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Abstract: Research highlights: The availability of global distribution data and new, fossil-calibrated
phylogenies has made it possible to compare the climatic niches of the temperate maple (Acer L.)
taxa and assess phylogenetic and continental patterns in niche overlap. Background and Objectives:
The maples have radiated from East Asia into two other temperate continental bioregions, North
America and Eurasia (Europe and West Asia), over a roughly 60-million-year period. During this
time, the Earth’s climate experienced pronounced cooling and drying, culminating in cyclic periods
of widespread temperate glaciation in the Pliocene to Pleistocene. The objective of this study is to use
newly available data to model the climatic niches of 60% of the temperate maples and assess patterns
of niche divergence, constraint, and conservatism in the genus’s radiation out of East Asia. Materials
and Methods: I assembled global occurrence data and associated climatic information for 71 maple
taxa, including all species endemic to temperate North America and Eurasia and their closely related
East Asian congeners. I constructed Maxent niche models for all taxa and compared the climatic
niches of 184 taxa pairs and assessed phylogenetic signal in key niche axes for each taxon and in
niche overlap at the continental and global scale. Results: Maxent models define a fundamental
climatic niche for temperate maples and suggest that drought-intolerant taxa have been lost from the
Eurasian maple flora, with little continental difference in temperature optima or breadth. Niche axes
and niche overlap show minimal evidence of phylogenetic signal, suggesting adaptive evolution.
Pairwise niche comparisons reveal infrequent niche overlap continentally and globally, even among
sister pairs, with few taxa pairs sharing ecological niche space, providing evidence for constrained
divergence within the genus’s fundamental climatic niche. Evidence of niche conservatism is limited
to three somewhat geographically isolated regions of high maple diversity (western North America,
the Caucasus, and Japan). Conclusions: Over 60 million years of hemispheric radiation on a cooling
and drying planet, the maple genus experienced divergent, though constrained, climatic niche
evolution. High climatic niche diversity across spatial and phylogenetic scales along with very
limited niche overlap or conservatism suggests that the radiation of the genus has largely been one
of adaptive diversification.

Keywords: continental disjuncts; environmental niche modeling; Maxent; phylogenetic niche conser-
vatism; paleobotany; phylogenetic signal; sister species; species distribution models

1. Introduction

The forests of the contemporary Northern Hemisphere would be unrecognizable in
the absence of maples (genus Acer L.). After oaks (Quercus L. spp.), the maples comprise the
second-most speciose tree genus in the temperate North [1]. Constituent species range from
cosmopolitan generalists with large ranges (A. pseudoplatanus, A. tataricum) to endangered
hyper-endemics (A. pycnanthum and A. yangbiense [2]). Yet, maple diversity is distributed
unequally across the three bioregions in which these trees are found: upwards of 85% of
maple species (of a total ~158 species [2,3]) are confined to East Asia (China, Japan, Korea,
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Russia, the Indian Subcontinent, and Southeast Asia) with far fewer indigenous to the
forests and woodlands of North America (nine species) and Europe and West Asia (Eurasia;
12 species). Each of these bioregional maple floras consist of continentally radiating clades
giving rise to regionally sympatric, sister taxa (sensu [4,5]) as well as taxa for which the
most closely related, extant sister taxon is regionally or continentally disjunct [6]. Yet, the
significance of this variation in biogeographic histories for the evolution of the maples’
ecological niches—the environmental conditions under which a particular taxon can persist
(sensu Hutchinson [7])—remains unexplored. Only recently, has publicly available global
distribution data, alongside genus-wide, fossil-calibrated molecular phylogenies, made it
possible to determine how biogeographic history affects partitioning of ecological space.

Paleontological scholarship over the last 50 years and more recent phylogenetic re-
constructions have provided a rough outline of the maple genus’s origins and evolution.
Boulter and colleagues [8] synthesized then-available fossil evidence and conclude that
the maples diverged from their close relatives in Sapindaceae (e.g., Dipteronia and Aes-
culus) during the warm, wet early Eocene epoch (~60 mya) in the high latitudes of the
Pacific Rim. They note, though, that ambiguities in the fossil record did not allow them
to determine whether the genus originated in (what is now) East Asia or North America.
Regardless, by the advent of the Oligocene (34 mya), a period of climatic drying and
cooling, the maple genus had diversified considerably and radiated across the Northern
hemisphere. Fossilized maple organs have been found in abundance in East Asia [9], North
America [10], and Europe ([11], reviewed in [8,12]). Strikingly, fossils from some regions
indicate considerable loss of maple diversity over the last ~30 million years of climatic
cooling and drying; Wolfe and Tanai [10], for instance, document fossils of 91 maple species
in 28 sections in western North America alone, compared to the five species (from five
sections) extant in this region today.

Phylogenetic analysis of the extant maples has complemented fossil evidence, pro-
viding support for the “Out of Asia” theory of maple biogeography [6,13–16], in which
the genus originated in East Asia and then radiated throughout the Northern Hemisphere.
Following earlier molecular studies [1,17,18], two groups have recently released comprehen-
sive phylogenies of Acer. Li and colleagues [14] present findings from a nuclear phylogeny,
while Areces-Berazain and colleagues [15] synthesize both nuclear and plastome sequences.
Though some differences in tree topology emerge across the two groups’ work, both find
evidence of an East Asian origin for Acer, divergence from sister genus Dipteronia Oliv.
some 60–63 mya, and the coherence of most of the 13–16 historically delineated sections.
Furthermore, in both cases, major sectional divergence within the genus appears to have
taken place throughout the Eocene (34–56 mya), with subsequent speciation within sections
occurring by the of the Miocene (23–5.3 mya), concomitant with multiple radiations into
North American and Eurasia. I argue that, taken together, paleontological and phyloge-
netic lines of evidence suggest that initially widespread, then very limited, dispersal of the
genus followed by vicariance, allopatric speciation, and ongoing, climate change-induced
extinction produced the current diversity and distribution of the maples.

The contemporary North American and Eurasian maple floras resulting from this
Northern Hemispheric radiation differ in their taxonomic and phylogenetic diversity. The
existing temperate North American maple flora consists of nine recognized species from
eight monophyletic sections (Figure 1), the remnants of a much larger maple diversity [10]
whittled down by climate change-induced extinction and frequent isolation from the center
of maple diversity in East Asia [16]. In their radiation across temperate North America
the maple genus has colonized three distinct geographic regions: eastern North America
(bounded by the Great Plains and the Atlantic Ocean), the West Coast (bounded by the
Cascade Range and the Pacific Ocean), and the Interior West (ranging from Idaho and
Wyoming, USA to northern Mexico). Subsequently, two clades have speciated further
within North America: section Rubra (giving rise to A. rubrum and A. saccharinum [17])
and section Acer (the A. saccharum subspecies and A. grandidentatum [18]). All other maple
sections extant in North America are represented by a single species.
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Figure 1. Study taxa in the maple (Acer L.) genus. Phylogenetic relationships, sectional classifications, and fossil-calibrated
estimated divergence times for 71 taxa are redrawn from Areces-Berazain and colleagues’ [15] supermatrix (nuclear and
plastome) phylogeny. Species are also classified by bioregion: East Asia (EA, black), North America (NA, blue), or Europe
and West Asia (EU, red).

