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Abstract: Speciation mechanisms, including the role of interspecific gene flow and introgression in
the emergence of new species, are the major focus of evolutionary studies. Inference of taxonomic
relationship between closely related species may be challenged by past hybridization events, but at
the same time, it may provide new knowledge about mechanisms responsible for the maintenance
of species integrity despite interspecific gene flow. Here, using nucleotide sequence variation and
utilizing a coalescent modeling framework, we tested the role of hybridization and introgression in
the evolutionary history of closely related pine taxa from the Pinus mugo complex and P. sylvestris.
We compared the patterns of polymorphism and divergence between taxa and found a great overlap
of neutral variation within the P. mugo complex. Our phylogeny reconstruction indicated multiple
instances of reticulation events in the past, suggesting an important role of interspecific gene flow in
the species divergence. The best-fitting model revealed P. mugo and P. uncinata as sister species with
basal P. uliginosa and asymmetric migration between all investigated species after their divergence.
The magnitude of interspecies gene flow differed greatly, and it was consistently stronger from
representatives of P. mugo complex to P. sylvestris than in the opposite direction. The results indicate
the prominent role of reticulation evolution in those forest trees and provide a genetic framework to
study species integrity maintained by selection and local adaptation.

Keywords: coalescent analysis; hybridization; phylogeny; pines; speciation; species complex; inter-
specific gene flow

1. Introduction

Since Darwin’s original work, the origin of species and mechanisms of speciation has
been a major focus of evolutionary biology. However, in recent years the understanding
of these processes has shifted from a simple divergence model driven by the long-lasting
isolation with a gradual accumulation of reproductive isolation between two lineages and
now encompasses a wide range of complex scenarios within the speciation continuum
framework [1,2]. Within this framework, speciation is understood as a process with no
fixed endpoints and a lack of clear boundaries between each stage. This perspective poses a
challenge to species delineation, especially when secondary contact via gene flow between
emerging evolutionary lineages is facilitated at different times [3]. A growing body of
evidence indicates that speciation can occur despite the homogenizing effect imposed by
interspecific gene flow [4–7], and hybridization is now regarded as an important force
shaping the genetic diversity of species that can lead to the emergence of new species [8–13].
Despite hybridization itself being a very widespread phenomenon, the emergence of a
new hybrid lineage is usually very rare. Because emerging hybrid individuals are initially
rare and must compete with well-adapted parental species, they must either establish
reproductive isolation and a unique ecological niche or backcross to one of the parental
species and share a niche, to survive. Nevertheless, the reproductive isolation from parental
species is one of the fundamental criteria of homoploid hybrid speciation (HHS) proposed
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by Schumer [8]; however, the relationship between hybridization and reproductive isolation
is often hard to find, especially for species with long generation times, such as pines.
Therefore, studies of closely related species can inform us about the different stages of the
complex speciation continuum and the production of novel genetic diversity of potential
adaptive importance [14].

Incomplete reproductive barriers during speciation facilitate the exchange of large
genomic regions or preferential introgression of loci between two taxa, and the time since
divergence influences the level of shared polymorphisms between them [5,15,16]. Differ-
ences in both magnitude and timeframe of secondary contact between diverging taxa can
lead to contrasting evolutionary outcomes: from highly divergent species with varying
proportions of admixed genomes to hybrid swarms with multiple intermediate forms
present. Additionally, species boundaries can be blurred by the lack of morphological or
ecological differences between taxa [17,18]. Consequently, investigation of the relationship
among closely related species may prove difficult, and such species are often grouped
together in taxonomically challenging species complexes. Species complexes were reported
in diverse groups of taxa [6,19–22], and they are well studied in plants, including forest
trees [23–26]. Nowadays, the application of molecular markers and coalescent ancestry
modeling with phylogenetic analyses can greatly improve our ability to resolve evolution-
ary relationships in such challenging groups of taxa [27–29]. Such research may provide
new insights into speciation and mechanisms that maintain species integrity despite gene
flow, as our understanding of these processes is still incomplete [30].

