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Abstract: Fruit tree culture is at the brink of disaster in arid to semi-arid regions due to low water
availability. A pot experiment was carried out to analyze whether foliar application of salicylic acid
(SA) can improve water stress tolerance in Syzygium cumini. Saplings were subjected to control (CK,
90% of field capacity, FC), medium stress (MS, 60% of FC) and high stress (HS, 30% of FC) along
with foliar application of 0.5 and 1.0 mM of SA. Results showed that soil water deficit significantly
decreased leaf, stem and total dry weight, leaf gas exchange attributes and chlorophyll a, b. However,
root dry weight and root/shoot ratio increased under MS and HS, respectively. Contrarily, foliar
application of SA significantly improved chlorophyll a, b, leaf gas exchange attributes, and dry
weight production under soil water deficit. Concentration of oxidants like hydrogen peroxide and
superoxide radicals, along with malondialdehyde and electrolyte leakage increased under soil water
deficit; however, decreased in plants sprayed with SA due to the increase in the concentration of
antioxidant enzymes like superoxide dismutase, peroxidase, catalase and ascorbate peroxidase.
Results suggest that the foliar application of SA can help improve water stress tolerance in Syzygium
cumini saplings; however, validation of the results under field conditions is necessary.

Keywords: drought stress; Jaman; salicylic acid; assimilation rate; water use efficiency; osmolytes

1. Introduction

Increasing fossil fuel consumption, deforestation and industrialization is contributing
towards a significant increase in global average air temperature, which has influenced the
frequency and severity of drought events in many regions of the world [1,2]. Consequently,
over the past decade, drought has become a significant global threat to plant survival
and productivity [3]. It has been estimated that 36% of the global area falls under arid to
semi-arid climate where annual precipitation is between 50–150 mm [4]. Under such a
situation, most of the tree species are cultivated within a narrow hydraulic range where
risk of hydraulic failure due to embolism has become common due to soil water deficit [5].
Pakistan falls under arid to semi-arid climate where annual precipitation is between
250–300 mm, and the country is facing a persistent problem of water shortage [6]. Moreover,
being an agricultural country, the diversion of canal water towards farm crops has worsened
the situation for fruit tree culture and tree plantations. Such a situation calls for urgent
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measures that can ensure the survival and production sustainability of fruit trees under a
changing climate that could rekindle the diminishing confidence of local farmers.

Water deficit has negative effects on plant growth that includes decrease in leaf size,
plant height, and overall plant biomass. The noticeable reduction in plant development
is driven by a decrease in plant turgor pressure, chlorophyll content and plant hormone
balance due to water stress. Such changes induce variation at the cellular level and
inhibit cell growth and development [7]. An increase in accumulation of proline and
other osmolytes under water stress also helps sustain the cell turgor and allows cells to
mitigate the harmful effects of water stress [8]. Moreover, water stress not only results in
decreased stomatal conductance and CO2 starvation under severe conditions [9], but also
induces overproduction of reactive oxygen species (ROS) like superoxide radical (O2

−),
hydrogen peroxide (H2O2) and singlet oxygen 1O2 in chloroplasts and mitochondria [10,11].
Plants scavenge the overproduction of the ROS by increasing the production of antioxidant
enzymes like superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate
peroxidase (APX) [12]. Many studies reported that the balance between the production
of ROS and antioxidant enzymes helps determine the plant tolerance to different types
of stress [13].

Salicylic acid (SA) is a plant hormone involved in the regulation of plant growth and
production and plants’ response to different types of abiotic stresses [14]. Many studies
have highlighted the role of SA in regulating physiological processes such as photosyn-
thesis, osmolyte production, and antioxidant enzyme activity, thus improving the plant
water–relation under stress [15]. Studies have observed that the application of SA either
by seed soaking, mixing to the nutrient solution, or foliar application has resulted in sig-
nificant increase in abiotic stress tolerance in plants [14]. The positive effects of SA are
closely linked to different factors such as the species and developmental stage of plants,
the mode of application, and the optimal concentration of SA [16]. Many studies have
shown that application of SA helps maintain cell membrane stability [17] by increasing the
concentration of various antioxidant enzymes (SOD, POD, CAT and APX) and improving
the leaf photosynthetic capacity [18] under different abiotic stresses. An increase in leaf
water potential and a decreased electrolyte leakage and lipid peroxidation have been evi-
denced after the application of SA [15]. The application of SA may induce or inhibit various
plant functions under optimal or a high concentration of SA, respectively [14]. Therefore,
although SA has been considered a short-term solution to improve plant tolerance to water
stress [19], the optimal concentration of SA is species specific and remains unclear [20].

