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Abstract: Genetic diversity is a critical resource for species’ survival during times of environmental
change. Conserving and sustainably managing genetic diversity requires understanding the distribu-
tion and amount of genetic diversity (in situ and ex situ) across multiple species. This paper focuses
on three emblematic and IUCN Red List threatened oaks (Quercus, Fagaceae), a highly speciose
tree genus that contains numerous rare species and poses challenges for ex situ conservation. We
compare the genetic diversity of three rare oak species—Quercus georgiana, Q. oglethorpensis, and
Q. boyntonii—to common oaks; investigate the correlation of range size, population size, and the
abiotic environment with genetic diversity within and among populations in situ; and test how well
genetic diversity preserved in botanic gardens correlates with geographic range size. Our main
findings are: (1) these three rare species generally have lower genetic diversity than more abundant
oaks; (2) in some cases, small population size and geographic range correlate with genetic diversity
and differentiation; and (3) genetic diversity currently protected in botanic gardens is inadequately
predicted by geographic range size and number of samples preserved, suggesting non-random
sampling of populations for conservation collections. Our results highlight that most populations of
these three rare oaks have managed to avoid severe genetic erosion, but their small size will likely
necessitate genetic management going forward.

Keywords: conservation biology; fragmentation; botanic gardens; EST; inbreeding; heterozygosity;
microsatellites; population genetics; ex situ

1. Introduction

Genetic diversity is a critical resource for species to adapt to future challenges includ-
ing pests and diseases, climate change, and other environmental changes. To conserve
and sustainably manage genetic diversity, it is important to understand the distribution
and amount of genetic diversity present in situ, and to identify the key factors shaping
that genetic diversity [1–3]. While genetic diversity has been assessed in hundreds of rare
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species globally, there are few comparative, multispecies studies of the influence of range
size, environmental, and demographic variables on genetic diversity in rare species. Previ-
ous studies have shown that, on average, species with larger range sizes (and thus, more
populations, larger populations, and lower genetic drift) have higher genetic diversity [4–6].
Additionally, small local populations whose effective size (Ne) is <500 individuals are gen-
erally at risk of genetic drift and loss of adaptive potential; and even smaller populations
(<50 individuals) experience rapid genetic erosion and inbreeding problems [7]. Addition-
ally, environmental factors may influence genetic diversity at certain loci through selection
by climate or habitat [8,9], or may influence genetic diversity genome-wide through drift
as population sizes are reduced or fluctuate in size [10].

It is equally important to understand how well genetic diversity is conserved ex situ.
The amount of genetic diversity conserved ex situ may be correlated with some of the same
factors impacting genetic diversity in situ (e.g., population size and geographic range size).
Species with larger geographic ranges may require more plants ex situ to fully safeguard
genetic diversity [11,12], but there are few cases empirically testing this [13]. Determining
how many plants are needed to conserve genetic diversity is important to meet global,
national, and institutional commitments on conservation. For instance, the Convention on
Biological Diversity’s Global Strategy for Plant Conservation (GSPC) has created guidelines
for crops, crop wild relatives, and other economically important species that calls for
“at least 75% of threatened plant species in ex situ collections, preferably in the country
of origin”, and for “70% of genetic diversity” to be conserved, by 2020 [14]. The GSPC
also stipulates that collections be “accessible, backed up, and genetically representative”.
Collections that meet these requirements provide insurance against extinction, support
in situ conservation (e.g., supplementation or reintroduction), and provide material for
conservation-relevant research [1,15,16]. Safeguarding exceptional species is especially
challenging [17], as they cannot be kept in traditional seed banks but must be kept ex situ
in living collections (i.e., of mature individuals rather than seeds). Exceptional species
include many common trees such as magnolias, oaks, cycads, and others.

This paper focuses on the tree genus, Quercus (oaks), for which there are currently
112 oak species threatened globally under the International Union for Conservation of
Nature (IUCN) threat categories vulnerable, endangered, or critically endangered [18] with
17 of those in the United States [19]. Unfortunately, acorns are generally recalcitrant (they
cannot be stored in conventional seed banks [20]) and are challenging for tissue culture and
cryopreservation [21], making oaks an exceptional species. Conservation through living
collections in botanic gardens and arboreta is currently the principal ex situ conservation
option for threatened oak species [22,23].

Oaks have significant ecological [24], economic [25], and cultural [26] importance,
while facing increasing conservation threats including habitat loss, invasive species, shifting
climates, and pests/pathogens, such as sudden oak death [27]. For example, oaks support
huge numbers of other species that depend on them for mast or forage [28], and many
oak species are used for timber or non-timber forest products [29,30]. Oaks also feature
incredible ecological breadth, having diversified into many habitats through adaptations in
leaf traits, phenology, habit, water use, and other traits [31,32]. Identifying and quantifying
the factors influencing genetic diversity in situ and ex situ is especially important for
speciose genera like oaks, that has 450 species estimated worldwide. Characterizing
correlates of genetic diversity in a few well-studied species within the oak phylogeny could
serve as the foundation for predictive models of the distribution of genetic diversity. Such
models should make it possible to manage genetic diversity in a wide range of species,
even when data are not available. Discovering the “rules” underlying the distribution of
genetic diversity in situ and ex situ can lead to more efficient conservation.