In this study, we aimed to disentangle the phylogenetic relationships of such a complex
group of closely related European hard pine taxa from the Pinus mugo complex. Several
species are recognized in this pine complex, including dwarf mountain pine (Pinus mugo
Turra), peat bog pine (Pinus uliginosa G.E.Neumann), and mountain pine (Pinus uncinata
Ramond ex DC) (see reference [31] for detailed taxonomic descriptions). P. mugo is a
polycromic shrub or small tree up to 5 m, native to the subalpine zones of European
mountain ranges up to 2700 m above sea level and forming dense carpets on the ground [32].
P. uliginosa is a single-stemmed tree up to 20 m height, growing in small and isolated
populations on peat bogs in lowland areas of Central Europe. P. uncinata is a typical erect
tree up to 25 m tall and occurs naturally in Alps and Pyrenees at altitudes between 600
and 1600 m above sea level. It shares many morphological features with P. mugo, except
for tree habit and some characteristics of cones [32]. Pines from the P. mugo complex are
closely related to Scots pine (Pinus sylvestris L.), which has the largest distribution of all
pines, mostly lowland, and forms forests of great ecological importance and economic
value in Europe and Asia. Due to their relatively recent divergence, weak reproductive
barriers, and similar genetic variation at neutral loci but at the same time phenotypical and
ecological differentiation, the P. mugo complex pines are especially suitable for speciation,
hybridization, and local adaptation studies [33–37].

Earlier reports that addressed the genetic relationships between species were focused
mainly on the alternative speciation hypothesis of the origin of P. uliginosa from Central
Europe, considered either as a marginal population of P. uncinata, a hybrid between P. mugo
and P. uncinata, and/or P. mugo and P. sylvestris [35,38] or an example of ancient homoploid
hybrid between the later taxa [36,39,40]. However, those studies were based on small sets
of molecular markers, lacking detailed phylogenetic analysis, and thus were inconclusive
about the divergence history of Scots pine and taxa from the P. mugo complex.

Therefore, the main objective of the study was to investigate the evolutionary relation-
ships within the P. mugo complex and its close relative P. sylvestris. Clear species delineation
is needed in this group to better understand the species divergence history at the genomic
level that will help us to search regions under selection that maintain species integrity
and local adaptation despite ongoing and historical gene flow [41]. Furthermore, as some
members of the pine complex are endangered, the exact assessment of the extinction risk
may heavily rely on a proper understanding of species phylogeny [42–44]. In particular,
we conducted coalescent ancestry modeling and phylogenetic analysis using nucleotide



Forests 2021, 12, 489 3 of 16

polymorphism data across multiple nuclear loci to (1) examine the alternative scenarios of
species origin within the P. mugo complex; (2) explore the role of hybridization and putative
reticulation events in the history of this group; (3) delineate species boundaries within the
P. mugo complex pines.

2. Materials and Methods
2.1. Sampling and Genotyping

A total of 122 individuals of four pine species and additionally 10 specimens from the
outgroup P. pinaster were used in this study (Table S1). Each species was represented by 30
individuals except for P. uliginosa (n = 32). Seeds were collected from allopatric stands of the
species from different populations across its core range. For this study, we sampled de novo
8 P. uliginosa and 10 P. pinaster individuals (seeds were obtained from the PUG3 population
from the Batorów reserve and from the collection of INIA Forest Research Center in Spain,
respectively) and used raw sequence data derived from earlier studies [45]. Genomic DNA
was extracted from haploid megagametophytes from germinated seeds using a DNeasy
Plant Mini Kit (Qiagen, Germany).

A subset of 48 genes from 79 analyzed by Wachowiak et al. [46] with no signatures of
selection detected therein was selected and sequenced (Table S2). PCR amplifications of
the nuclear regions were carried out in a total volume of 15µL containing 15 ng of haploid
template DNA, 10 µM of each dNTP, 0.2 µM each of forward and reverse primers, 0.15 U
Taq DNA polymerase, 1 × BSA, 1.5 µM of MgCl2 and 1 × PCR buffer (Novazym, Poland).
Standard amplification procedures were used with an initial denaturation at 94 ◦C for 3 min
followed by 35 cycles with 30 s denaturation at 94 ◦C, 30 s annealing at 60 ◦C for most loci
and 1 min 30 s extension at 72 ◦C, and a final 5 min extension at 72 ◦C. PCR fragments were
purified using Exonuclease I-Shrimp Alkaline Phosphatase enzymatic treatment. About
20 ng of PCR product was used as a template in 10 µL sequencing reactions with the Big
Dye Terminator DNA Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and
run commercially (Genomed, Poland). CodonCode Aligner (Codon Code Corporation,
Centerville, MA, USA) was used to edit and align sequences. Concatenated sequences of
all genes were created in DnaSP v.6 [46]