In contrast, the extant Eurasian maple flora consists of 12 species from only three
sections (Figure 1). Indeed, from a phylogenetic perspective, the Eurasian maple flora is
even less diverse than that of North America [14,15], despite physical connection to and
intermittent historical connectivity with the speciose maple flora of East Asia [16]. Though
fossil evidence is not as synoptic as that available for North America and East Asia, available
reports [12,19–22] indicate that Eurasia has also experienced a loss of maple diversity with
post-Eocene cooling, drying, and successive glacial cycles. Of the 12 extant and well-
defined Eurasian species considered here, eight correspond to the Acer clade, which is
presently restricted to Eurasia and North America [18]; the A. saccharum-grandidentatum
complex, its sole American constituent, is sister to all the Eurasian species [14,15]. An
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additional three Eurasian species correspond to the Platanoidea group, which includes
both East Asian and Eurasian species. Finally, the A. tataricum complex, an unusually
cosmopolitan lineage and the only extant one in section Ginnala, extends across Asia
from Korea and China to the Balkans and western Russia, with A. tataricum ssp. tataricum
rounding out the temperate Eurasian maple flora [14,15]. Taken together, the Eurasian
maples likely results from diversification of section Acer following a vicariant separation
from East Asian sister lineages, co-occurring with multiple similar radiations involving
the Platanoidea maples and range expansion of cosmopolitan A. tataricum across central
Asia [15]. This triple radiation of the maples into Eurasia stands in contrast to the less
speciose, but more phylogenetically diverse (eight-section) North American maple flora, as
discussed above.

Over the course of their radiation into North America and Eurasia, the maples likely
responded to post-Eocene global climatic cooling and drying interspersed with warmer,
wetter cycles as did other high-latitude, temperate taxa: through a combination of adap-
tation, migration to more southerly refugia, and extinction [16,22–24]. Yet, such cycles
of adaptation, migration, and extinction in response to cold, dry conditions followed by
range expansion during milder periods likely did not affect all northern hemisphere floras
equally [25–27]. Recent analyses have suggested that many lineages, including maples,
experienced their highest losses of diversity in Europe, where conditions were at times
extremely arid and cold. Meanwhile, diversity was protected in physiographically com-
plex East Asia, where more extensive refugia were available, with North American floras
responding more similarly to those of Europe [26]. More recent glacial cycles in the Quater-
nary (2.6 mya to present) have continued to shape the northern hemisphere temperate flora
along these lines [25,27–29], leading to diversification of, for instance, the North American
sugar maple complex [15,30]. This 60 million-year, pan-hemispheric radiation of Acer has
resulted in considerable variation in the genus’s morphology [31,32] and physiology [33].
Yet, it is not known whether the same can be said for the maples’ ecological niche.

Interpretation of existing patterns in niche diversity at large spatial (e.g., hemispheric)
and temporal (e.g., post-Eocene) scales is far from straightforward [34]. It has long been
recognized that, all else being equal, recently diverged taxa are expected to share func-
tionally significant traits, including those that structure their realized ecological niche [35].
Over evolutionary time, this similarity ought to deteriorate due to genetic drift and weak,
fluctuating selection, producing a proportional, negative relationship between phylogenetic
distance and ecological similarity, as in Brownian Motion models of trait evolution [36,37].
This pattern, of phylogenetic signal [38], provides a null expectation—albeit one that is
rarely met—of what might be observed in the absence of pronounced stabilizing or di-
rectional selection on niche axes. Deviations for this pattern, including the absence of a
relationship between phylogenetic distance and niche overlap or greater dis(similarity)
between the two variables than would be expected based on Brownian Motion, cannot be
interpreted in isolation from other evidence [34,39]. In the case of phylogenetic niche con-
servatism (PNC), the tendency of related taxa to retain key ecological characteristics over
time [40], active debate has yet to fully resolve what constitutes evidence of PNC, whether
PNC is an ecological pattern or process, and how PNC can be tested for given the availabil-
ity of a credible phylogeny and distribution data for constituent taxa [37,38,41]. Given this,
the following interpretation of phylogenetic patterns in the niche diversity of the maples
follows Pyron and colleagues’ [39] framework. This is to say that I interpret deviations in
niche from the null (Brownian Motion or proportional) model of phylogenetic signal in
light of the spatial and climatic diversity of the maples’ Northern hemispheric distribution.

In this synthesis of the phylogenetic and biogeographic evidence of maple niche
evolution, three potential patterns can arise suggesting deviation from the null expectation
of a proportional relationship between phylogenetic distance and niche similarity: niche
(1) divergence, (2) constraint, and (3) conservatism (sensu [39]). I discuss expected evidence
for each of these patterns here in terms of inter- and intracontinental spatial scale. First,
particular lineages within the genus may have experienced ecologically consequential
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divergence as a result of evolution in novel conditions. This divergence may have occurred
in response to both climate change and allopatric speciation over the genus’s 60-million-
year hemispheric radiation. In this case, continental maple floras should have distinct
niches, reflecting climatic differences among East Asia, North America, and Eurasia [41,42].
Additionally, within continental floras, parapatric speciation is expected to have generated
congeners showing low niche similarity, reflecting partitioning of both geographical and
ecological space. Further evidence for divergence could also include a low level of niche
overlap among sister taxa, which I treat here [4,5] as two taxa more closely related to each
other than to any congener, inclusive of well-defined sub-species, such as those of the
American sugar maple (A. saccharum).

Second, a pattern of constrained niche diversity may have arisen when species re-
sponded to novel conditions through development of distinct niches, all while bounded by
lineage-level limits on their evolution [42,43]. In this case, continental floras are expected
to occupy similar climates, reflecting a fundamental niche for the genus. Within continents,
sympatric taxa are expected to have distinct climatic niches, reflecting a tendency of even
sympatric taxa to partition ecological space [25,44,45].

Third and finally, Pyron and colleagues’ [41] conceptualization of niche conservatism
as biogeographic pattern (as distinct from PNC as process) would predict high levels
of overlap both continentally and among sympatric species within continental floras.
Particularly strong evidence for this pattern would emerge if more distantly related species
(e.g., those from different sections) showed high niche overlap following radiation into a
sympatric environment.

To date, though, such systematic, comparative analysis of the diversity in and phylo-
genetic context of the climatic niche occupied by the maple genus lags behind that executed
for other lineages (e.g., [44–47]). Instead, rigorous modeling of maples’ ecological niches
has heretofore been restricted to ad hoc investigations of particular species of interest,
usually with a focus on the climate change vulnerability of common forest species [48–53].
The persistent gap in our understanding of biogeographic patterns in and evolution of the
ecological niche of Acer has motivated my exploration of the following questions:

1. What are the climatic niches occupied by:

a. Particular taxa within the maple genus and
b. The continental maple floras of temperate East Asia, North America, and Eurasia?

2. To what extent do the climatic niches of North American and Eurasian maple flora
display evidence of (sensu [39]):

a. Weak selection and drift, such that niche axes and niche overlap vary propor-
tionally with phylogenetic distance as predicted by a BM model (e.g., phyloge-
netic signal);

b. Divergence, such that continental niches are distinct and sympatric taxa and/or
sister taxa show low niche overlap;

c. Constraint, such that continental niches are similar and sympatric taxa show
low niche overlap; and/or

d. Conservatism, such that continental niches are similar and sympatric taxa—
including those from different sections—show high niche overlap?