We focus on three threatened oak species that occur in the Southeastern United States,
a hotspot for genetic and species richness for plant taxa, including oak species (Figure A1).
This region is of particular conservation interest in light of numerous threats including land
use change, increasing drought and high temperatures, changing fire regimes, invasive
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species, urban and suburban sprawl, and extreme weather events [27]. Our focal species
for this study—Quercus boyntonii Beadle (critically endangered [19]), Q. oglethorpensis W.H.
Duncan (endangered [19]), and Q. georgiana M.A. Curtis (endangered [19])—fit all three
categories of rare as outlined by Rabinowitz [33]; small range sizes, high habitat speci-
ficity, and low abundance (Table A1). Each species has less than 2000 mature individuals
remaining, which are distributed in a few fragmented populations, facing the aforemen-
tioned threats. All species are considered habitat specialists (Q. boyntonii on sandstone rock
outcrops and steep hillsides, Q. georgiana on granite rock outcrops, and Q. oglethorpensis
on poorly drained marshlands or creek bottoms, Table 1), but have differing geographic
distributions and habitat requirements (Table 1, Figure 1).

Table 1. Overview and comparison of each of the three species in this study showing geographic range, area of occupancy
(AOO), extent of occurrence (EOO), number of adults estimated in the wild, and current population trends. Data compiled
from IUCN Red List of Threatened Species.

Species IUCN Listing; Habitat and
Geographic Range

AOO
(km2)

EOO
(km2)

Number of
Adult Trees

Population
Trend

Quercus
boyntonii

Critically Endangered; restricted
occurrence in Alabama, restricted
to sandstone outcrops and glades,

and steep dry hillsides

24 4157 50–200 Stable

Quercus
georgiana

Endangered; restricted to isolated
granite outcrops and flat-rocks in

the Piedmont Plateau of the
Southeastern United States.

72–272 16,570–21,600 Unknown Decreasing

Quercus
oglethorpensis

Endangered; disjunct distribution;
small clusters of localities in
Louisiana, Mississippi, and

Alabama, and a more extensive
distribution from Northeast
Georgia into South Carolina

180–3000 130,000 1000 Decreasing

In these three oak species, we ask whether range size, population size, and envi-
ronmental variables correlate to genetic diversity within and among populations in situ.
We then ask to what degree genetic diversity is preserved in botanic gardens and if this
correlates to geographic range size. Specifically, we aim to:

• Assess levels of genetic diversity and differentiation in our focal species and compare
them to other rare and common oak species (hypothesis: common oak species have
more genetic diversity);

• Determine if genetic diversity and differentiation correlate with the relative range
size of the three oak species (hypothesis: larger range size correlates to higher genetic
diversity and higher genetic structure)

• Determine if genetic diversity and differentiation are correlated with demographic
(e.g., population size) and/or environmental variables (hypothesis: lower genetic diver-
sity in smaller populations; genetic diversity correlates with environmental variables);

• Quantify the amount of genetic diversity of each species that is conserved ex situ
and determine whether this is correlated with features of those species (hypothesis:
genetic diversity should be predicted by both the number of plants ex situ and the
commonness of the species).

With 31% of the United States’ oak species now considered of conservation concern,
results from this study should assist in assessing genetic diversity of the many other
threatened oak species and designing management strategies for them, especially those for
which genetic diversity is not available [18].



Forests 2021, 12, 561 4 of 18

Forests 2021, 12, x FOR PEER REVIEW 3 of 20 
 

 

cluding land use change, increasing drought and high temperatures, changing fire re-
gimes, invasive species, urban and suburban sprawl, and extreme weather events [27]. 
Our focal species for this study—Quercus boyntonii Beadle (critically endangered [19]), Q. 
oglethorpensis W.H. Duncan (endangered [19]), and Q. georgiana M.A. Curtis (endangered 
[19])—fit all three categories of rare as outlined by Rabinowitz [33]; small range sizes, high 
habitat specificity, and low abundance (Table A1). Each species has less than 2000 mature 
individuals remaining, which are distributed in a few fragmented populations, facing the 
aforementioned threats. All species are considered habitat specialists (Q. boyntonii on 
sandstone rock outcrops and steep hillsides, Q. georgiana on granite rock outcrops, and Q. 
oglethorpensis on poorly drained marshlands or creek bottoms, Table 1), but have differing 
geographic distributions and habitat requirements (Table 1, Figure 1). 

Table 1. Overview and comparison of each of the three species in this study showing geographic range, area of occupancy 
(AOO), extent of occurrence (EOO), number of adults estimated in the wild, and current population trends. Data compiled 
from IUCN Red List of Threatened Species. 