2.2. Genetic Diversity and Structure

We looked at the overall pattern of genetic variation at within and between species
levels and calculated the following descriptive statistics of DNA polymorphism for each
species at each nuclear loci and averaged across all loci using DnaSP v.6: nucleotide di-
versity (π), Tajima’s D [47], silent divergence to P. pinaster (K), haplotype diversity (Hd)
and a minimum number of recombination events (R) [48]. To investigate the level of
divergence between the studied species, we calculated both locus by locus and global FST
measures [49]. Negative values were reassigned to zero during the mean locus-wide FST
calculation. In addition, net between-species divergences per site (Dnet) were calculated
using SITES 1.1 [50]. Shared polymorphic sites among species could indicate recent diver-
gence, hybrid origin, or gene exchange after speciation. Thus, we recorded the number of
polymorphic sites and their distribution for each nuclear locus within and among species,
classifying polymorphic sites as either polymorphisms shared between species or fixed
differences between species. We visualized all data using the ggpubr package in R [51,52]

Next, to identify evolutionary clusters across the four pine species, we performed
principal component analysis (PCA) in R package ggfotify [53]. Then, Bayesian clustering
implemented in STRUCTURE 2.3.4 was performed to further visualize the genetic structure
in our dataset [54–56]. STRUCTURE was run with an admixture model, no prior population
information, and correlated allele frequencies in two variants: with and without P. pinaster
as an outgroup, to gain more insight into the fine structure of pines from the P. mugo
complex. For each variant, twenty independent runs were performed for the number of
clusters (K) from 2 to 10, with burn-in lengths of 200,000, followed by 300,000 Markov
chain Monte Carlo (MCMC) iterations. To detect the most likely number of genetic clusters
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in our data, both the likelihood estimate [54] and the Evanno method [57] were used. Both
likelihood value computation and STRUCTURE plot visualization were performed using
the pophelper package in R [58].

2.3. Phylogenetic Analyses

To resolve the phylogenetic relationships within the taxa of the P. mugo complex and
between them and P. sylvestris, we used two methods. Firstly, we conducted maximum-
likelihood (ML) analysis on a concatenated sequence set composed of 48 nuclear loci to
reconstruct the phylogeny of the studied species on an individual level. Pinus pinaster was
used as an outgroup in all phylogenetic analyses to root trees. Following the evaluation of
nucleotide evolutionary models in jModelTest v2.1.7 [59], the ML tree was constructed in
RAxML v.8.1.20 [60] using the best-fit model GTRGAMMAI with 1000 bootstrap replicates.

Secondly, to test whether reticulation events were present in the evolutionary his-
tory of the studied species, we performed PhyloNet analysis. Phylogenies per gene were
constructed using RAxML with 100 rapid bootstraps under the GTRGAMMA substitu-
tion model. Each consensus gene topology was recorded, and the number of resulting
phylogenies showing different topologies was counted by hand. All bootstrap trees for
each gene were used as an input for PHYLONET v.3.8.2 [61,62] after conversion to the
required input file with a custom Phyton script. Maximum pseudolikelihood (MPL) in
a coalescent framework was used to infer integrated species trees (using the command
InferNetwork_MPL). The analysis involved 10 runs for each gene to ensure finding the best
network and allowing for up to 4 reticulation events. This method is robust to gene flow,
it is computably efficient, and the results are as accurate as in the case of the maximum
likelihood one [63].

To further explore the possibility of gene flow between studied pines after their
divergence, we used a four-taxon D statistic test [64]. The test compares two patterns of
frequency of ancestral and derived alleles in ingroups and outgroups (so-called ABBA
and BABA patterns) under the assumption of equal frequencies of ABBA and BABA
topologies (D statistic = 0) given the stochastic lineage sorting. Thus, this test is useful in
tracking gene flow between species and can help distinguish incomplete lineage sorting
from hybridization or admixtures. In the case of hybrid origin of P. uliginosa we should
expect the D value to be significantly different from 0 in two topologies ((X1,U), X2) and
((X2,U), X1), where X1 and X2 represent the putative parental species. We also explored
other possible introgression scenarios and chose a combination of 12 different topologies to
perform ABBA–BABA test and D statistic estimation using the HybridCheck R package [65].

2.4. Testing Speciation Models Using Coalescent Simulations

We used fastsimcoal2 [66,67] to test the fit of our data to different predefined speciation
models using coalescent simulations. Multi-site frequency spectra (MSFS) for four pine
species were created using Arlequin v.3.5 [68] and used as summary statistics to estimate
demographic parameters under an ABC framework. Overall, 16 speciation models were
tested, representing different topologies within the P. mugo complex with P. sylvestris
as an outgroup. They differed in the allowed levels of migration between species after
their divergence, namely: models 1–4 represented possible dichotomous and polytomous
topologies between P. mugo, P. uliginosa, and P. uncinata with no migration allowed. Models
5–6 were classic homoploid hybrid speciation (HHS) models of P. uliginosa with different
putative parental species, and no migration (P. sylvestris and ancestor of P. uncinata and P.
mugo vs. P. mugo and P. uncinata). Models 7–14 had the same topologies as 1–4 but with
different, asymmetric migration matrix allowed: between all species within the P. mugo
complex and between P. sylvestris and their common ancestor (models 7–10) or between all
four species after their divergence (models 11–14). Models 15–16 had the same topologies
as 5–6 but included migration between all four species (Figure S1).