To address these questions, I assembled maple species occurrence records from pub-
licly available data sources for 71 maple taxa (species or well-defined subspecies) spanning
the genus’s phylogeny and temperate distribution (Figure 1). After associating these oc-
currence points with relevant climatic data, I created and validated environmental niche
models (ENMs) for each of these taxa and used a resampling method to make pairwise
comparisons of niche similarity and niche optima and breadth between species pairs. Given
the availability of presence data but not true absence data for the study taxa, I elected to use
the Maximum Entropy or Maxent modeling [54,55] to build ENMs for each taxon. Maxent
is widely used in ecological modeling; though it is vulnerable to sampling bias, misspecifi-
cation of environmental background, inclusion of correlated predictor features, and other
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pitfalls of ENM, these potential problems can be addressed through appropriate model
specification [56]. Briefly, Maxent models integrate presence data for a taxon of interest
and user-provided environmental data for each point throughout a user-defined spatial
extent to produce estimates of the likelihood of the taxon’s occurrence across that extent.

I interpret findings from these models in light of available fossil evidence and a
genome-wide, fossil-calibrated phylogeny [15] to assess local to global biogeographic
patterns in the ecological niche of Acer. Beyond providing a synoptic accounting of the
climatic niches of maple taxa for which sufficient phylogenetic and distribution data are
available, this approach may also shed light on the climatic forces affecting the distribution
of rare and understudied taxa, including the 35 threatened maple species not included in
the present study [2].

2. Methods

All analysis was carried out in the R statistical computing environment (Ver. 3.6.3, [57]).
I manipulated spatial data using the “rgdal” package for implementation of the geospatial
data abstraction library (GDAL [58]), the “sp” package [59], and the “maptools” pack-
age [60].

2.1. Distribution Data

I collected publicly available geographic occurrence data for 71 maple taxa from GBIF:
the Global Biodiversity Information Facility ([61]; custom data export, datasets available
at [62] Figure 1; Table S1 in Supplementary Materials). This coverage reflects: half of all
recognized maple taxa; all recognized maple taxa in North America, Europe, and west
Asia; all East Asian sister lineages of North American and Eurasian maples for which data
were available; all temperate maple taxa from the Areces-Berazain et al. [15] phylogeny for
which sufficient georeferenced occurrence data were available. This set of taxa includes rep-
resentatives of all monophyletic sections and series except the monotypic section Wardiana
and all ecologically widespread temperate maple taxa. For A. pycnanthum, which lacked
sufficient GBIF coverage, I also collected geographic data from other published sources
(Table S2). I excluded from analysis fully (sub)tropical maple taxa (e.g., A. caudatifolium,
A. laurinum); Pleistocene relictual populations in North America (e.g., A. skutchii); taxa for
which insufficient georeferenced presence data were available (e.g., A. yangbiense); and
those for which a lack of systematic resolution made it challenging assign presence data
to the right taxon with confidence (e.g., A. mono var. mayrii, A. lobelii). Additionally, of
the 50 maple species identified as critically threatened, nearly threatened, or deficient in
observations necessary to assess conservation status, only three (A. griseum, A. miyabei, and
A. pycnanthum) are included [2]. These decisions and taxonomic treatments are unpacked
further in Appendix A. Taxa selection thus constitutes a representative sampling of maple
taxa with respect to the genus’s phylogeny and temperate geographic distribution.

Following Hijmans and Elith [63], I cleaned all occurrence data as follows. With four
exceptions, I removed all presence points outside of the native distribution of each taxon per
van Gelderen [64]. For four widespread European species (A. campestre, A. monspessulanum,
A. platanoides, and A. pseudoplatanus), I kept distribution data in western and northern
Europe corresponding to the long-standing, naturalized range of these species [65,66].
I also removed all points of unknown or fossil provenance, those lacking latitude and
longitude coordinates, and those with latitude and longitude coordinates identical to
those of a conspecific sample. Sampling intensity varied widely such that the number of
occurrence datapoints available for a given taxon ranged over five orders of magnitude
and some regions (e.g., western Europe, Japan) were blanketed by geographically close
presence points for particular taxa. To improve model comparability and avoid biasing
models toward data from particular regions, I rarefied presence data to one point per
25 km using the thin command in the “spThin” package [67]. This procedure randomly
removed data points to create a spatially thinned dataset without biasing the distribution
of presence points for either widespread or endemic species (Figure S1). Cleaned and
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thinned occurrence data for each taxon were then associated with climate data used for
niche modeling.

2.2. Climate Data

I used the getData (“raster” [68]) command to automatically download climate data from
the Worldclim database [69]. Climate data were gridded at a 2.5◦ resolution (1◦ = 111 km at
the equator) and included four Bioclim variables: mean annual temperature (bio1, ◦C),
temperature seasonality (bio4, ◦C), mean annual precipitation (bio12, mm/year), and
precipitation seasonality (bio15, dimensionless). Though elevation is known to be an
important factor in determining maple species’ distributions [64], it was excluded from
this study due to its frequent correlation with temperature and precipitation variables.
Climatic data were not assessed at a finer spatial grain in order to provide niche estimates
of sufficient generality to compare among taxa across a global scale. These four variables
were then associated with each cleaned and thinned presence point.

I restricted climatic modeling of niche inputs to these four variables out of a desire to
construct for each maple taxon an interpretable niche model that could be meaningfully
compared with the model for another taxon from a different region or continent. For
this reason, I chose variables associated with temperature and precipitation, which are
known to constrain plant distribution across spatial scales [70,71], and did not include, for
instance, the edaphic and hydrologic variables that might be relevant to one maple species
and irrelevant to another. Furthermore, the four variables in question are generally not
collinear across the maple genus’s range (average collinearity following [72]: µ = 0.381,
σ = 0.105, range = [0.173, 0.615]; Table S3), making them suitable for inclusion in niche
modeling. Other bioclimatic variables pertaining to temperature or precipitation (e.g.,
isothermality, bio3) could have been included, but these were largely correlated with
the chosen variables across the study system and are less obviously interpretable to lay
audiences and managers. Finally, temperature and precipitation are expected to vary in
predictable ways at regional scales given prevailing climate change, and so are informative
not only as determinants of existing species distributions, but also as potential indicators
of climate change vulnerability [51].

2.3. Environmental Niche Modeling (ENM)

For each taxon of interest, I used the “dismo” package to build a Maxent ENM as
follows using the taxon’s cleaned, thinned presence points and associated climate data [73].
First, I determined an extent (Table S3) for each taxon as follows: I began with a rectangle
including all presence and absence points and then expanded it to include terrestrial
surfaces that might be hospitable to the taxon based on available information about its
distribution [2,64–66]. For instance, ENMs of western North American species are bounded
longitudinally by the Pacific Ocean and the Rocky Mountains. Within that extent, I then
used the randomPoints function to generate a set of random background points equal in
number to the given taxon’s thinned presence points [73]. These background points were
then also associated with climate data in the same manner as the presence points. I then
generated a maxent model using all presence and background points (maxent) and default
settings (allowing response classes to be set automatically) and built from this a prediction
raster (predict) showing the likelihood of the given taxon’s occurrence across the extent.
From the Maxent model, I also extracted response plots (response) showing the effect of each
climatic variable on the likelihood of the taxon’s occurrence when each other variable was
held at its median value. Finally, I evaluated variables’ importance to the final model by
retaining the permutation importance, determined by randomly permuting and resampling
the importance of a given variable among presence and absence points, for each variable
(Table S3, Figure S2 [72–74]).

