grouping for both functions, it
is debatable if the groups are separated enough to justify distinct TFTs in LSMs. The
clustering of OTIs into TFTs showed only a weak structuring of the TFTs. This underpins
the generally high variation within functional groups but distinct differences between
average traits, as also found by Reich et al. [16]. The main reason is the near-continuous
distribution of optical functional indicator values, which can similarly be observed for
the functional traits of species in the study area [28]. A reason for this is most likely the
high number of tree species in the megadiverse mountain forest. High data continuity
was also confirmed for other studies using a large number of tropical species [93,94].
Furthermore, trait responses to climate variables as described for SLA [5] may also be
continuous; thus, vegetation representation in LSMs may be improved by the integration of
full trait diversity rather than using a fixed average of PFT parameters [28]. It was shown
that the precision of model predictions for vegetation productivity could be improved by
supplying a range of values for PFT parameterization; however, fixed-parameter values
for key plants have been, to date, largely thought sufficient for the calculation of surface
fluxes (e.g., evapotranspiration and net shortwave radiation) [95]. Doughty et al. [5] and
the considerable range in NIR optical traits found in our study, however, underpin the
need for better model parameterization, especially for the function of radiation partitioning.
The TFT sets in this study provide the possibility of using regionally applicable groups
for vegetation parameterization, which may improve LSMs such as the community land
model (CLM) [96]. A better optical parameterization may especially improve simulations
of energy and water fluxes, as Göttlicher et al. [92] found strong deviations between
default and fixed VIS and NIR albedo parameters from the general PFT “evergreen tropical
broadleaved trees” deployed by the CLM and the real levels in the mountain rain forest.

5. Conclusions

We found that OTIs could be used to categorize species of a megadiverse tropical
mountain forest into ecologically meaningful groups for the two functions of productivity
and radiation partitioning, which can be explained by environmental drivers. P-TFTs
represent leaf-scale productivity in reasonable groups, reflecting acquisitive traits that
adequately represent stand-scale patterns of forest productivity. The R-TFT set was consid-
ered to be well-suited to functionally differentiating tree species with regard to radiation
partitioning, as optical metrics directly relate to VIS and NIR albedo. Elevation-dependent
differences in VIS and NIR albedo are especially expected to enable the simulation of
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changes in radiation fluxes, which were shown to affect heat fluxes between the atmo-
sphere and vegetation, potentially leading to strong additional warming feedback under
climate change [5].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12050649/s1. Table S1: Means and standard deviations of climate variables for the study sites
by elevation; Table S2. Overview of sampled species and mean functional traits; Table S3. Species
affiliation to TFTs for productivity (P); Table S4. Species affiliation to TFTs for radiation fluxes (R);
Figure S1. Correlation matrix of optical traits; Figure S2. Clustering in the bivariate factor space for
the productivity ecosystem function; Figure S3. Clustering of the complete factor space; Figure S4.
Altitudinal distribution of P-TFTs along the elevation gradient Figure S5; Cross-correlation matrix
(Spearman’s rho) of the R-TFT VIS and NIR and albedo with the median values of the functional
traits; Figure S6. Leaf geometry of the R-TFT clusters; Figure S7. Altitudinal distribution of R-TFTs
along the elevation gradient.
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