For each model, we ran 1,000,000 coalescent simulations to approximate the expected
MSFS and calculate the associated log-likelihood. A maximum likelihood parameter esti-
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mate was obtained from 50 independent runs with 40 cycles of ECM algorithm in each run.
In each model, the highest likelihood run (i.e., with the best fitting parameter estimates)
was selected using the fsc-selectbestrun.sh script [69], and the best model was chosen using
the calculateAIC.R script [70] based on Akaike information criterion (AIC), to account for
numbers of parameters in each model. As used in other conifers, the mutation rate was set
to a robust rate of 4.01 × 10−8, and we assumed a generation time of 25 years [12,36,71,72].
To construct 95% confidence intervals (CI), 100 parametric bootstraps with 50 independent
runs in each were run, and the parameter estimates of the best-run files of all bootstrapping
replicates were calculated with the R package boot [73].

3. Results
3.1. Genetic Diversity and Population Structure

The nuclear dataset was comprised of 48 nuclear loci with no signatures of selection
and a mean length of 404 bp (range: 213–720 bp), and 794 SNPs identified in four pines.
The loci were found to be selectively neutral in an earlier study [45], and there was no
indication of skew in the allelic frequency spectra across the genes in our dataset. Among all
species, P. uliginosa was characterized by the highest number of polymorphic sites, singleton
polymorphic sites, averaged nucleotide diversity, averaged divergence to outgroup, and
haplotype diversity (Table 1).

Table 1. Summary statistic at 48 nuclear loci in four pine species.

Species n L (bp) P S π D R Ks Hd (SD)

P. uliginosa 29.3 19,414 441 155 0.005245 −0.28 39 1.864 0.689 (0.066)
P. mugo 29.3 19,414 365 154 0.004039 −0.37 8 1.501 0.601 (0.071)

P. uncinata 29.6 19,414 363 113 0.004546 −0.14 8 1.656 0.623 (0.066)
P. sylvestris 27.8 19,414 367 128 0.004576 −0.16 14 1.682 0.598 (0.073)

n: average number of sequences analyzed per locus; L: total length of the sequence in base pairs excluding indels;
P: total number of polymorphic sites; S: total number of singleton mutations; π: average nucleotide diversity;
D: Tajima’s D statistic; R: average number of recombination events; Ks: average pairwise divergence per site to
the outgroup P. pinaster at all loci; Hd: haplotype diversity (SD standard deviation), none of the D values were
statistically significant.

However, in general, the distribution of those statistics across all genes was very
similar in those pines (Table S3), and the overall level of variability was much alike.
Consistent with the low divergence, we found no fixed differences between the studied
taxa (only in comparison with P. pinaster such fixed SNPs were found), and the number of
shared polymorphisms between species was similar across all genes (Figures S3 and S4).
In addition, both average net divergence and global FST were lowest within species from
the P. mugo complex (with P. uliginosa being more similar to P. mugo and P. uncinata, than
the latter two to each other). There was a 3–4 fold higher difference between them and
P. sylvestris with the highest FST and Dnet found between P. sylvestris and P. mugo (Table 2,
Figures 1 and S4). Additionally, all studied pines shared similar patterns of FST distribution
in pairwise comparison with P. pinaster (Figure S2).

Table 2. Summary statistics for FST and net divergence between species.

Species Pair FST ± SD Dnet ± SD

P. uliginosa vs. P. mugo 0.068 ± 0.088 0.00032 ± 0.00042
P. uliginosa vs. P. uncinata 0.056 ± 0.067 0.00032 ± 0.00046
P. uliginosa vs. P. sylvestris 0.167 ± 0.155 0.00108 ± 0.00109

P. mugo vs. P. uncinata 0.088 ± 0.104 0.00054 ± 0.00087
P. sylvestris vs. P. mugo 0.260 ± 0.197 0.00181 ± 0.00203

P. sylvestris vs. P. uncinata 0.142 ± 0.138 0.00084 ± 0.00110
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ones) and the first two principal components explaining 19.81% (21.24%) and 9.04% 
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Similarly, STRUCTURE results (with or without the outgroup P. pinaster included) 
revealed a close genetic relationship between P. mugo, P. uliginosa, and P. uncinata with 
the best-supported number of genetic clusters (K = 3) with outgroup and (K = 2) when P. 
pinaster was excluded from the analysis (Figures 3a,b and S6). When P. pinaster was in-
cluded, it formed its own cluster, while three taxa from the P. mugo complex were grouped 
together and were clearly delineated from the cluster composed of P. sylvestris individu-
als. The resolution of genetic structure within species from the P. mugo complex did not 
improved when P. pinaster was excluded and the two main clusters reflected P. sylvestris 
vs. P. mugo complex division with no signatures of further substructure. The contrast be-
tween P. mugo and P. uliginosa/P. uncinata was more evident, as the latter species shared a 
greater proportion of their genetic composition with P. sylvestris (Figure 3). 