I validated the Maxent ENM for each taxon using a cross-fold approach [63,75]. Ten
times, I used 90% of the taxon’s presence data to train a maxent model, with an extent and
randomly computed background points generated as above. I then tested each model with
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the withheld 10% of presence points. This allowed for the calculation of false (FPR) and
true positive rates (TPR) and plotting of a TPR vs. FPR curve for testing each model using
the evaluate function. The area under the curve (testing AUC) for such validation models
is often used as an indicator of model performance; an AUC > 0.5 indicates a model that
can differentiate between presences and absences better than expected by chance. Training
AUCs are also presented for each taxon’s Maxent model; the training AUC for a particular
model can be interpreted as a metric of how well that model fits the training dataset (in
this case, all thinned presence points). Yet, training AUCs should be interpreted with
caution as they are often depressed for taxa with large or ecologically diverse distributions.
As an alternative, I also calculated and report the True Skills Statistic (TSS; TPR + True
Negative Rate [TNR]–1) alongside the training AUC. TSS ranges from −1 to 1, with values
above zero indicating better model performance by chance. Minimum, medium, and
maximum testing AUCs for the ten training models per taxon are reported alongside other
model specifications and training AUCs and TSSs for each final model in Table S3. I also
qualitatively validated the realism of output maps associated with my models for North
American species against the maps generated by Ellenwood and colleague’s [76] species
distribution models.

2.4. Niche Comparisons

To assess similarity or divergence in ecological niche, I carried out three sets of pairwise
niche comparisons as follows. I made pairwise 184 comparisons between all sympatric
sister taxa (15 pairs), continentally (three pairs) or regionally (six pairs) disjunct sister
taxa, all North American taxa (78 pairs), and European taxa (66 pairs). For context, I also
compared select North American taxa with their closest (non-sister) extant Eurasian and
East Asian co-sectional relatives (17 pairs) and compared select Eurasian taxa with their
closest (non-sister) extant North American and East Asian co-sectional relatives (6 pairs).
Comparisons are detailed in Table S4.

First, I used Warren and colleagues’ [77] “ENMtools” package to execute a niche
equivalency test and then a niche similarity (also called “background”) test [78]. A niche
equivalency test uses a boot-strapping approach to assess whether the niches of two taxa
are statistically the same [79,80]. In this framework, Schoener’s D is used as an index of
niche similarity; a value of zero indicates two completely distinct niches and a value of one
indicates two identical niches. For an identity test (identity.test), an empirical estimate of
D is calculated based on the observed similarity of two species’ niches—each described
by a maxent ENM as detailed above. Presence points from both species are then pooled
and resampled 100 times. For each resampling, new Maxent models are created and D is
calculated. If the empirical D falls outside of this distribution of simulated, null D values,
the niches in question are considered non-equivalent.

A similarity test (background.test) poses a related question: are two niches more or
less similar than expected by chance? As Warren et al. [77] note, this question is especially
important when comparing, for instance, disjunct sister taxa, which may occupy similar
niches in different geographic spaces. Here, I employ a “symmetric” similarity test [77].
This test functions as does the identity test except that calculation of D is based on a
comparison of background points from each taxon of interest. As such, the similarity test
compares the environmental space that could possibly be occupied by individuals of each
taxon [80]. Empirical values of D falling to the left or the right of the null distribution
of bootstrapped D values indicate either a greater difference or similarity in niches than
expected by chance [80].

Finally, following Molina-Henao and Hopkins [78], I used a permutation test to
assess differences between each taxon pair in niche optima and breadths for two of the
environmental variables used in the ENMs presented above: mean annual temperature
and mean annual precipitation. For both variables, I treated the median value for all
thinned presence points as the niche optimum and the difference between the 95th and 5th
percentile as the niche breadth. I then merged presence points for both taxa and resampled
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them randomly 100 times, each time keeping the number of points assigned to each taxon
consistent with the actual number of presence points corresponding to that taxon. I then
recalculated niche optima and breadths for each of these resampled datasets and compared
empirical optima and breadths to the resulting null distributions. When empirical values
fell outside the most extreme 5% of the null distribution, optima and/or breadths of the
two taxa were considered distinct.

2.5. Phylogenetic Signal Analysis

I assessed whether particular axes of the maple climatic niche show evidence of phylo-
genetic signal and whether climatic niche overlap is associated with phylogenetic distance.

First, I tested for genus-wide phylogenetic signal (Blomberg’s K [38]) and local phylo-
genetic autocorrelation (local Moran’s I [81]) in the optimum and breadth of mean annual
temperature and precipitation across Areces-Berazain and colleagues’ [15] phylogeny (as
in Grossman et al. [82]). To do so, I used the “phylosignal” [83] and “phylobase” [84]
packages to map trait optima and breadths onto the maple phylogeny (phylo4d), calculate
K across the genus and I for each tip, and carry out permutation tests to assess significance
of general or local phylogenetic signal (α < 0.1; phylosignal and lipaMoran).

Second, I used a Mantel test to assess whether niche overlap (empirical D) for each
species pair was associated with phylogenetic distance [85,86] as estimated in the Areces-
Berazain et al. [15] tree (mantel in the “vegan” package [87]). I conducted this analysis once
for the North American maple flora (N = 78) and once for the Eurasian flora (N = 66), each
time specifying 999 permutations. I did not apply a mantel test to compare the phylogenetic
distance and niche overlap across all study taxa because pairwise niche overlap estimates
for all pairs were not feasible or ecologically informative.

Finally, for a more liberal assessment of the dependence of niche overlap on phyloge-
netic distance, I explored the relationship between empirical D and time since divergence
across all three continental realms [88,89] using non-parametric rank correlation tests. I
tested this relationship once including all pairwise comparisons (N = 184) and then for
regionally sympatric taxa pairs (N = 82) and regionally allopatric taxa pairs (N = 102).

Use of Areces-Berazain and colleagues’ [15] phylogeny, which integrates signal from
both nuclear and plastome sequences, provided qualitatively similar results to analyses
carried out with Li and colleague’s [14] nuclear phylogeny (data not shown). As reviewed
by both groups, these phylogenies generate trees with similar topologies to each other and
to Acer phylogenies published by other workers.

3. Results
3.1. Niches Vary Across Acer Taxa and Continental Floras

All ENMs performed well in validation. Training AUCs (µ = 0.720, σ = 0.035,
range = [0.646, 0.922]) and TSSs (µ = 0.538, σ = 0.86, range = [0.342, 0.784]) were also
acceptable (Table S3). Figure 2 features likelihood-of-occurrence maps, validation curves,
and response plots for two cosectional exemplar taxa; model output for all 71 study taxa
is provided in Table S3 and Figures S2 and S3. ENMs indicate that the climatic factors
affecting maple distribution are taxon-dependent in Acer. Different taxa vary in the extent
to which each of the four climate variables considered in this study (means of and temporal
variability in temperature and precipitation) constrain their distribution. Across the species
included in this study, optimal mean annual temperature ranges from 3.6 ◦C to 17.8 ◦C and
optimal mean annual precipitation ranges from 535 mm to 2009 mm. Niche characteristics
also vary with bioregion (Table 1, Table S4). Most notably, while taxa have relatively similar
temperature optima and breadths across continental floras, large bioregional differences
emerged in precipitation niche characteristics. In particular, East Asian taxa grow in a wide
range of wet and dry environments, while Eurasian taxa, by comparison, rarely occupy
wet habitats (>1000 mm of precipitation a year) with North American taxa intermediate.
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Figure 2. Maxent environmental niche model (ENM) output for two taxa in Section Palmata. (A,D) Prediction maps indicate
locations with a high (green) to low (red/white) probability of occurrence. Actual, thinned occurrence points (black) and
training area under the curve (AUC) are also provided. (B,E) True vs. false positive curves used for k-fold model validation
along with median testing AUC (N = 10). (C,F) Precipitation seasonality (bio15, dimensionless coefficient of variation) was
an especially important environmental variable predicting the distribution of both taxa. Curves indicate the likelihood of
occurrence over a range of values of precipitation seasonality. Table S3 and Figures S2 and S3 give model validation data,
response curves, and prediction maps, respectively, for all maple taxa.