Jaman (Syzygium cumini L.), belonging to the family Myrtaceae [21,22], is a large
tree with ovate and aromatic leaves. Young leaves are red/orange in color and the fruits
are small, oval-shaped berries that turn dark purple to black in color on maturity [22].
Jaman is native to South Asia and has been introduced to Hawaii and across the Pacific
for ornamental, timber and fruit purposes [21]. Jaman flourishes along stream banks and
can tolerate seasonal flooding and moderate drought stress [22]. The leaves and fruits of
Jaman are of high medicinal importance and are used to cure diabetics, chronic diarrhea
and enteric disorders [23]. Jaman is growing in the irrigated and rain-fed regions of central
and upper Punjab, Pakistan. In these regions, fruit trees undergo water stress especially
during the growing season and under changing climate, and water stress has become a
major problem for sapling survival and production sustainability of Jaman. The effect of
SA application on water stress tolerance in S. cumini has never been elucidated, especially
during early establishment stages. Therefore, this study aims to investigate whether SA
application can effectively ameliorate water stress tolerance in S. cumini saplings. Various
morphological, physiological and biochemical changes were recorded under water deficit
and after application of SA in order to assess the tolerance status of plant saplings.
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2. Materials and Methods
2.1. Plant Material and Growth Condition

A pot experiment was conducted in a greenhouse at the Department of Forestry and
Range Management (31◦ 26′ N, 73◦ 06′), University of Agriculture, Faisalabad, Pakistan.
Maximum and minimum temperature in the greenhouse was at 25 to 35 ◦C, relative
humidity at 60%–70% and intensity of solar radiation was ~1200 photosynthetic photon
flux density (PPFD). We procured 3- to 4-month-old healthy saplings of S. cumini from the
Punjab Forest Research Institute Gatwala, Faisalabad, representing a single tree progeny.
Plastic pots (34 cm diameter and 26 cm depth) were filled with sandy loam and farmyard
manure (3:1 proportional) and total weight of plastic pots was maintained at 10 kg. The soil
used in the experiment was analyzed for nitrogen (0.78%), phosphorus (12 ppm), organic
matter (8%), electric conductivity (2 dS m−1) and pH (6.6). To optimize the nutrient balance,
NPK fertilizer (15% N, 5% P2O5, 5% K2O) was added at a rate of 5 g/kg of soil.

2.2. Water Deficit Treatments and Foliar Application of Salicylic Acid (SA)

A total of 70 young, healthy and uniform-sized (18 ± 2 cm) saplings of S. cumini
were allowed to grow under normal conditions. Ten saplings were randomly assigned
to the following treatment combinations: CK, control at 90% field capacity; MS, medium
stress at 60% field capacity; HS, high stress at 30% field capacity; MS + 0.5, medium stress
sprayed with 0.5 mM SA; HS + 0.5, high stress sprayed with 0.5 mM SA; MS + 1.0, medium
stress sprayed with 1.0 mM SA; HS + 1.0, high stress sprayed with 1.0 mM SA. The water
deficit levels were maintained using methods as demonstrated by [24]. Every pot was
watered back daily to the reference weight of pots adding the amount of water lost during
evapotranspiration. Sodium salicylate (Merck, Darmstadt, Germany) was used to prepare
the salicylic acid solutions (SA) by dissolving 0.069 g and 0.138 g of SA in 1 L of distilled
water, respectively. During the experiment, plants under water stress were sprayed twice
with 0.5 and 1.0 mM of SA (on the 7th and 45th day of the experiment). The plants under
control, MS and HS were sprayed with distilled water and the experiment was continued
for 90 days.

2.3. Growth and Dry Weight Production

Various growth parameters such as plant height (cm) stem diameter (mm), number of
leaves were determined during the experiment. All the plants were uprooted at the end of
the experiment and were divided into various plant sections (leaves, stems and roots) and
fresh weigh was determined (G & G Electronic scale JJ3000B). All the plant sections were
packed into paper bags and were oven dried for 72 h at 80 ◦C (DGH-9202 Series Thermal
Electric Thermostat drying oven) to determine the dry weight of each plant section and
total dry weight for each plant [25]. Root:shoot ratio (R:S ratio) was determined as the ratio
of root dry weight and leaves plus stem dry weight.

2.4. Chlorophyll a, b and Carotenoid Content Measurements

Chl a, b and carotenoid content were measured from mature leaves from each sapling
by using acetone (80%, v/v). Total amount of Chl a, b and carotenoid content were deter-
mined as described by Arnon [26].