Figure 1. Distribution of genetic differentiation (FST) between species pairs based on all variable sites
in a set of 48 nuclear loci.

PCA analysis could only clearly identify a distinct species-specific cluster in the case
of P. sylvestris (and P. pinaster when it was included as an outgroup), with individuals from
species within the P. mugo complex forming mostly overlapping clusters with different
levels of homogeneity (P. uncinata and P. uliginosa were the most heterogeneous ones)
and the first two principal components explaining 19.81% (21.24%) and 9.04% (8.48%),
respectively (Figures 2 and S5).
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the first two principal axes.

Similarly, STRUCTURE results (with or without the outgroup P. pinaster included)
revealed a close genetic relationship between P. mugo, P. uliginosa, and P. uncinata with
the best-supported number of genetic clusters (K = 3) with outgroup and (K = 2) when
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P. pinaster was excluded from the analysis (Figures 3a,b and S6). When P. pinaster was
included, it formed its own cluster, while three taxa from the P. mugo complex were
grouped together and were clearly delineated from the cluster composed of P. sylvestris
individuals. The resolution of genetic structure within species from the P. mugo complex
did not improved when P. pinaster was excluded and the two main clusters reflected P.
sylvestris vs. P. mugo complex division with no signatures of further substructure. The
contrast between P. mugo and P. uliginosa/P. uncinata was more evident, as the latter species
shared a greater proportion of their genetic composition with P. sylvestris (Figure 3).
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Figure 3. Results of STRUCTURE analysis between studied pine species with (a) and without (b)
P. pinaster as outgroup species. The best number of genetic clusters K = 3 and K = 2 (with and
without the outgroup, respectively) was indicated by the results of likelihood estimates and the
Evano method.

3.2. Reticulate Phylogeny of Four Pines

The results of our phylogenetic ML analysis provided additional insight into the com-
plex evolutionary history of the studied pine species and the possibility of non-bifurcating
speciation events in their past. Three main clades could be identified in the phylogenetic
tree obtained from 19,414 bp concatenated sequences from 48 nuclear genes. However,
individuals from the same species form a monophyletic group only for the outgroup
P. pinaster. The second clade was composed predominantly of P. sylvestris (with four P.
uncinata and one P. uliginosa specimens), and the remaining P. sylvetris individuals were
grouped together with the species from the P. mugo complex (Figure S7).

Additionally, contrasting topologies were also recorded from individual consensus
gene trees. Overall, high numbers of individual topologies (10 out of 15 possible unrooted
topologies for five species) were reconstructed across 48 genes. The three most frequent
topologies (~60% in total) are shown in Figure 4a–c. The first two are similar in respect to
the position of the basal clades (P. pinaster followed by P. sylvestris) but differ in relationships
within the P. mugo complex: indicating either P. mugo and P. uncinata or P. uliginosa and P.
uncinata as pairs of most closely related species. Surprisingly, the third topology places P.
sylvestris as the innermost clade with P. uncinata and P. uliginosa followed by P. mugo at the
base of the tree with P. pinaster as the outgroup. The corresponding PhyloNet species tree
indicated the presence of at least three reticulation events in the evolutionary history of
the studied pines, not limited only to the origins of P. uliginosa, but also involving other
members of the P. mugo complex and P. sylvestris as well (Figure 4d). Finally, significant
gene flow between members of the P. mugo complex and between them and P. sylvestris
was found using the ABBA–BABA test (Table 3).
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Table 3. Results of the ABBA–BABA test.