Species IUCN Listing; Habitat and Geographic Range 
AOO 
(km2) 

EOO 
(km2) 

Number of 
Adult Trees 

Population 
Trend 

Quercus  
boyntonii 

Critically Endangered; restricted occurrence in 
Alabama, restricted to sandstone outcrops and 

glades, and steep dry hillsides 
24 4157 50–200 Stable 

Quercus  
georgiana 

Endangered; restricted to isolated granite out-
crops and flat-rocks in the Piedmont Plateau of 

the Southeastern United States. 
72–272 16,570–21,600 Unknown Decreasing 

Quercus 
oglethorpensis 

Endangered; disjunct distribution; small clus-
ters of localities in Louisiana, Mississippi, and 
Alabama, and a more extensive distribution 
from Northeast Georgia into South Carolina 

180–3000 130,000 1000 Decreasing 

 
Figure 1. Sampled locations in relation to species geographic range; note that most extant occur-
rences were sampled. Range is based on county-level occurrences and is derived from USDA 
PLANTS. Panel (A) shows the sampling distribution of all three oak species included in the study; 

Figure 1. Sampled locations in relation to species geographic range; note that most extant occurrences were sampled. Range
is based on county-level occurrences and is derived from USDA PLANTS. Panel (A) shows the sampling distribution of all
three oak species included in the study; (B) depicts the known distribution of Q. boyntonii and sampled locations; (C) depicts
the known distribution of Q. georgiana and sampled locations; (D) depicts the known distribution of Q. oglethropensis and
sampled locations.

2. Materials and Methods
2.1. Study Species, Sampling, and Genotyping

These data were collected and used for a previous study answering different ques-
tions/in a different application [13]. Previously the data, along with genetic data of eight
additional taxa of woody plant, were used to examine genetic diversity ex situ com-
pared to in situ. We briefly described sampling and genotyping methods here for each
focal species; complete collection and genotyping methods can be found in Hoban et al.
2020 [13]. For each species, we collected in situ samples from as many known popu-
lations as possible, and selected only trees representative of typical leaf morphologies
for each focal species to avoid any possible hybrids. However, it is possible some hy-
brids were sampled because gene flow among oak species can occur (see Discussion). To
find ex situ samples, we used Botanic Gardens Conservation International PlantSearch
(https://members.bgci.org/data_tools/plantsearch, accessed on 2017), a global database
of more than 1000 botanic gardens and their collections.

Quercus boyntonii (Alabama sandstone post oak) is endemic to Alabama (USA.), al-
though historical records say that it formerly grew in Texas [34]. It is a shrub or small
tree, sometimes reaching a height of 6 m, but usually smaller. Q. boyntonii was sampled
ex situ from 16 botanic gardens and arboreta that have Q. boyntonii in their collections,
totaling 87 individuals. In situ individuals were sampled in natural preserves, private
property, and suburban parks. In situ population sizes ranged from fewer than 10 to more
than 100 trees. Occurrences of the species are patchy, coinciding with suitable remnant
habitat: sandstone outcrops, ridges, and slopes. We sampled 246 in situ samples (227
included in final analysis after clones were removed). In situ samples were collected during
May 2017, and ex situ samples were collected between April and September 2017. Due
to the patchiness of habitat, occurrence, and wind pollination it is challenging to delimit

https://members.bgci.org/data_tools/plantsearch
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strict “populations”. For these analyses, we used 8 km distance to delineate populations
in instances of continuous distributions. We genotyped all individuals using 11 neutral
microsatellites from previous studies in oaks. Extraction, testing of the larger panel of
markers from which our microsatellites were drawn, and genotyping are discussed in
detail in Hoban et al. 2020 [13].

Quercus georgiana (Georgia oak) is native to the Southeastern United States, mainly in
Northern Georgia, but with additional populations in Alabama, North Carolina, and South
Carolina. It grows on dry granite and sandstone outcrops of slopes of hills at 50–500 meters’
altitude [35]. Quercus georgiana is a small tree, often shrubby in the wild, growing to 8–15 m
tall. Quercus georgiana was sampled from nine populations across the known range of the
species through the use of herbarium records, collection data from botanic garden records,
and USDA PLANTS Database (USDA 2012). All sampled populations were separated by
at least 15 km. A total of 226 samples (223 were retained with sufficient genetic data) were
sampled in June 2011. At least 24 individual trees were randomly sampled from each site,
and sampled plants were at least five meters apart. Seventeen botanical institutions in the
United States, France, and Belgium shared samples, totaling 36 individuals. Eight nuclear
and 11 expressed sequence tag (EST) microsatellite markers were used for genotyping,
following extraction and genotyping methods detailed in Hoban et al. 2020 [13]. We expect
EST microsatellites to have lower polymorphism information content as they are associated
with transcribed regions of DNA [36]. Nuclear and EST markers were assessed separately
for analysis.