2.5. CO2 Assimilation Rate, Stomatal Conductance and Water-Use Efficiency Measurements

The CO2 assimilation rate (A,µmol m−2 s−1) and stomatal conductance (gs, mol m−2 s−1)
were determined before harvesting the plants by using a portable Infrared Gas Exchange
analyzer system (CIRAS-3 Amesbury, MA, USA). All the measurements were taken
around 10:00 to 12:00. During the measurements, the leaf chamber temperature was
set at 27 ◦C, relative humidity was kept at 65%, and the reference CO2 was also adjusted
to 400 µmol mol−1. Intrinsic water use efficiency (WUEi) was measured as the ratio of net
CO2 assimilation rate and stomatal conductance [24].
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2.6. Proline, Soluble Sugar, Total Soluble Protein and Total Phenolic Contents Measurements

Total phenolic content was estimated in leaf samples according to the protocol of
Ainsworth [27] with the help of Folin–Ciocalteu reagent. Proline content was determined
using the method described by Bates [28]. Soluble protein was estimated according to the
method demonstrated by Bradford [29]. Soluble sugar was measured using the anthrone
method as demonstrated by Yemm [30].

2.7. Malondialdehyde Contents and Electrolyte Leakage (EL%) Measurements

Malondialdehyde (MDA) contents were quantified (a proxy for lipid peroxidation)
according to the protocol of Aravind [31]. Membrane permeability was calculated by
estimated leaf electrolyte leakage (EL%) according to the protocol of Nayyar [32]. 0.2 g leaf
samples were rinsed with deionized water and put into test tubes with 30 mL of distilled
water for 12 h. Initial electric conductivity (ECi) was calculated with an EC meter (Model
DJS-1C Model DJS-1C; Shanghai Analytical Instrument Co. Shanghai, China). Then the leaf
samples were heated at 100 ◦C for 20 min, cooled to room temperature, and final electric
conductivity (ECf) was measured. EL% was calculated using the following formula:

EL (%) = (ECi/ECf) × 100

2.8. Hydrogen Peroxide (H2O2) and Superoxide Radical (O2
−) Measurements

To determine the concentration of H2O2 we followed the protocol of Velikova [33].
Superoxide radicals (O2

−) were measured as demonstrated by Bai [34].

2.9. Antioxidants Enzyme, Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT) and
Ascorbate Peroxidase (APX) Measurements

The SOD concentration was measured by photochemical reduction of NBT (nitroblue
tetrazolium) according to the protocol of Bayer [35]. POD concentration was estimated
according to Maehly [36]. CAT was determined as described by Knörzer [37]. The reaction
mixture was prepared with 200 µL enzyme extract, 1.5 mL of 100 mM potassium phosphate
buffer (pH 7.8), 200 µL of 30 mM H2O2. The absorbance was measured through the
quantity of H2O2 consumed at 240 nm which was decreased by 0.01/min. APX enzyme
concentration was measured following the protocol described by Nakano [38].

2.10. Data Analysis

The data corresponding to the morphology, physiology and biochemical traits was
analyzed using a one-way analysis of variance (ANOVA) where treatment was chosen
as fixed effect. Significant differences between treatment means were evaluated using
Turkey’s honestly significant difference (HSD) post hoc test. All tests and correlations
were considered significant at p < 0.05 and all the means were represented along with their
standard errors (±SE). Analyses were conducted in STATISTICA (Version 12.5 USA).

3. Results
3.1. Effect of Water Deficit and SA on Growth and Biomass Attributes

Water deficit had a harmful effect on plant growth and dry weight production.
Plant height and stem diameter remained similar to CK under MS; however, they de-
creased significantly under HS (10% and 33%, respectively; Table 1). Leaf, stem and total
dry weight decreased significantly under MS and further decreased significantly under
HS by 36%, 47%, and 25%, respectively, as compared to the CK. Root dry weight increased
by 11% under MS and remained similar under HS (Figure 1). As a result, the R:S ratio
increased significantly under MS and HS by 60% and 80%, respectively compared to CK
(Table 1).



Forests 2021, 12, 491 5 of 15

Table 1. Mean (±SE) values of plant height, stem diameter, number of leaves and root:shoot (R:S)
ratio measured in water deficit and salicylic acid (SA) application treatments. Data were tested by
using a one-way analysis of variance (ANOVA) for treatment effects and differences were considered
as significant at p < 0.05. Small letters represent significant differences between treatments tested
using Tukey’s honestly significant difference (HSD) post hoc test.