P1 P2 P3 A D p Z

PM PUG PUN PP 0.601 ns 1.073
PM PUN PUG PP 0.161 ns 1.172

PUN PUG PM PP 0.487 <0.0001 3.304
PM PS PUN PP −0.035 ns −0.128

PUN PS PM PP 0.288 <0.05 1.990
PUN PM PS PP 0.320 ns 1.67
PM PS PUG PP 0.516 <0.0001 4.521
PM PUG PS PP 0.641 <0.0001 5.057
PM PUG PUN PS 0.603 ns 1.073
PM PUN PUG PS 0.183 ns 1.172

PUN PUG PM PS 0.472 <0.0001 3.304
Patterson’s D value for introgression between taxa with Z score and significance values. Acronyms for species:
PUG: P. uliginosa; PM: P. mugo; PUN: P. uncinata; PS: P. sylvestris; PP: P. pinaster. Topologies with statistically
significant values of D are bolded.

3.3. Alternative Speciation Models

Among the 16 possible speciation models tested, model 12 (Figure 5) with dichotomous
divergence within the P. mugo complex was chosen as the best fitting to our data, based on
the lowest values of AIC (Supporting Table S4).

In this model, P. mugo and P. uncinata were sister species with basal P. uliginosa and
asymmetric migration between all four species after their divergence. However, it is
worth noting that the second-best model with relatively small ∆AIC was model 14 with
an unresolved polytomous topology within the P. mugo complex after their split from P.
sylvestris and migration between all species after the divergence (Figure S1, Table S4). The
estimated parameters for the best model suggest that the common ancestors of the species
from the P. mugo complex split from the P. sylvestris ~5.9 Ma (5–8.5 Ma, 95% CI), and further
divergence within the complex occurred ~4Ma (3.9–5 Ma) with the origin of P. uliginosa
and most recent divergence of P. mugo from P. uncinata ~2 Ma (1.5–2.4 Ma; Table 4). Under
this scenario, the current effective population sizes for P. mugo, P. uliginosa, P. uncinata, and
P. sylvestris were estimated to be 406,282, 77,680, 78,879, and 554,232, respectively (Table 4).
The results indicate asymmetric gene flow and introgression between all four species with
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migration rates from 3.28−10 to 4.91−5 per generation and the strongest gene flow in pairs:
P. mugo vs. P. uliginosa, P. uncinata vs. P. uliginosa and P. sylvestris vs. P. uliginosa (Table 4).
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mographic parameters for this model are presented in Table 4. Parameters acronyms: NA: ancestral
population effective size; N1:N4: effective population sizes for the four studied pines (P. mugo, P. uliginosa,
P. uncinata, and P. sylvestris, respectively); T1:T3: time for three divergence events in years; M: migration
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Table 4. Maximum likelihood estimates and 95% confidence intervals of demographic parameters
for the best supported model shown in Figure 5.

Parameters Point Estimate Lower Boundof 95% CI Upper Boundof 95% CI

NA 1,817,521 1,223,654 1,511,901
N1 406,282 353,176 674,610
N2 78,879 4839 88,690
N3 77,680 5842 81,793
N4 554,232 508,589 761,921
T1 2,074,675 1,403,763 2,422,625
T2 3,999,925 3,915,625 5,303,234
T3 5,925,175 5,038,781 8,507,750

M1→2 3.28−10 6.97−11 9.83−9

M2→1 1.26−9 2.30−10 7.83−8

M1→3 8.11−8 3.78−9 4.00−7

M3→1 4.91−5 8.56−6 1.41−4

M2→3 1.24−7 3.15−8 2.00−7

M3→2 3.36−5 6.25−9 8.75−4

M1→4 1.62−6 1.50−6 1.76−6

M4→1 1.55−7 5.71−9 5.39−6

M2→4 2.94−5 6.90−6 1.06−5

M4→2 1.55−7 5.71−9 5.39−6

M3→4 6.03−6 5.38−6 9.47−6

M4→3 1.55−7 5.71−9 5.39−6

Parameters acronyms: NA: ancestral population effective size; N1:N4: effective population sizes for four studied
pines (P. mugo, P. uliginosa, P. uncinata, and P. sylvestris, respectively); T1:T3: time for three divergence events in
years; M: migration per generation after the divergence between pairs of species (arrows indicate the migration
direction). See Figure 5 for a model summary.
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4. Discussion
4.1. Models of Speciation

The patterns of nucleotide polymorphism and the signatures of divergence between
species, including clustering analysis, reflected the greater similarity of pines in the P. mugo
complex and their slight distinctiveness from P. sylvetsris, than expected under the pure
HHS model. However, as we demonstrate in our study, the speciation history of those
pines did not conform to the strict bifurcating divergence but was heavily influenced by
interspecific gene flow and reticulation events in the past. Out of 16 tested alternative
evolutionary models of relationships between taxa, including the two most likely scenarios
of homoploid hybrid speciation of P. uliginosa, the best fitting one indicated P. mugo
and P. uncinata as a sister species with basal P. uliginosa and P. sylvestris as an outgroup.
Furthermore, the most accurate model involved an asymmetric gene flow between all four
species after their divergence (Table 4, Figure 5).