Quercus oglethorpensis (Oglethorpe oak) is a long-lived woody plant endemic to the
Southeastern United States. Extant and largely fragmented wild populations are docu-
mented in South Carolina, Georgia, Alabama, Mississippi, and Louisiana. Q. oglethorpensis
has a disjunct distribution across its range, with smaller clusters of localities in Northeast
Louisiana, Southeast Mississippi, and Southwest Alabama, and a more extensive and well-
known distribution from Northeast Georgia across the border into South Carolina. It grows
to up to 25 m in height, and has leaves that are flat, narrowly-elliptical and usually without
lobes. We prioritized sites with the most up-to-date occurrence data that was gathered
in July 2015 during a germplasm collection effort [37]. We included additional sites not
visited during the collection effort so that the greatest geographic distribution could be
sampled. Sampled populations were separated by at least 9 km. Eight in situ populations
were visited for a total of 191 samples (187 were retained with sufficient genetic data).
Ex situ samples were collected from 145 trees, representing 16 botanic gardens around
the world. All samples were genotyped with 10 nuclear microsatellite markers following
extraction and genotyping methods in Hoban et al. 2020 [13].

2.2. Analysis: Basic Statistics

We used the R v 3.6.3 (R Core Team, Vienna, Austria) package adegenet version 2.1.2 to
convert genepop files to genind and genpop formats. We used the R package poppr version
2.8.3 [38] to identify potential clones (and to remove clones/duplicate genotypes before any
other calculations), expected heterozygosity, number of alleles, and allelic richness; hierfstat
version 0.4.22 [39] to calculate pairwise population FST values; diveRsity version 1.9.9 [40] to
calculate observed heterozygosity and inbreeding coefficient (FIS); and Demerelate version
0.9.3 to calculate measures of relatedness [39–44]. We also tested for signatures of recent
bottlenecks using the heterozygote excess test in the BOTTLENECK software [45] with both
the infinite allele model and the two phase model and the mode shift test. We performed
an ANOVA with species as the factor and population as the unit of analysis, to test for
differences among species in the main summary statistics. For this and subsequent tests we
only used the nuclear SSRs because EST-SSRs have much lower heterozygosity and allelic
richness and we only had them for one species. We also tested for isolation by distance with
linear regression of genetic distance (FST) on geographic distance among populations. All
analysis scripts are available at https://github.com/smhoban/SE_oaks_genetics (accessed
on 15 February 2021).

https://github.com/smhoban/SE_oaks_genetics
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2.3. Influence of Environment on Genetic Diversity and Differentiation

We obtained 19 standard bioclimatic variables from WorldClim 2.0 at a resolution of
2.5 min [46]. To determine if there is a relationship between local climatic variables and
population-level genetics, for each species, we performed ordinary least squares linear
regression [47] of each climatic variable on each of four basic population genetic summary
statistics that we may expect to respond to local climate: expected heterozygosity, allelic
richness, FST, and relatedness. All analysis scripts are available at https://github.com/
smhoban/SE_oaks_genetics (accessed on 15 February 2021).

2.4. Influence of Local Population Size

Following previous work [48–51], we calculated the percentage of genetic diversity
conserved as the proportion of extant in situ alleles preserved in ex situ collections. We
focused on alleles existing in the wild; we did not count alleles existing only in botanic
garden collections. These data were previously presented in Hoban et al. 2020 [13] but
were analyzed in a different context: comparing genetic diversity in ex situ collections
among different genera and without regard to species range sizes.

3. Results
3.1. Basic Results

Genetic summary statistics for all three species include: N of samples genotyped,
genetic diversity, measured as expected heterozygosity (He) and allelic richness (Ar),
genetic differentiation (pairwise FST) and relatedness (R), and estimated population size
(Table 2). We only present one relatedness estimator [43], but the patterns were similar for
all three measures tested. No populations showed significant bottleneck signatures using
the heterozygote excess test and the two-phase model, although one population of each
species did show a signature of a bottleneck using the heterozygote excess test and the
infinite allele model. The smallest population of Q. oglethorpensis showed a “mode shift”,
though no heterozygote excess. For Q. georgiana a bottleneck signature was observed for
five populations (half of the populations) but only for the EST-SSRs. No bottleneck was
detected for Q. boyntonii or Q. georgiana with neutral microsatellites. Q. oglethorpensis, the
largest-ranged species we sampled, and was the only species which showed significant
isolation by distance.

Comparing these three rare species to a set of other Quercus studies, we found that the
rare oaks in this study had among the lowest heterozygosity, and that Q. oglethorpensis had
an exceptionally high inbreeding coefficient (FIS, Table A1).

Table 2. Summary statistics for each population and the average across populations. Reported is the population name
(Pop name), the state the population is located (State, specific locality data is not provided given the rarity of the species),
the number of samples (N samples genotyped) and number of unique multilocus genotypes (unique MLG), the expected
heterozygosity (Hexp), allelic richness (Ar), mean pairwise FST, relatedness (Rel), and estimated number of trees based on
direct observations in the field (Pop size est.).

Species Pop Name State
N Samples
Genotyped

(Unique MLG)
Hexp Ar

Mean
Pairwise FST

Rel Pop Size
est.