Traits Plant Height (cm) Stem Diameter (mm) Number of
Leaves R:S Ratio

CK 50.54 ± 0.61 abc 5.87 ± 0.17 a 29.80 ± 1.96 a 0.50 ± 0.00 d
MS 47.75 ± 0.85 bc 5.24 ± 0.23 ab 23.6 ± 1.6 ab 0.80 ± 0.01 ab
HS 45.4 ± 1.66 c 3.91 ± 0.16 c 15.8 ± 1.2 c 0.90 ± 0.06 a

MS + 0.5 56.8 ± 1.20 abc 5.50 ± 0.16 ab 26.6 ± 1.88 a 0.71 ± 0.01 bc
HS + 0.5 51.8 ± 1.06 abc 4.61 ± 0.27 bc 16.0 ± 0.79 c 0.80 ± 0.01 ab
MS + 1.0 60.4 ± 0.91 a 6.02 ± 0.15 a 28.8 ± 1.59 a 0.59 ± 0.01 cd
HS + 1.0 58.4 ± 0.68 ab 5.31 ± 0.20 ab 19.8 ± 0.2 bc 0.72 ± 0.03 bc
p-values p = 0.001 p = 0.001 p = 0.001 p < 0.001

CK, control; MS, medium stress; HS, high stress; MS + 0.5, Medium stress + 0.5 mM of SA; HS + 0.5, High stress +
0.5 mM of SA; MS + 1.0, Medium stress +1.0 mM of SA; HS + 1.0, High stress + 1.0 mM of SA.
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Figure 1. Dry weight in (A) leaf, (B) stem, (C) root, (D) total dry weight in control (CK), medium
stress (MS), high stress (HS), MS + 0.5, HS + 0.5, MS + 1.0 and HS + 1.0, were measured. One-way
ANOVA was used to test the treatment effect and tests were considered significant at p < 0.05.
Lower and upper whiskers represent the minimum and maximum values, and the lower and upper
limits of each box are the 25th and 75th quartile. “x” represents the mean value, and the horizontal
bar represents the median value for the whole data set. Treatments were compared using Tukey’s
HSD test and the results are represented with small letters.

The foliar application of SA significantly enhanced growth and dry weight production
in S. cumini saplings under both MS and HS treatments (Table 1 and Figure 1). The highest
increase in plant height and stem diameter was evidenced under HS + 1.0 as compared to
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HS (28% and 35%, respectively). Similarly, the highest increase in leaf, stem, root and total
dry weight was also observed in plants under HS + 1.0 as compared to HS (56%, 80%, 6%,
and 37%, respectively).

3.2. Effect of Water Deficit and SA on Chlorophyll a,b and Carotenoid Content

Plants under water deficit conditions revealed a significant reduction in chl a, b and
carotenoid content when compared to CK (Table 2). Under HS, chl a, b, and carotenoids
content significantly decreased by 44%, 40% and 38%, respectively, compared to CK.
However, the saplings sprayed with SA were less affected than non-treated saplings.
Moreover, the saplings sprayed with 1.0 mM concentration of SA showed the highest value
of chl a, b, and carotenoid content as compared to other treatments. The highest increase in
chl a, b and carotenoid contents was also found in plants under HS + 1.0 as compared to
HS (39%, 44% and 37%, respectively).

Table 2. Mean (±SE) values of chlorophyll a, b, carotenoid content, proline, soluble sugar, total phenolic contents and
soluble protein measured in water deficit and SA application treatments. Data was tested by using a one-way ANOVA for
treatment effects and differences were considered as significant at p < 0.05. Small letters represent significant differences
between treatments tested using Tukey’s HSD post hoc test.

Traits Chlorophyll a
(mg g−1 FW)

Chlorophyll b
(mg g−1 FW)

Carotenoids
(mg g−1 FW)

Proline
(µ mol g−1 FW)

Soluble Sugar
(mg g−1 FW)

Total Phenolic
Content

(mg g−1 FW)

Soluble
Protein

(mg g−1 FW)

CK 1.55 ± 0.06 a 1.41 ± 0.10 a 0.78 ± 0.03 a 12.5 ± 0.75 d 74.3 ± 2.05 c 1.55 ± 0.05 e 21.3 ± 0.54 e
MS 1.14 ± 0.02 c 1.11 ± 0.00 b 0.63 ± 0.02 b 16.8 ± 0.32 c 83.0 ± 0.58 b 2.10 ± 0.02 d 25.5 ± 0.30 cd
HS 0.86 ± 0.02 d 0.84 ± 0.02 c 0.48 ± 0.01 c 20.7 ± 0.74 b 84.3 ± 0.27 b 2.76 ± 0.03 ab 27.8 ± 0.29 b