Table 1. Minima and maxima of optima and breadths for two environmental axes of the niches of
temperate maple taxa. See Table S5 for niche optima and breadths on a per-taxon basis.

Continental Flora
Mean Annual Temp. (◦C) Mean Annual Precip. (mm)

Optimum Breadth Optimum Breadth

East Asia (3.6, 17.8) (4.3, 14.6) (573, 2009) (416, 2636)
North America (4.9, 17.5) (3.8, 16.6) (535, 1437) (369, 1956)

Eurasia (4.8, 17.5) (5.3, 10.6) (545, 935) (219, 907)

3.2. Pairwise Niche Comparisons

Outcomes from 184 pairwise comparisons of the climatic niches of maple taxa, in-
cluding all possible pairwise comparisons in the North American and Eurasian bioregions,
indicate a variable but generally low level of niche overlap (0.07 > D > 0.91, median = 0.29).
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Only 15 taxa pairs had significantly overlapping climatic niches (PIdentity ≥ 0.05, Table S4).
Of these, four were allopatric pairs, each of them consisting of two non-sister taxa in the
same section. The other 11 pairs were all sympatric: three distantly related pairs (each
taxon was from a different section), seven sister pairs (of a total of 24 assessed), and one
pair of closely related but not sister taxa. Only three of 78 North American pairs and five of
66 Eurasian pairs showed evidence of climatic niche overlap, suggesting a high degree of
niche separation, even among closely related taxa in these bioregions. None of the three
continentally disjunct sister pairs had overlapping niches, but all sister taxa pairs endemic
to Japan did (Table 2).

Similarity tests for these pairs indicated no cases of greater niche similarity than ex-
pected, meaning that for no pair was empirically calculated niche overlap significantly larger
than a bootstrapped distribution of null overlap values (D > DNull and pSimilarity < 0.05). As
such, outcomes of similarity tests are given in Table S4 but are not discussed further here.
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Table 2. Pairwise comparisons of climatic niches for sister taxa * in Acer. 24 sets of taxa are compared; all but three occur in the same continental bioregion. Epoch of divergence is drawn
from Areces-Berazain et al. [15]). Pairs include 15 sympatric and 9 allopatric contrasts. Shading separates bioregions. Schoener’s D is given for each pair, indicating the degree of overlap
(0 = none, 1 = total overlap) in environmental niche as determined by Maxent modeling. p-values are given for an Identity Test and for permutation tests of similarity in Mean Annual
Temperature (MAT) and Precipitation (MAP) optima and breadth. Non-significant p-values are bolded. Data corresponding to pairwise niche comparisons for non-sisters are given in
Table S4.

Sister Taxa Bioregion Epoch of
Divergence Sympatric?

Both
Endemic to

Japan?
Schoener’s D

Identity
Test

MAT
Optimum

MAT
Breadth

MAP
Optimum

MAP
Breadth

p-Value for Comparison
(Significance Indicates Difference)

A. rubrum and A. saccharinum N. America Miocene y n 0.63 0.01 0.21 <0.001 <0.001 <0.001
A. saccharum ssp. saccharum and

A. saccharum spp. nigrum N. America Pleistocene y n 0.65 0.05 0.01 <0.001 <0.001 <0.001

A. saccharum spp. floridanum and
A. saccharum spp. leucoderme N. America Pleistocene y n 0.66 0.15 <0.001 <0.001 0.77 0.81

A. pseudoplatanus and A. velutinum Eurasia Miocene y n 0.33 0.01 <0.001 0.96 0.83 0.58
A. monspessulanum and A. opalus Eurasia Pliocene y n 0.44 0.01 <0.001 0.42 <0.001 0.86
A. hyrcanum and A. obtusifolium Eurasia Pliocene y n 0.38 0.01 <0.001 0.68 0.32 0.05

A. cappadocicum and A. platanoides Eurasia Miocene y n 0.47 0.01 <0.001 0.09 <0.001 0.16
A. mandshuricum and A. oblongum E. Asia Miocene n n 0.32 0.01 <0.001 0.29 <0.001 <0.001
A. sterculiaceum ssp. franchetii and

A. diabolicum E. Asia Miocene n n 0.21 0.01 <0.001 0.19 <0.001 0.08

A. barbinerve and A. stachyophyllum E. Asia Miocene n n 0.23 0.01 <0.001 <0.001 0.02 0.45
A. griseum and A. triflorum E. Asia Miocene n n 0.23 0.01 <0.001 0.35 0.13 0.70

A. micranthum and A. tschonoskii E. Asia Miocene y y 0.37 0.05 <0.001 0.03 0.01 0.78
A. henryi and A. cissifolium E. Asia Miocene n n 0.43 0.01 <0.001 0.86 <0.001 0.50

A. campbellii and A. ceriferum E. Asia Miocene y n 0.45 0.01 0.30 0.12 <0.001 <0.001
A. buergerianum and A. coriaceifolium E. Asia Pleistocene y n 0.33 0.01 <0.001 0.23 0.28 0.03

A. davidii and A. pectinatum E. Asia Pliocene y n 0.73 0.33 <0.001 0.73 <0.001 0.09
A. palmatum and A. tenuifolium E. Asia Miocene y y 0.44 0.06 <0.001 0.02 <0.001 0.04

A. pseudosieboldianum and
A. shirasawanum E. Asia Miocene y n 0.29 0.01 0.02 0.82 <0.001 0.7

A. longipes and A. truncatum E. Asia Pliocene y n 0.31 0.01 <0.001 <0.001 <0.001 0.45
A. capillipes and A. rufinerve E. Asia Miocene y n 0.71 0.32 0.88 0.72 0.50 0.17

A. distylum and A. nipponicum E. Asia Eocene y y 0.91 0.80 0.57 <0.001 0.04 0.34
A. spicatum and A. ukurunduense N. America/E. Asia Oligocene n n 0.27 0.01 0.89 <0.001 <0.001 <0.001

A. campestre and A. miyabei Eurasia/E. Asia Miocene n n 0.25 0.01 0.01 0.01 <0.001 0.6
A. tataricum and A. ginnala Eurasia/E. Asia Miocene n n 0.40 0.01 <0.001 <0.001 <0.001 <0.001

* sister taxa are defined as pairs of taxa more closely related to each other than to any congener included in the present study per Areces-Berazain and colleagues’ (2021) phylogeny.
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3.3. Phylogenetic Signal Analysis

Values for Blomberg’s K were not significant (p > 0.05) for temperature and precipi-
tation optima and breadths, providing no evidence of lineage-wide phylogenetic signal
in these niche axes. Likewise, local phylogenetic autocorrelation was limited, with little
patterning beyond small pockets of local phylogenetic signal for some niche axes in, for
instance, sections Trifoliata-Pentaphylla and Palmata (Figure S4).