Q. boyntonii

IMLS032 AL 14 (12) 0.581 5.02 0.023 −0.014 20
IMLS048 AL 17 (15) 0.605 5.45 0.029 0.234 30
IMLS068 AL 22 (22) 0.605 4.84 0.027 0.024 25
IMLS138 AL 12 (11) 0.593 3.51 0.043 0.013 5
IMLS280 AL 83 (76) 0.642 5.85 0.015 0.05 165
IMLS244 AL 60 (60) 0.63 4.78 0.023 0.134 150
IMLS307 AL 30 (30) 0.651 6.02 0.025 −0.013 70

AVERAGE – 34 (32) 0.615 5.07 0.026 0.061 66

https://github.com/smhoban/SE_oaks_genetics
https://github.com/smhoban/SE_oaks_genetics
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Table 2. Cont.

Species Pop Name State
N Samples
Genotyped

(Unique MLG)
Hexp Ar

Mean
Pairwise FST

Rel Pop Size
est.

Q. georgiana

MR24 AL 24 0.738 7.355 0.051 0.031 24
EDEN32 AL 25 0.624 7.739 0.056 −0.056 50

Pen32 AL 26 0.736 7.506 0.062 0.156 50
CB32 GA 24 0.709 6.827 0.049 0.075 100
DK32 GA 25 0.677 7.503 0.046 0.123 100
CR31 GA 24 0.677 6.656 0.056 0.069 50
SM32 GA 26 0.732 8.114 0.042 0.167 100
am29 GA 25 0.803 9.706 0.039 0.131 100

WGHerb GA 25 0.769 8.993 0.044 0.415 30
COP-9 NC 26 0.588 5.03 0.074 −0.043 200

AVERAGE – 25 0.705 7.54 0.052 0.107 80

Q.
oglethorpensis

RMS-9 LA 14 0.645 5.9 0.069 0.017 200
BIE-3-7 MS 33 0.694 6.03 0.052 −0.025 50
CAT-9 AL 27 0.639 6.25 0.054 0.075 60
MOT-9 GA 31 0.653 5.56 0.073 0.172 500
BUF-9 GA 29 0.62 5.75 0.059 0.008 50
SUM-9 SC 28 0.648 6.06 0.055 0.028 40

AVERAGE – 27 0.65 5.93 0.06 0.046 150

3.2. Genetic Diversity and Range Size for Our Three Rare Oaks

Range size shows some relationship to heterozygosity and allelic richness, in that
Q. boyntonii (the most geographically restricted species) had the lowest heterozygosity
and allelic richness (Figure 2). However, Q. georgiana had the highest heterozygosity even
though its range size was moderate. Range size strongly related to genetic differentiation
as measured by FST. All ANOVA test comparisons were significant except Q. georgiana, Q.
oglethorpensis for allelic richness and Q. boyntonii, Q. oglethorpensis for allelic richness and
expected heterozygosity.
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Forests 2021, 12, 561 8 of 18

3.3. Genetic Diversity and Range Size within Each Species

Genetic diversity and differentiation statistics are presented in Appendix B for popula-
tions above and below Nc of 50 individuals. For two species, Q. boyntonii and Q. georgiana,
the trends were as predicted, with allelic richness and heterozygosity generally higher in
larger populations and FST generally lower for larger populations (Figure A2). Though
statistically significant p-value differences were observed in only a few comparisons, all
other comparisons were not significantly different (Figure A2). Additionally, in these two
species, relatedness generally showed no difference. For the third species, Q. oglethorpensis,
the opposite pattern was observed, with lower genetic diversity, higher differentiation and
higher relatedness in larger populations.

3.4. Genetic Diversity and Environment

Genetic diversity and differentiation were not related to climate variables for Q. geor-
giana and Q. oglethorpensis when testing all 19 bioclimatic variables at 2.5 min—none were
significant after correcting for multiple testing.

3.5. Genetic Diversity in Ex Situ Collections

The percentage of genetic diversity currently preserved in ex situ collections is shown
in Table 3. The percentage was not clearly related to species range size or to the number
of ex situ samples; although Q. boyntonii had the smallest range and moderate number
of samples, it had the lowest genetic diversity ex situ. Note that EST diversity was not
conserved (Figure A3).

Table 3. Percent allele capture in ex situ collections. The percent of alleles conserved in ex situ collections, for different allele
frequency categories, for each species. Allele frequency categories are: all (all alleles); very common alleles (>10%); common
alleles (>5%); low (<10% and >1%); and rare (<1%). For rare alleles and all alleles, two results are presented, percentage
captured when all alleles including those with fewer than two occurrences are included (complete data), and when alleles
with one or two occurrences are excluded (reduced data, shown in parentheses).

Allele Frequency Category (%)

Species N Plants
Ex Situ

Geographic
Range Size All Very

Common Common Low
Frequency Rare

Q. oglethorpensis 145 large 78 (94) 100 100 97 37 (67)

Q. georgiana (EST-SSR) 36 medium 61 (68) 100 85 51 33 (33)

Q. georgiana (nSSR) 36 medium 69 (76) 100 100 75 35 (41)

Q. boyntonii 77 small 60 (70) 100 100 66 32 (29)

3.6. Other Observations

We only identified clones in Quercus boyntonii. For this species we often observed
small “rings” or clusters of stems, sometimes 5 or more meters across. We found 12 pairs
of clones, which werealways were adjacent individuals, either stems sampled immediately
next to each other or within a few meters.