MS + 0.5 1.29 ± 0.01 b 1.21 ± 0.00 b 0.76 ± 0.02 a 20.7 ± 0.36 b 85.1 ± 0.58 ab 2.29 ± 0.07 b 24.9 ± 0.17 d
HS + 0.5 1.12 ± 0.02 c 1.19 ± 0.02 b 0.60 ± 0.02 b 25.2 ± 0.46 a 87.0 ± 0.60 ab 2.85 ± 0.06 a 28.2 ± 0.28 ab
MS + 1.0 1.34 ± 0.01 b 1.29 ± 0.00 ab 0.80 ± 0.00 a 25.6 ± 0.52 a 86.9 ± 0.65 ab 2.38 ± 0.01 c 26.6 ± 0.45 bc
HS + 1.0 1.20 ± 0.00 bc 1.21 ± 0.02 b 0.66 ± 0.01 b 27.6 ± 0.51 a 88.6 ± 0.53 a 2.92 ± 0.02 a 29.5 ± 0.37 a
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

CK, control; MS, medium stress; HS, high stress; MS + 0.5, Medium stress + 0.5 mM of SA; HS + 0.5, High stress + 0.5 mM of SA; MS + 1.0,
Medium stress +1.0 mM of SA; HS + 1.0, High stress + 1.0 mM of SA.

3.3. Effect of Water Deficit and SA on Proline, Soluble Sugar, Total Phenolic Contents and
Soluble Protein

The proline and soluble sugar contents significantly increased under MS and HS,
respectively (Table 2). However, the highest concentration was evidenced under HS (65%
and 13%) as compared to CK. Moreover, the total phenolic content and soluble protein
significantly increased under MS and under HS (phenolic content: 35% and 78%, soluble
protein: 19% and 30%). In SA-treated saplings the proline and soluble sugar contents
significantly increased compared to non-treated saplings (Table 2) and the highest increase
was evidenced under HS + 1.0 mM as compared to HS (33% and 6%, respectively). Similarly,
the highest increase in total phenolic content and soluble protein was observed under MS +
1.0 and HS + 1.0 as compared to MS and HS (13%, 6%, 4% and 6%).

3.4. Effect of Water Deficit and SA on CO2 Assimilation Rate, Stomatal Conductance and Intrinsic
Water Use Efficiency

Water deficit treatments significantly decreased the net CO2 assimilation rate and
stomatal conductance in both MS and HS (Figure 2). The highest reduction was found
under HS where a reduction of 32% and 16% was observed in stomatal conductance and
CO2 assimilation rate, respectively as compared to CK. However, the application of SA
significantly improved the CO2 assimilation rate under HS + 1.0. No significant variation
was evidenced in stomatal conductance after the application of SA under both MS and HS.
Intrinsic WUEi (as the ratio of CO2 assimilation rate and stomatal conductance) significantly
increased in both MS and HS as compared to CK; however, the highest increment was
found under HS. No significant increase was evidenced in WUEi after the foliar application
of SA except in saplings under HS + 1.0.
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3.5. Effect of Water Deficit and SA on Lipid Peroxidation (Malondialdehyde, MDA), Hydrogen
Peroxide (H2O2) Superoxide Radical (O2

–) and Electrolyte Leakage (EL%)

Lipid peroxidation was measured in terms of MDA content. The saplings subjected to
soil water deficit treatments MS and HS exhibited a significant increase in MDA content by
22% and 49% as compared to CK (Figure 3). Similarly, under both water deficit treatments
significantly induced oxidative stress resulted in the generation of ROS such as hydrogen
peroxide (H2O2) and superoxide radicals (O2

−); highest concentrations of H2O2 and O2
−

were found at HS with a 47% and 41% increase as compared to CK. Moreover, the electrolyte
leakage (EL%) significantly increased under MS and HS (19% and 30%) as compared to
CK (Figure 3). The foliar application of SA significantly decreased the MDA content as
compared with non-treated saplings. Highest decrease was found at MS + 1.0 and HS + 1.0
concentration of SA when compared with HS (22% and 33%). Moreover, the concentration
of H2O2 and O2

− along with EL% significantly decreased under HS + 1.0 as compared to
HS (18%, 12% and 10%, respectively).
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−), (D) electrolyte leakage (EL%) in control (CK), medium stress (MS), high stress
(HS), MS + 0.5, HS + 0.5, MS + 1.0 and HS + 1.0, were measured. One-way ANOVA was used to
test the treatment effect and tests were considered significant at p < 0.05. Lower and upper whiskers
represent the minimum and maximum values, and the lower and upper limits of each box are the
25th and 75th quartile. “x” represents the mean value, and the horizontal bar represents the median
value for the whole data set. Treatments were compared using Tukey’s HSD test and the results are
represented with small letters.