Our estimates of about 5 Ma divergence time between P. sylvestris and taxa from
the P. mugo complex are in line with earlier reports [36]. Furthermore, we were able to
estimate the time of two subsequent divergence events within the pine complex, which
happened 4 Ma and 2 Ma, respectively. Initially, P. uliginosa split from the common ancestor
of P. uncinata and P. mugo, and then those two pines further diverged, which led to the
emergence of contemporary P. uncinata and P. mugo (Table 4). A short time since divergence
could explain the lack of fixed differences between all studied pines, particularly the
low divergence within taxa from the P. mugo complex and the generally high number of
shared polymorphisms between them. Such similarity could also be explained by the time
required for the reciprocal monophyly between diverging species - the greater the effective
population size and the more time is necessary to observe it [74]. Given the generally
large effective population sizes of the studied pine taxa, estimated here to be in range of
77,680–554,232, this time would be orders of magnitude greater than the mean divergence
time between them (2 Ma). Our estimates of effective population sizes are analogous to
the results of previous studies [36,75], with P. sylvestris and P. mugo characterized by the
highest and P. uncinata and P. uliginosa by the lowest sizes. However, considerably lower
estimates of effective population size were reported in a recent study of the demographic
history of P. uliginosa [76]. The difference between those estimates is most likely caused by
the number and type of loci (794 SNPs from nuclear genes vs. nine SSR and 12 cpSSR loci)
used in each analysis and the fact that we provide estimates for the whole species but not
individual populations.

4.2. Interspecific Gene Flow

Significant gene flow after divergence could further reduce the observed species’
genetic differentiation [4,5,16]. Different tests used in our study confirmed that gene ex-
change had played a significant role in the evolutionary history of those pines (Table 3,
Figures 4 and 5). Additionally, coalescent estimations helped us infer both the magnitude
and relative timing of gene flow between species, which suggests that secondary contact
was possible long after species divergence. Similar findings in different conifer systems
confirm that reproductive barriers between congeners in this group are weak and reticulate
speciation is not only possible but often influences patterns of species diversity in this
genus [25,77,78]. Our data indicate that the pattern of introgression is not symmetric
between taxa, and in general, stronger gene flow was estimated from representatives of the
P. mugo complex to P. sylvestris than in the opposite direction. Earlier studies reported such
asymmetric ongoing gene flow within present-day contact zones of P. uliginosa, P. mugo,
and P. sylvestris [79–81]. Surprisingly, the strength of gene flow within the P. mugo complex
is not consistent considering the genetic relatedness between the taxa-in fact, P. mugo and
P. uncinata are characterized by the lowest reciprocal migration rates among all analyzed
species. Those results may reflect their rapid divergence after the split, facilitated by the
geographic isolation and contemporary disjoint distribution of sympatric populations
found only in the Alps, with P. uncinata primarily located in the western and P. mugo in
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the eastern parts of the mountains. Patterns of mitochondrial DNA variation support this
ongoing divergence, as both species, could be clearly delineated by mitochondrial markers,
and P. uncinata harbors unique and fixed mitotypes [33]. Nevertheless, there is evidence
for interspecific gene exchange between those pines in their contact zone in the Alps [82].
Considering the relatively strong signals of gene flow between P. uncinata and P. uliginosa
and given their current allopatric ranges with the limited and fragmented distribution of
the latter species, we hypothesize that it may reflect an ancient introgression between those
pines. Although pollen records could infer past plant species distribution [83], palynologi-
cal records only poorly distinguished taxa of the P. mugo complex from P. sylvestris, and
further distinction within the complex is impossible [84].

Evidence of widespread introgression between studied pines is further supported
by the particularly high number of inconsistencies of gene trees with species trees found
in our dataset. This pattern was especially conspicuous for those gene topologies where
P. uncinata and P. sylvestris were indicated as the most closely related species (Figure 4).
Similar patterns could also arise as an effect of incomplete lineage sorting; however, it is
less likely in our case, as the results of the ABBA–BABA test confirmed a significant excess
of allelic patterns consistent with a history of introgression (Table 3). Introgression could
also explain the pattern observed in individual-based phylogeny, where the three main
clades were not species-specific and individuals from different species grouped together.
It should also be noted that overall, the bootstrap support for most of the phylogenetic
tree branches was low (<50) with highly supported nodes only in the case of outgroup P.
pinaster main branch and some terminal nodes. Additionally, some specimens from two P.
sylvestris populations (from Poland and Finland) were more closely related to individuals
from P. uliginosa and P. uncinata, than those from conspecific populations (Figure S7). The
wide distribution of P. sylvestris and its known long-distance migration associated with
postglacial recolonization of Europe could facilitate overlap with other pine species and
locally restricted gene flow. Previous studies reported similarities between Scots pine
populations from Poland and Finland [85,86], reflecting their common phylogeographic
history, and mitotype sharing between P. uliginosa, P. mugo, and P. sylvestris in their contact
zones was also reported [33,80].