As expected, we found that EST-SSR markers had lower diversity than nuclear SSR
markers, with heterozygosity and the number of alleles being 19% and 14% lower on
average, respectively.

4. Discussion

Our study tested the influence of range size, environmental and demographic variables
on genetic diversity, and differentiation in three rare oak species. Our main findings are
as follows. (1) These three rare species generally have lower genetic diversity than more
common oaks previously studied, and range size relates strongly to genetic differentiation
but less strongly to genetic diversity. (2) In spite of relatively small numbers of populations
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available, due to the rarity of these species, we found that in some cases small population
size and geographic range may correlate with some metrics of genetic diversity and
differentiation. (3) We also found that genetic diversity currently conserved varies among
species of comparable geographic range size and numbers of samples preserved. Thus, our
study supports the idea that “rarity” and collection history are not sufficient to explain
genetic diversity in ex situ collections: the amount of genetic diversity preserved is also a
function of intrinsic biology, demography, or life histories that vary independently of rarity.

We first present our observations in the context of rare and common species in the
genus. Many population genetic studies have been performed in Quercus [52,53]. Genetic
diversity is often summarized using allelic richness and heterozygosity. Expected heterozy-
gosity was lower in our study (less than 0.65 for most populations, and a mean of 0.641
for Q. oglethorpensis, 0.615 for Q. boyntonii, and 0.72 for Q. georgiana) than was observed
in other oaks, which typically had heterozygosities between 0.7 and 0.9 (Table A2). How-
ever, some common oaks were observed with lower genetic diversity (e.g., Q. phillyreoides,
He = 0.535) and some rare oaks were observed with higher genetic diversity (e.g., Q. pacifica
(He = 0.851) and Q. hinckleyi (He = 0.853) as estimated using microsatellites. Some oaks
were postulated to be naturally rare (e.g., Q. boyntonii), others were more likely to be rare
due to human disturbance (e.g., Q. arkansana), and others were increasing in rarity for
a long time (e.g., Q. hinckleyi) [27]. Due to the relatively long-lived nature of most oak
species (100+ years), it is possible that recently rare oaks may take a long time to show the
subsequent genetic impacts of a drop in population size and narrowing ranges that are
associated with their increasing rarity. This form of “extinction debt” has been shown in
simulations [12,54], while more naturally rare oaks would not be expected to show such
genetic impacts. The relatively low genetic diversity in the species we studied may be due
to relatively low population sizes over multiple generations.

Comparing genetic diversity statistics for these three species with different range sizes
we see that Q. boyntonii has lowest heterozygosity and allelic richness as expected based on
small range and highest endangerment status. However, Q. oglethorpensis and Q. georgiana
had relatively equal allelic richness, and Q. georgiana had the highest heterozygosity even
though its range size was moderate. It is not surprising that overall range size was only
a moderate predictor of genetic diversity, as it is the local effective population size that
influences retention of genetic diversity within populations (see next section). The paucity
of bottleneck signatures may suggest the species have not suffered bottlenecks, or that
bottleneck signatures have not had time to develop (as in other species with known, recent
population collapses, e.g., Juglans cinerea, [55]); bottleneck tests are unreliable for recent,
moderate, or gradual bottlenecks [54].

On the other hand, FST is related to species range size for these three species: the
smallest-range species (Q. boyntonii) had lowest FST, and the species with the largest range
size and most general habitat preference (Q. oglethorpensis) had highest the FST (Figure 2).
This conforms to population genetic theory regarding isolation by distance, whereby
populations of a large range species have the most distance among them, and genetic
distance is known to increase with geographic distance. Thus, in our study the influence of
range size was much more apparent on among population genetic differentiation than on
within population genetic diversity. Of course range size is not the only predictor of FST,
factors such as connectivity can also be used to predict FST. For example, wide ranging
oak species with high numbers of populations, and thus high gene flow, can show low FST
(e.g., in Q. macrocarpa [56]).

According to conservation genetic theory we would expect that populations near or
below a population size of 50 individuals would be subject to strong genetic drift. The
exact threshold for a population to rapidly suffer detrimental genetic consequences has
been hotly debated [7,57,58], but here we focused on 50 individuals. For our study we
would predict lower allelic richness and heterozygosity, and high FST and relatedness in
such populations. We see this predicted pattern in Q. georgiana and Q. boyntonii, though
comparisons were significant or nearly so only for FST in Q. georgiana (all loci t test 0.055,
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Wilcox 0.063; ESTs t test 0.04, Wilcox 0.063) and heterozygosity for Q. boyntonii (t test
0.003, Wilcox 0.057). The relatively low number of significant values emphasizes the small
number of replicate populations (inherent in rare species) and the fact that for very recently
reduced populations, genetic diversity impacts may not yet have accumulated [55].