3.6. Effect of Water Deficit and SA on Antioxidant Enzymes (SOD, POD, CAT and APX)

After exposure the water deficit treatments, populations significantly increased an-
tioxidant enzyme concentrations of SOD, POD, CAT and APX, however, the highest
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concentration was found under HS (78%, 79%, 67%, and 60%) compared to CK (Figure 4).
SA-treated plants significantly increased the concentrations of antioxidant enzymes SOD,
POD, CAT and APX as compared to non-treated plants. By increasing the concentration
of SA, all antioxidant enzymes were increased. Compared with MS and HS, the SOD,
POD and CAT concentrations increased by 15%, 19%, 65%, 17%, 20% and 20%, respectively,
under MS + 1.0, HS + 1.0 treatments. However, the activity of the APX enzyme remained
similar at both concentrations of SA (0.5 and 1.0 mM) under MS and HS, respectively
(Figure 4).
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idase (POD), (C) catalase (CAT), (D) ascorbate peroxidase (APX) in control (CK), medium stress (MS),
high stress (HS), MS + 0.5, HS + 0.5, MS + 1.0 and HS + 1.0, were measured. One-way ANOVA was
used to test the treatment effect and tests were considered significant at p < 0.05. Lower and upper
whiskers represent the minimum and maximum values, and the lower and upper limits of each box
are the 25th and 75th quartile. “x” represents the mean value, and the horizontal bar represents the
median value for the whole data set. Treatments were compared using Tukey’s HSD test and the
results are represented with small letters.

4. Discussion
4.1. Effect of Water Deficit and SA on Growth and Biomass Attributes

Decrease in plant growth and development is the first and most concerning effect
of water stress in plants. In this study, the water stressed saplings of S. cumini showed a
significant reduction in plant height, stem diameter, number of leaves, leaf dry weight,
stem dry weight and total dry weight (Table 1 and Figure 1). These results are in agreement
with previous studies [39–41] where decrease in growth and biomass accumulation was
observed under water deficit treatments. Studies have shown that reduction in plant
growth in the shoot portion of the plants is mostly related to a decrease in meristematic
activity which is closely related to a reduction in leaf turgor pressure that negatively affects
cell development and growth [42]. However, in the present study, no significant reduction
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was observed in root dry weight production under MS or HS (Figure 1). The results suggest
that morphological adaption due to altered resource allocation may help S. cumini to adapt
to water stress conditions. Similar findings have been reported previously in Ziziphus
nummularia and Ziziphus jujuba species where increased root biomass under water stress
has been linked to the water stress tolerance strategy in these species [43,44].

SA is an important plant hormone that plays a significant role in enhancing plant
tolerance to biotic or abiotic stresses [45]. In the present study, foliar application of SA
increased growth rate and biomass accumulation in S. cumini saplings under water deficit
treatments (Table 1 and Figure 1). Our observation was in agreement with previous studies
on Rosmarinus officinalis [46], Portulaca oleracea [47], Euclayptus globulus [19] and Torreya
grandis [48] where a similar increase in growth and biomass accumulation has been reported
in response to SA application under water deficit treatments. Furthermore, the increase
in growth attributes after the application of SA has been related to an increase in cell
division in the meristematic regions of the plant sapling, thus promoting plant growth
and productivity [49].