The outcome of Mantel tests assessing the relationship between phylogenetic distance
and niche overlap differed between the North American and Eurasian temperate maple
floras. There was no evidence of a phylogenetic signal in niche overlap among the North
American maples (r = 0.574, p = 0.337), but a marginal signal for Eurasian taxa (r = 0.194,
p = 0.078), suggesting that more closely related Eurasian taxa show a slightly lower degree
of niche overlap.

Across all taxa included in this study, and without reference to continental biore-
gion, phylogenetic distance was also, via rank-correlation test, unrelated to niche overlap
(ρ = −0.086, p = 0.247). Yet, comparison of pairs living in regional sympatry vs. allopatric
pairs revealed a hidden phylogenetic pattern. Though niche overlap of allopatric taxa
showed no phylogenetic signal (ρ = −0.074, p = 0.510), there was a significant negative
relationship between phylogenetic distance and niche overlap for sympatric taxa pairs
(ρ = −0.282, p = 0.004), suggesting at least some adaptive partitioning of the climatic niche
by co-occurring taxa (Figure 3).

Figure 3. Node age (mya) and degree of climatic niche overlap (D, in which D = 1 indicates total
overlap and D = 0 indicates no overlap) were uncorrelated for all taxa pairs considered and for
allopatric pairs (gray, closed circles). However, recently diverging sympatric taxa pairs (black open
circles) had significantly more similar climatic niches than did more distantly diverging taxa (simple
linear regression line shown, adjusted R2 = 0.04). Full dataset can be accessed in Table S4.
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4. Discussion

Through species distribution modeling and integration of phylogenetic and biogeo-
graphic data, I present here the most synoptic accounting to date of the ecological niche of
the temperate Acer, focusing on niche evolution concomitant with the genus’s radiation
into North America and Eurasia. In this work, the maples’ current distribution across the
temperate North shows patterns of climatic niche divergence, constraint, and conservatism.
Below, I integrate findings across the entire maple genus and for the maple floras of North
America and Eurasia.

4.1. The Global Acer Climatic Niche

Through their hemispheric radiation, maple species’ optimal temperature niches have
attained their present breadth of 3.6 ◦C to 17.8 ◦C, covering two-thirds of the range that
typically defines a temperate climate (−3.0 ◦C to 18.0 ◦C MAT; [90]; Table 1). Indeed, across
the Northern Hemisphere, mean annual temperatures slightly above 0 ◦C and mean annual
precipitation in excess of 500 mm/year seem likely to be the climatic constraints limiting
maple colonization. Notably, maple floras on each continent occupy very similar ranges of
mean annual temperature, suggesting a fundamental temperature niche, whereas drought-
intolerant species appear to have been eliminated from the Eurasian flora and, to a lesser
extent, the North American one (Table 1). These continental differences in precipitation
niche are likely due to the prevalence of a more permissive (wetter and less frequently
glaciated) landscape in East Asia than in either Eurasia or North America during the maples’
post-Eocene diversification [16,22,23,26,27]. As such, at the continental (hemispheric) scale,
the genus’s niche shows evidence of both constraint/conservatism in temperature niche
and divergence in precipitation niche [39,42]. I borrow Yang and colleague’s [91] concept
of “constrained divergence” to describe this pattern: in which trait divergence is limited
by fundamental constraints to adaptive evolution. In the context of Pyron and colleague’s
framework, constrained divergence occurs when fundamental limitations on adaptation
interact with divergent evolution in response to novel or changing climatic conditions.

In contrast, phylogenetic analysis of the maples’ climatic niches leads to rejection
of the null model of diversification through drift and weak selection. There was no
evidence of phylogenetic signal in either the optima or breadths of the maples’ mean
annual temperature or precipitation niches, meaning that closely related taxa were no more
or less likely than expected by chance to be similar in these niche axes [36,37]. Furthermore,
pairwise niche overlap was not associated with phylogenetic distance in the North America
maple flora and was slightly negatively correlated with overlap in Eurasia. Indeed, the one
element of clade-wide phylogenetic signal that emerged is the exception that proves the
rule. Phylogenetic distance and niche overlap were uncorrelated across the entire set of
pairwise taxa comparisons, consistent with expectations for niche divergence, constraint,
or conservatism [39]. Yet, when sympatric and allopatric taxa were assessed separately,
this pattern only held for those whose ranges do not overlap. On the other hand, sympatric
taxa showed a modest pattern of decreasing niche overlap with evolutionary distance
(Figure 3). This finding suggests that only in the absence of diversifying adaptation to
novel conditions could phylogenetic signal in niche overlap emerge.

Analysis of sister taxa has been widely employed as a means for assessing phylogenetic
patterns in niche diversity across clades [5] and generally indicated niche divergence for
Acer. Across 24 pairs of temperate maples, I found no relationship between niche overlap
(D) and sister pairs’ degree of sympatry, continent of origin, or phylogenetic distance
(Table 2, Table S4). No Eurasian or continentally disjunct sister taxa had significantly
overlapping niches, but two very recently diverged, sympatric pairs of North American
A. saccharum subspecies and five pairs of sympatric East Asian taxa did. In general, then,
comparison of the climatic niches of taxa more closely related to each other than to any
other congener demonstrated widespread divergence; this was universally the case among
allopatric pairs. To this point, all three sister pairs endemic to the Japanese archipelago
showed significant and high niche overlap (Table 2), even in the case of A. distylum and
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A. nipponicum, which likely diverged in the Eocene (~41.3 mya). It seems likely, then, that
intermittent isolation (e.g., due to sea level rise) in a stratigraphically complex environment
has facilitated conservatism of the maples’ climatic niche during sympatric speciation in
Japan [26]. Yet, outside of Japan, most sister taxa, especially those not belonging to the same
species complex, have speciated allopatrically or in less restricted ecoregions producing a
predominant pattern of niche divergence.

4.2. Niche Divergence, Constraints, and Conservatism Vary Across Scales in the North American
Maple Flora

Within the North American maple flora, patterns of climatic niche diversity and over-
lap conform to expectations for three scenarios: divergence, constraint, and conservatism.
Evidence for each of these patterns varies across spatial and phylogenetic scales.

At intercontinental and regional spatial scales, the North American maple taxa appear
to have experienced niche divergence through their radiation into and across the continent.
Of the 14 cases in which a North American taxon had a co-sectional relative in either Eurasia
or East Asia, only two pairs, A. grandidentatum-A. monspessulnaum (D = 0.58, PIdentity = 0.07)
and A. pensylvanicum-A. grosseri (D = 0.29, PIdentity = 0.06), showed significant niche overlap.
Instead, most North American maples are highly distinct in their climatic niche from their
closest relatives in East Asia or Eurasia. For example, Section Rubra includes only a single
extant temperate East Asian species, the Japanese A. pycnanthum, which diverged from
its North American co-sectional species 20.5 million years ago [92,93]. Though its two
closest relatives, the sympatric North American A. rubrum and A. saccharinum (diverging
10–13 mya [14,15] occupy more similar niches to each other (D = 0.65) than to A. pycnanthum
(D = 0.14, 0.24), all three species show significant niche differentiation (PIdentity = 0.01).
Furthermore, the North American maple flora more generally exemplifies a pattern of
divergence across bioregions within the continent: no pair of American taxa hailing from
different regions has a shared niche (PIdentity ≤ 0.05; Table S4). As such, the novel climatic
conditions presented by radiation into North America and across regions within the
continent appear to have facilitated adaptive diversification in the maples’ climatic niches.