Interestingly, for Q. oglethorpensis all statistics are in the opposite direction of what
might be predicted based on a large population size (higher FST, higher relatedness, lower
heterozygosity, and lower allelic richness). It is not clear why Q. oglethorpensis shows this
pattern. This could be a result of fragmentation coupled with the fact that Q. oglethorpensis
grows predominantly as a subcanopy tree [59]. Although not well-studied in wind pol-
linated trees, subcanopy habit could possibly limit pollen dispersal [60]. However, this
pattern would be consistent with recent expansions or founding populations, which would
result in moderate population size but reduced genetic diversity and increased FST.

There was no relationship between environmental variables and genetic statistics. It
is possible that for these species, neutral genetic diversity is more influenced by current
population sizes, which may be impacted by processes other than environment, such as
land development, loss of habitat, etc. It is also possible that neutral genetic diversity
and demography are influenced by environment but at fine spatial scales and/or along
unmeasured environmental axes. Useful future work will be to create ecological niche
models for each species to test for the impact of habitat suitability/probability of occurrence
in relation to genetic diversity [61–63]. All three species are habitat specialists with typically
very restricted populations.

Although the very common and just common alleles are preserved well in ex situ
collections, low frequency and rare alleles are not conserved well, and overall, only a
moderate amount of genetic diversity is preserved ex situ, between 60 and 78% for these
species assuming all alleles are considered (68–94% if the rarest alleles are dropped).
Previous modeling work suggests that the species with the largest range and highest FST
would require the most samples [11,12]. Quercus oglethorpensis is preserved extremely
well, at 78%, even though it has the largest range; it does have the most individuals ex
situ. Less of the genetic variation of Q. boyntonii is conserved than of Q. georgiana, even
though Q. boyntonii has the smaller range and about twice the number of individuals ex
situ. Other studies of the genetic diversity conserved ex situ have primarily been species
specific and we are only aware of a few attempts to determine if genetic diversity ex
situ correlates to range size. In the plant genus: Zelkova, Christe et al. [64] found that a
small-range endemic was less well conserved than a larger-range species. Several reasons
can explain their similar findings: for the rare species, collectors may have revisited a single
accessible site for seed collection, even though it occurred across high topographic and
ecological diversity, while for the common species collectors in multiple countries had
visited numerous populations. In other words, accessibility and availability of sampling
are important to consider.

Although more than 3000 botanical institutions maintain more than 100,000 globally
threatened species ex situ [65], the conservation value of these collections is unclear. Most
taxa are held in a small number of collections, usually with a small number of inadequately
documented accessions [66,67]. While some collections maintain relatively high levels of
genetic diversity [68,69], research on the genetic representativeness of species in living
collections is sparse. Our results emphasize that the genetic diversity conserved in collec-
tions is not only a function of the number of samples conserved, nor simply a function
of the species inherent characteristics such as range size. Rather, the amount of genetic
diversity conserved is likely a function of the interaction number of samples, range size,
and collection strategy (such as which populations are visited, the spatial sampling within
populations, the number of maternal plants collected from, etc.) [51,70]. While Q. oglethor-
pensis is conserved quite well, Q. boyntonii and Q. georgiana may need more individuals
sampled to better represent in situ diversity.
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Caveats

We used microsatellites because they are an affordable method to achieve an un-
derstanding of genetic diversity and structure. We recognize that increased resolution
could be obtained with next generation sequencing techniques [71,72]. It is known that
microsatellites that are developed in one species and applied in a different species can
show reduced genetic diversity due to PCR amplification failure caused by mutations in
primer binding sites. The markers applied to our species were all developed from other
species of oaks, but were developed in Quercus subgenus Quercus sections to which they
were applied (red oak markers from Section Lobatae for the one red oak species, and white
oak markers from Section Quercus for the two white oak species). However, this is also
the case for nearly all microsatellite studies of oaks: the majority of microsatellites were
developed in European white oaks and then applied in diverse species (Table A2). It is also
known that microsatellites are susceptible to ascertainment bias, such that the investigator
will select markers that are polymorphic in a small sample of test individuals, such that less
polymorphic markers are not included in the study. We did not have an a priori expectation
that the patterns we saw between species were due to this reason, as this should apply to
all oak species using these markers.

Other caveats involve the populations we studied. There are likely some populations
of these species that we are unaware of, and we sometimes were not able to collect all
of the individuals within a population. Moreover, genetic diversity in some populations
may reflect gene flow from other species. It is known that gene flow among related oak
species does occur, often at low levels and that hybridization may be even higher in species
that have low population numbers due to the phenomenon of pollen swamping, where
heterospecific pollen may far outnumber conspecific pollen [73,74]. For instance, in the
extremely rare Q. hinckleyi, hybrids have been identified with genetic markers [52]. We did
attempt to only sample individuals consistent with the phenotype of the target species. Of
course, any of these caveats would obscure the patterns that we were testing for, and it
is possible that if such caveats could be taken into account (for example identifying and
removing all hybrids), the patterns we found here might be stronger.