4.2. Effect of Water Deficit and SA on Photosynthetic Pigments and Leaf Gas Exchange Parameters

Stomatal closure is an obvious response of plants to water stress environments,
which subsequently decreases transpiration rate as well as concentration of CO2 in the
intercellular spaces due to excessive stomatal closure under severe water stress condi-
tions [11]. In the present investigation a significant reduction in both stomatal conductance
and CO2 assimilation rate was evidenced under water deficit treatments (Figure 2). Ex-
cessive reduction in stomatal conductance has been accepted as a key limiting factor in
sustaining photosynthesis and growth under limited supply of water [50]. In S. cimini
saplings the decrease in CO2 assimilation rate was parallel to stomatal conductance under
water deficit treatments. A significant reduction in chl a, b and carotenoid content was also
evidenced under water deficit treatments (Table 2) which refers to an overall decrease in
the photosynthetic capacity of the plant under water stress. These results are in line with
previous studies of [39,44,47,48] where a similar decrease in stomatal conductance and net
CO2 assimilation rate has been reported in Torreya grandis, Portulaca oleracea, Conocarpus
erectus, Ficus benjamina and Ziziphus jujuba plants under water deficit treatments. Studies
have demonstrated that plants adjust water loss through transpiration by altering the stom-
atal aperture that helps maintaining an optimum water potential under water stress [51].
Such adjustment in stomatal aperture under water deficit stress helps maintaining optimal
leaf water potential, under severe stress such adjustment may cause a decrease in the CO2
assimilation rate. Many studies have linked the decrease in CO2 assimilation rate and low
concentration of CO2 in the intercellular spaces with the excessive reduction in stomatal
conductance under severe water stress [44,47]. These conditions create disruptions in
the photochemical activity of the photosystem-2 (PS-2) and hinder the electron supply,
thus decreasing the overall photosynthesis activity [52]. In this study, the foliar application
of SA resulted in a significant increase in stomatal conductance and CO2 assimilation rate
under water deficit treatments (Figure 2). Studies have shown that SA is a phytohormone
that prevents chlorophyll degradation under stressful environments by decreasing the
damage to the photosynthetic apparatus. Such an alteration is induced by the increase in
compatible solutes accumulation, the activity of chlorophyll synthesizing enzymes and
decrease in the concentration of ROS after SA application [8]. Therefore, the observed
increase in chl a, b and carotenoid content in this study indicated that SA helped to alleviate
the harmful effect of water stress [47,48] (Table 2). These results are in agreement with
previous study where a positive effect of foliar application of SA has been observed on the
impaired photosynthetic processes under water stressed plants in Portulaca oleracea [47].
Furthermore, studies have shown that the foliar application of SA enhances the CO2 as-
similation rate and growth under stressful environments by increasing the activity and
efficiency of carboxylation by the rubisco enzyme under reduced stomatal conductance
due to stressful environments [53]. Intrinsic water use efficiency (WUEi, the ratio between
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CO2 assimilation rate and stomatal conductance) varied significantly among the treatments
with a progressive increase observed under MS and HS (Figure 2). The results are in line
with previous studies [24,39] where increase in WUEi has been reported in plants under
limited availability of water. However, WUEi increased significantly only under HS + 1.0,
which was mediated by a significant increase in the CO2 assimilation rate under high stress
treatment after foliar application of SA.

4.3. Effect of Water Deficit and SA on Proline, Soluble Sugar, Total Phenolic Contents and
Soluble Protein

Compatible solutes such as proline are considered an important physiological adapta-
tion in plants to resist water deficit environments and play a significant role in regulating
cell turgor, gas exchange and growth attributes under very dry conditions. The role of
soluble sugars in enhancing plant tolerance to water stress tolerance has been widely
reported in previous studies e.g., [8,15,54,55]. In this study, proline and soluble sugars
significantly increased under MS and HS, respectively (Table 2). Similar results have been
found in Quercus, Torreya grandis and Olea europaea saplings under water deficit [48,56,57].
Similarly, increase in soluble sugars has also been found in Portulaca oleracea, Populus nigra
and Eucalyptus globulus plants under water deficit treatments [19,47,58]. Increase in proline
concentration plays a key role in osmotic adjustment and protects the plant cell from ROS
damage under water stress [59]. Likewise, studies have shown that increase in the concen-
tration of soluble sugars under water stress is related to the breakdown of polysaccharides
such as starch into smaller soluble sugars such as glucose. Furthermore, it has been demon-
strated that the increase in soluble sugars plays a significant role in maintaining the osmotic
potential and cellular turgor pressure in water deficit environments [60]. In this study,
foliar application of SA further increased the concentration of proline and soluble sugars
under both water deficit treatments (Table 2). In a previous study it was reported that the
increase of proline after foliar application of SA was due to an increase in the activity of the
proline-synthesizing enzyme Gamma glutamyl kinase and a decrease in the activity of the
proline degrading enzyme proline oxidase [61]. Furthermore, phenolic compounds are also
important secondary metabolites that play significant roles in improving plant tolerance
to stressful environments [62]. In this study, phenolic compounds increased significantly
under water deficit conditions (Table 2). These findings are in line with previous studies
showing an increase in phenolic compounds under water deficit treatments [47,63]. Simi-
larly, SA mediated increase in phenolic compounds has been linked to the up-regulation of
phenolics-synthesizing enzymes such as phenylalanine ammonia-lyase PAL [64].

4.4. Effect of Water Deficit and SA on Oxidants, MDA Contents, EL% and Antioxidants Enzyme

The production of oxidants and antioxidants plays a significant role for the tolerance
status of species to different types of abiotic and biotic stresses. Water stress-induced
oxidative stress leads to an increase in the concentration of reactive oxygen species (ROS)
like hydrogen peroxide (H2O2), singlet oxygen (1O2) and superoxide radicals O2

− [65].
In this experiment, the enhancement of H2O2 and O2

− was observed in S. cumini saplings
under both MS and HS (Figure 3). These findings are in line with previous studies where an
increase of H2O2 and O2