Particularly within eastern North America, though, patterns of niche conservatism
emerge at small, infraspecific phylogenetic scales juxtaposed against and constrained by
niche evolution at larger, sectional scales. This pattern is exemplified by the diversification
of the A. saccharum subspecies and A. grandidenatatum, the sugar maples. Though typically
treated as a single widespread species complex consisting of up to seven sub-species (five,
including A. grandidentatum, are considered here), the sugar maples are likely in the process
of both sympatric and parapatric speciation, as evidenced by diversity in genetics [14,15,30],
morphology [64], and distribution (Figure S3). Indeed, my comparison of the climatic
niches occupied by these sub-species offers support for Oterdoom’s [94], p. 18) proposal
that “the sugar maple (Acer saccharum) has evolved subspecies to fill different niches in
the vast North American continent.” Of the five taxa in the complex that I considered
in this analysis, two pairs northeastern A. saccharum ssp. saccharum and ssp. nigrum
and southeastern ssp. floridanum and leucoderme,—both of them highly sympatric and
recently diverged sister taxa—show evidence of significant niche overlap (D = 0.65–0.66,
PIdentity ≥ 0.05) and similarity in niche axes (Table 2, Tables S4 and S5). Niche overlap
between these sympatric pairs, suggests that, at a small phylogenetic scale (<1 million
years of divergence), niche conservatism predominates. Yet, none of the A. saccharum
subspecies studied here show significant niche overlap with allopatric A. grandidentatum
(diverging 13.3 mya) or with the other five, more distantly related sympatric maple taxa
native to eastern North America (A. rubrum, A. saccharinum, A. negundo, A. spicatum, and
A. pensylvanicum). Nor do any these sympatric taxa from outside the sugar maple group
overlap in their climatic niches with each other or the sugar maples (Table 2, Table S4). In
this case of eastern North America, then, sympatry alongside the absence of niche overlap
provides evidence of constrained niche evolution at phylogenetic scales above the species
level. In this region, more distantly related maple taxa are likely confined by fundamental
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climatic constraints to relatively wet environments [25] but have diversified over time
within this ecological space to realize distinct climatic niches.

Finally, a single pair of maples confined to the North American West Coast share an
overlapping niche, providing limited evidence of either niche conservatism or convergent
evolution. Distantly related but sympatric A. macrophyllum and A. circinatum share a
wide breadth in precipitation niche and have statistically indistinguishable climatic niches
(D = 0.65, PIdentity = 0.15; Table S4). Diverging in the mid Paleocene (60.9 mya), these
two maple taxa might either have sorted into habitats associated with a conserved maple
climatic niche (niche conservatism) or converged in their niche following considerable
niche divergence (convergent evolution [95]). Regardless, this pattern of sympatric niche
overlap among distantly related taxa is the only one I documented in the North American
maple flora.

4.3. Constrained Divergence in Most Eurasian Maple Niches Contrasts with Conservatism in
the Caucasus

As documented for the North America flora, the Eurasian maples appear to have
diverged in their niches during their radiation into and within the continent. Neither of
two European maples (A. campestre and A. tataricum ssp. tataricum) with sister taxa in East
Asia show niche overlap with their sisters, despite relatively recent divergence times in
the mid- to late Miocene, providing evidence of adaptive divergence. Additionally, within
Eurasia, only five of 66 possible taxa pairs overlap significantly in their climatic niche; four
of these pairs are sympatric species endemic to the Caucasus region (discussed below). The
last is a pair in section Acer, A. sempervirens and A. velutinum, which share similar niches
(D = 0.65, PIdentity = 0.17) despite their allopatric distribution. Finally, none of the cases of
significant climatic niche overlap include A. tataricum ssp. tataricum, a phylogenetic outlier
only distantly related to and largely allopatric with the remainder of the Eurasian maple
flora, suggesting a role for niche diversification in its arrival in Eurasia.

Yet, the maples’ climatic niche diversity within Europe appears to have been con-
strained by periods of glaciation and climate change, which have historically limited the
availability of cool, wet niche space [6,26,27]. As a result, the relatively phylogenetically
uniform Eurasian maple flora occupies a narrow precipitation niche (Table 1), with most
cosmopolitan and Mediterranean taxa occupying distinct niches despite considerable range
overlap (Table S4). Typical of this pattern are the four cosmopolitan Eurasian maples—
A. campestre, A. monspessulanum, A. platanoides, and A. pseudoplatanus. Though they have
become naturalized across Europe and into West Asia, all show significant niche differentia-
tion compared to one another and to more endemic, but co-occurring species. Additionally,
interestingly, though few European maple taxa show differentiation in niche breadth com-
pared to their sympatric congeners, differences in optimal temperature and precipitation
niche are quite common, and frequently significant (Table S4). Taken together, this evidence
suggests that the maples’ climatic niche diversity in Eurasia has generally been shaped by
sympatric taxa partitioning a constrained ecological space.

Though the Eurasian maple flora on the whole shows evidence of constrained niche
divergence, there does appear to be some evidence of conservatism among those species
from sections Acer and Platanoidea whose ranges include the Caucasus region, located
between the Black and Caspian Seas. Niches of four pairs of these maples (Table 2) show
a significant degree of similarity (0.57 < D < 0.83, PIdentity > 0.05). This pattern of niche
overlap can be interpreted in light of the biogeographic history of the present-day Caucasus.
From the early Oligocene (34 mya) through the late Miocene (6–6.5 mya), the contemporary
Caucasus was formed through a series of orogenic plate collisions coincidental with peri-
odic inundation due to changes in the global climate [96]. Consequently, during this time,
the Caucasus region included, in turn, multiple isolated landmasses; a bridge between
previously isolated European, Asian, and African bioregions; and, in the case of the Greater
Caucasus mountains, a small island isolated by sea straits through the late Miocene [97].
Coinciding with the intra-sectional speciation of most extant Acer taxa, evolution during
this complex geological history could have formed the backdrop for the development of
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the region’s current maple flora, in which multiple species from two sections have over-
lapping climatic niches. The relatively high maple diversity of this region was also likely
supported by the availability of refugia during the Pleistocene glaciations [98]. Though
it is possible that the high degree of niche overlap in the Caucasus has resulted from
cross-sectional niche convergence during the region’s post-Oligocene history, the evidence
reviewed here suggests at least some role for sorting of maple taxa into a region aligned
with their conserved climatic niche.

5. Conclusions

The work presented here includes a synoptic accounting of the well-characterized,
temperate North American and Eurasian maple taxa and their East Asian nearest relatives.
Coverage focuses on widespread species and those for which molecular [14,15] and reliable,
representative distribution data are available. However, the findings from this analysis
must be interpreted in light of several inherent limitations to my approach.