5. Conclusions and Conservation Implications

We found that genetic diversity and differentiation were influenced by both popu-
lation size and range size, but that patterns did not perfectly accord to predictions. This
emphasizes stochastic processes and the influence of multiple factors on genetic diversity
we see today (time, human influence, and population recovery). We also found that genetic
diversity conserved ex situ was not well predicted by species geographic range size or
number of samples, in contrast to theoretical predictions, and that two species need more
samples ex situ. The overall low genetic diversity in these three rare oaks relative to
more common oaks suggest that genetic diversity may also be low in other threatened
oak species, a supposition to be tested by analyzing several more threatened oaks. We
note that Q. oglethorpensis, in spite of its wide geographic range, had lower allelic richness
and heterozygosity than might be expected—nearly as low as the critically endangered
and small range Q. boyntonii—and thus might already be suffering genetic erosion in its
isolated populations.
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Figure A1. Native U.S. oak species richness by county. County level distribution data from USDA
PLANTS and Biota of North America Program (BONAP) were combined to estimate species richness.

Table A1. The matrix of rarity as presented by Rabinowitz mapped with three rare oaks (Q. boyntonii,
Q. georgiana, and Q. oglethorpensis) and three oaks which are common by two measures (geographic
range and habitat) but rare in abundance (Q. hemisphaerica, Q. incana, and Q. laevis). The three rare
species group together in the same rarity ranking, while the three common oaks group together in
a different rarity ranking. Bold font indicates species is in the subgenus Erythrobalanus (red oak),
regular font indicates species is in the subgenus Leucobalanus (white oak).

Geographic Range Large Small

Habitat Specificity Wide Narrow Wide Narrow

Local Population Size

Large, Dominate
somewhere

Small, non-dominant
Q. hemisphaerica
Q. incana
Q. laevis

Q. boyntonii
Q. georgiana
Q. oglethorpensis

https://github.com/smhoban/SE_oaks_genetics
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Table A2. Literature review and comparison of previously published population genetic studies of oak species and species accessed in this study.

Species Section IUCN
Status AOO EOO # of Loci # of Pops Sample

Size (N) FST GST

Mean
Number

of Alleles
AR Ho He FIS Citation

Quercus
phillyraeoides Cerris NEN NR NR 11 24 536 0.097 0.09 10.45 4.47 0.51 0.54 0.079 [75]

Quercus georgiana Lobatae EN 272 21,600 8 9 224 0.049 NR 8.03 7.82 0.72 0.69 0.019 -

Quercus rubra Lobatae LC NR 4,150,115 10 23 980 0.044 NR NR 5.5– 12.14 NR NR NR [76]

Quercus
berberidifolia Quercus LC NR 250,000 8 2 60 NR NR 18.6 5.72 0.85 0.88 0.039 [52]

Quercus boyntonii Quercus CR 24 4,157 9 7 238 0.026 NR 7.24 5.07 0.62 0.55 0.061 -

Quercus dumosa Quercus EN 620 12,500 8 2 24 NR NR 11.1 4.9 0.77 0.8 0.029 [77]

Quercus hinckleyi Quercus CR 30 380 8 4 123 NR 0.03 13.06 5.15–14.73 0.81 0.85 0.036 [52]

Quercus lobata Née Quercus NT NR 280,000 8 12 270 0.064 NR 8.12 NR 0.8 0.7 -0.196 [78]

Quercus macrocarpa Quercus LC NR 4056,799 5 14 480 0.027 NR 11.184 NR 0.92 0.86 NR [79,80]

Quercus
oglethorpensis Quercus EN 3000 130,000 9 7 188 0.062 NR 6.81 5.8 0.64 0.48 0.234 -

Quercus pacifica Quercus EN NR 3800 8 3 133 0.233 NR 15.8 5.54 0.81 0.85 0.05 [77]

Quercus chrysolepis Protobalanus LC NR 920,000 8 7 100 NR NR 16.4 4.63 0.71 0.83 0.146 [53]

Quercus tomentella Protobalanus EN 250 43,500 8 6 345 NR NR 16.3 3.63 0.56 0.76 0.262 [53]

AVERAGE of
previously

studied species
300 1,079,677 8 10 305 0.093 0.06 13.45 4.82 0.75 0.79 0.056

AVERAGE of
all species 699 822,738 8 9 285 0.075 0.06 11.92 5.29 0.72 0.73 0.069

Definitions: (FST): fixation index; (GST): Nei’s estimation FST generalized for multiple alleles; (AR): Allelic richness; (HO): observed heterozygosity; (HE): expected heterozygosity; (FIS): inbreeding coefficient;
(NR): Not Reported. The IUCN status abbreviations are as follows: (NE): Not Evaluated; (LC): Least Concern; (NT): Near Threatened; (EN): Endangered; (CR): Critically Endangered.
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Figure A2. Box and whisker plots for each species by genetic summary. Each column of graphs
represents different genetic summary statistics: (exp_het): expected heterozygosity; allelic richness;
(pw pop FST): Pairwire population FST; and relatedness. Within each graph, the boxplot on the
right represents populations with greater than or equal to 50 individuals (pop >= 50) and less than
50 individuals (pop < 50).
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