– has been evidenced in Torreya grandis and Portulaca oleracea plants
under water deficit [47,48]. Different studies demonstrated that increase in production
of ROS disrupts the redox balance which ultimately reduces plant productivity under
water stress [66,67]. Electrolyte leakage (EL%) is considered an indicator of cell membrane
stability and integrity and an increase in EL% as compared to control reflects the degree
of damage to the plant under stress conditions [68]. Furthermore, an increase in MDA
contents is related to the degree of lipid peroxidation due to oxidative stress [69]. In this
experiment, both EL% and MDA content significantly increased in S. cumini saplings
under MS and HS, respectively (Figure 3). Similar results have been reported in previous
studies where an increase in EL% and MDA contents has been reported in plants that
were subjected to water deficit [56,63,70]. It has been demonstrated that the increase in
EL% is related to the lipid peroxidation of cell membranes and osmotic imbalance [71].
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Studies have demonstrated that species having an effective antioxidant defense mechanism
showed a better tolerance and adaptability under a water stress environment [48,67,72].
The antioxidant defense mechanism includes the production of enzymes such as SOD,
POD, CAT and APX that play an important role in scavenging the overproduction of
ROS [62]. In this experiment, a parallel increase in the concentration of both oxidants and
antioxidant enzymes was evidenced under MS and HS, respectively (Figure 4). However,
the highest concentration of antioxidant enzymes was found under HS. All of these findings
are in line with previous studies on other plant species revealing an increased antioxidant
enzyme concentration under water deficit treatments [8,47,57,63]. SOD is considered a
first line of defense against the overproduction of ROS [73]. Production of SOD plays
an important role in neutralizing the O2

− into H2O2 which is scavenged further by CAT
and POD. CAT is mostly present in the peroxisome and is implicated in balancing out the
increased concentration of hydrogen peroxide (H2O2), while CAT converts H2O2 to H2O
in the plant cells [74]. In the present study, the foliar application of SA (0.5 and 1.0 mM)
significantly decreased the concentration of ROS such as H2O2 and O2

− in S. cumini
saplings under MS and HS, respectively (Figure 3). Similar results have been reported
in previous studies showing a reduction in ROS upon foliar application of SA in lemon,
verbena and purslane plants [47,66].

Furthermore, in the current study the foliar application of SA significantly increased
the concentration of antioxidant enzyme activities like SOD, POD, CAT and APX under
MS and HS, respectively (Figure 4). Similar results have been observed in a previous study
on Piriformospora indica where the application of SA enhanced the antioxidant enzyme
activity thereby decreasing the concentration of ROS under various environmental stresses
such as drought stress [62]. In Lippia citriodora plants, foliar application of SA has been
linked to the improvement of the defense mechanisms through regulation of oxidative
stress by increased antioxidant enzyme production under water deficit [66]. Many other
studies on Carthamus tinctorius, Portulaca oleracea and Torreya grandis also demonstrated
an increase of antioxidant enzyme concentrations in plants after foliar application of SA
under water deficit treatments, respectively [47,48,75]. Moreover, foliar application of SA
resulted in a decrease in EL% and MDA content in S. cumini saplings under water stress
(Figure 3). These results are in agreement with previous findings where application of SA
application resulted in a decrease in EL% and MDA content in Lippia citriodora, Portulaca
oleracea, and Eucalyptus globulus plants under water deficit treatments [19,47,66], thus high-
lighting the protective role of foliar application of SA under water deficit. Therefore,
it can be concluded that the foliar application of SA significantly decreased the concentra-
tion of H2O2, O2

−, MDA and EL% which was mediated by the increased production of
antioxidant enzymes.

5. Conclusions

In this experiment we were able to demonstrate that soil water deficit treatments had
a significant negative effect on S. cumini saplings as a significant decrease was evidenced
in various growth parameters, dry weight production and physiological attributes (stom-
atal conductance and CO2 assimilation rate). However, increase in growth parameters,
dry weight production and increase in compatible solutes (proline and soluble sugar) and
secondary metabolites such as total phenolic contents and soluble protein was observed in
plants under foliar application of SA. Furthermore, a significant increase in the concentra-
tion of antioxidant enzymes such as SOD, POD, CAT and APX was also observed under
both water deficit treatments (MS and HS). Therefore, it can be concluded that the foliar ap-
plication of SA can help alleviating the negative effects of water stress on S. cumini thereby
reducing the concentration of ROS such as H2O2, O2

− and MDA content and EL% in S.
cumini saplings under water deficit treatments. Moreover, the results also showed that the
concentration of 1.0 mM SA was more effective in improving the plant growth and biomass
productivity than 0.5 mM SA. However, the experiment was conducted under controlled
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conditions, therefore, further experiments are necessary to validate the effectiveness of
using the foliar application of SA under field conditions.
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