First, I did not assess the niches of all maple species. Some endemic, temperate East
Asian taxa with small or poorly documented ranges are excluded, as are the tropical and
subtropical maples, including relictual populations in Mesoamerica. As such, inference
regarding the climatic niche characteristics of, for instance, the temperate East Asian
continental flora should be interpreted with some caution. Yet, I contend that the analysis
I present here is likely to be robust to addition of endemic East Asian species since it
includes coverage across the genus’s sections as well as temperate taxa occupying the
coldest and driest habitats in which maples are found. Furthermore, consideration of
endemics with historically small ranges that have been further reduced by habitat loss
and relictual populations with historically larger ranges may distort modeling of their
distributions by excluding what was once part of their realized niches [56,99].

Second, in selecting presence data for each maple taxon included in this study, I
elected to strike an imperfect balance between two contrasting approaches to the problem
of presence points outside of a taxon’s documented native range. On one hand, it is
well known that species distributions are generally not at equilibrium such that historical
contingency, as well as deterministic climatic and non-climatic variables determine the
“native” distribution of any given species at any given moment, leading to incompletely
filled niches [100,101]. Species invasions and the global distribution of many horticultural
varieties attest to this fact and provide justification for including presence points outside
of species’ native ranges in niche modeling [102]. Yet, inclusion of points associated
with naturalized or intentionally planted trees outside of their native range may also
introduce considerable bias into species distribution models. Many such presences occur
in urbanized settings, in which human engineering of the environment frequently has
altered and often homogenized local hydrology, temperature, soil conditions—all critical
aspects of ecological niche for woody plants [103–105]. Furthermore, GBIF presence points
from outside of species’ native ranges often correspond to collections of botanic gardens,
at which collected plants are nurtured through their more physiologically vulnerable
(juvenile) stages [106–109]. Actual naturalization in these locations may be impossible,
even if horticultural care allows for survival of transplanted adults. Taking all of these
considerations into account, I chose to include the naturalized of four well-studied Eurasian
species in my analysis, while otherwise excluding naturalized or planted occurrences of
other taxa outside their native ranges. Exploration of niche models for widely naturalizing
or invasive species (e.g., A. platanoides) may provide new insights into the realization of
these species’ fundamental climatic niches in a changing climate [75,101].

Finally, my implementation of Maxent involved several choices made to optimize
some modeling objectives at the expense of others. Typically, species distribution modeling
for a single taxon entails critical consideration of predictor variables that might be relevant
to the distribution of the taxon in question (e.g., [52,75,78]). In the context of the present
study, my interest was in selecting a common set of variables known to be widely relevant
to the distribution of temperate woody plants and to use these to construct Maxent models
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for all study taxa (e.g., [44]). In doing so, I have created a set of models that can be compared
meaningfully among maple taxa. This approach allows for meaningful comparison of the
role of, for instance, mean annual temperature, in structuring the distributions of section
Rubra: A. rubrum, A. saccharinum, and A. pycnanthum. A key drawback to this approach
is that it would likely be possible to create a better model—meaning a more predictive
one—of the distribution of any particular taxon. Furthermore, despite consideration of
the well-known drawbacks of doing so [56,110], I have followed the same rationale and
allowed Maxent’s default setting to determine automatically which feature classes are
applied to each model. (These feature classes specify the allowable relationships between
predictors and habitat suitability estimates. Models with more presence data are allowed to
explore a wider array of fits.) Again, the implications of this course are that each particular
model might not be the optimal one possible, but the approach applied to the development
of each model was uniform.

Going forward, new molecular and occurrence data, including for species excluded
from this analysis, will become available, allowing for extension of the modeling framework
presented here to include a greater proportion of maple taxa. Future modeling approaches
may also take into account niche axes excluded from this analysis, including edaphic
factors [111], biotic interactions [112], and human impacts [44]. Finally, data assembled
and curated for this project constitute an important resource for phylogenetically informed
prediction of climate change impacts on the global maple flora [51] and conservation
planning for taxa of concern [113].
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Appendix A. Explanation of Selection and Taxonomic Treatment of Study Taxa

Taxa considered in this study include all of those detailed in Areces-Berazain [15] and
colleagues’ synoptic study of the genus with exceptions detailed as follows.

The focus of this work is the temperate maple flora of East Asia, North America,
and Eurasia. For this reason, several taxa were excluded because they are adapted to a
subtropical climate. East Asian taxa excluded based on this criterion are A. laurinum (section
Rubra); A. caudatifolium, A. rubescens, and A. morrisonense (section Macrantha); the primary
subtropical clade within section Palmata (A. calcaratum through A. pubipalmatum in Figure 3
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of Areces-Berazain et al. [15], excluding A. sieboldianum); and A. pubinerve (section Palmata).
These taxa were excluded not only to retain a focus on temperate taxa, but also because
representative geographical data across their ranges were unavailable for many of them
(A. rubescens, A. calcaratum, A. olivaceum, A. elegantulum, A. pauciflorum, A. pubipalmatum, and
A. pubinerve). Similarly, Eurasian and North American populations were excluded if they
were small, poorly characterized, and likely the result of post-Pleistocene range contraction.
Populations or taxa excluded for this reason are Mesoamerican A. skutchii and A. binzayedii
(section Acer; A. binzayedii was not included in Areces-Berazain and colleagues’ work) and
relictual populations of some Eurasian taxa in North Africa and the Middle East (for which
there is also limited information about distributions).

I also did not include several taxa included in Areces-Berazain and colleagues’ [15]
study for which there was not sufficient publicly accessible information regarding a taxon’s
distribution across its known or supposed range. These taxa are A. obtusatum and granatense
(Section Acer, considered ssp. of A. opalus in many treatments and so lacking independent
distribution information); A. discolor (grouped with A. coriaceifolium in this study) and
A. pentaphyllum (Trifoliata-Pentaphylla clade); A. yangbiense and A. pilosum (grouped with
A. caesium in this study); A. sikkimense (section Macrantha); A. amplum ssp. catalpifolium,
A. maiotense, A. amplum ssp. amplum, A. lobelii (considered a ssp. of A. platanus in many
treatments and so lacking independent distribution information), A. shenkanense, and
A. cappadocicum spp. sinicum (Section Platanoidea); A. tsinglingense (section Lithocarpa),
A. tataricum ssp. aidzuense and spp. semenovii (section Ginnala, for which there is not
sufficient distribution data separating these taxa from the other A. tataricum subspecies);
A. pseudoseiboldianum var. microsieboldianum, A. laevigatum, and A. takesimense (Section
Palmata); and A. acuminatum and A. stachyophyllum spp. betulifolium (Section Arguta).

Finally, the systematics of some putative species complexes are still in the process
of being resolved. As a result, for a few of these cases, I exclude from analysis a few
taxa currently named as subspecies/varieties but apparently, per Li et al. [16] and Areces-
Berazain et al. [15], deserving of reclassification. These are A. mono var. mayrii (section
Platanoidea; A. mono ssp. mono is included) and A. sterculiaceum ssp. sterculiaceum (Section
Lithocarpa; A. sterculiaceum ssp. franchetii is included). Pending further resolution, I also
allow Areces-Berazain and colleagues’ A. cappadocicum ssp. divergens to stand in for the
more widely distributed and sympatric European A. cappadocicum (ssp. cappadocicum).
Similarly, I treat their A. trautvetteri as synonymous for both A. heldreichii var. heldreichii
and var. trautvetteri.
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