Although our dataset contained selectively neutral loci, such preferentially intro-
gressed alleles could reveal the genomic location of regions of adaptive value that were
predominantly targeted by introgression and linked to neutral variants [87]. Examples
of such adaptive introgression in plant systems are emerging in recent years, especially
in crop species and their wild relatives [88–91]. Thus, scans for signatures of selection in
introgressed genomic regions could be valuable research targets in future studies.

4.3. Species Integrity within the P. mugo Complex

Due to introgression and hybridization between related species, the tree-like, bifur-
cating phylogeny is difficult or even impossible as widespread introgression across the
genome will result in many genes with incongruent phylogenies. Thus, in case of frequent
introgression, the maximum likelihood or most probable species tree from a series of genes
may reflect proper relationships between taxa as a phylogeny consistent across the whole
genome might not exist [92]. In systems like the pine taxa studied here, where successive
divergence occurred relatively quickly, and the possibility of hybridization between both
sister and no-sister species prevailed for long enough, we should rather seek phylogenetic
webs or reticulate networks instead of a phylogenetic tree [92]. Nevertheless, despite inter-
specific gene flow, largely shared neutral polymorphism and reticulation events evident in
the evolution of pines from the P. mugo complex and P. sylvestris, they maintain their distinct
morphological and ecological features. The species can be recognized phenotypically and
show patterns of local adaptations related to temperature, water availability, pathogen
resistance, or photoperiod [93,94]. Such species integrity was found to be preserved due to
natural selection in spite of gene flow and interspecific hybridization in other trees, such
as oaks, poplars, and eucalyptuses [95]. Under the model of speciation with gene flow, a
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divergence between populations and species is considered mainly driven by directional
selection in a few genomic regions, harboring genes associated with adaptation to different
habitats, and it is accompanied by generally low levels of genetic differentiation at other
loci in the genome [5]. Predictions regarding the heterogeneous genomic landscape of
differentiation were recently confirmed in diverging populations of various taxa [96–99].
Ecological differences are evident within the P. mugo complex, including P. uliginosa adapted
to peat-bog environments and P. mugo and P. uncinata adapted to mountain regions of
Europe that reflects the species divergence in phenology and growth of young trees under
common garden experiments [93]. However, the molecular basis of the species’ adaptive
variation to specific environmental variables is still mostly unknown.

Detailed inspections of species-specific niche envelopes within this complex are re-
quired to guide further studies of adaptively important traits associated with species
divergence and maintenance of species integrity. The ability to conduct genome scans in
search of loci under selection was restricted only to sets of candidate genes [45,100] as until
recently, access to genomic resources was seriously imposed by the extremely large and
complex genomes of pines [101,102]. However, the recent development of the transcrip-
tome sequence of the species and the Affymetrix ~50 k SNPs array [103] overcomes the
limitations of earlier studies, and genome-wide analyses are now feasible. Those studies
should advance the search for genomic landscapes of divergence and selection to better
understand the genetic basis of adaptation and speciation with interspecific gene flow.

5. Conclusions

Our study demonstrates the complex evolutionary history of the investigated taxa
with strong patterns of reticulated rather than strictly bifurcating divergence as a result
of speciation with a significant interspecific gene flow. Consequently, the taxa of P. mugo
complex share much of the neutral genetic variation, different genes yield contrasting
phylogenies, and the majority consensus tree could be the best approximation of species
genetic relatedness. However, despite past hybridization and introgression, the species
integrity is maintained through ecological and morphological differences, most likely due to
selection at specific genomic regions and local adaptation to slightly disjunct environmental
envelopes. Considering novel genomic resources and analytical tools recently developed
for the investigated species, the pines could be useful to search for loci involved in the
species phenotypic and ecological divergence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12040489/s1, Figure S1: Schematic representation of the 16 demographic models tested in
fastsimcoal2, Figure S2: Distribution of genetic differentiation (FST) in pairwise comparisons between
four studied pines and an outgroup P. pinaster based on all variable sites in a set of 48 nuclear loci,
Figure S3: Number of shared polymorphisms between studied species in pairwise comparisons
across all of the 48 nuclear loci studied, Figure S4: Net between-species divergence per site: (A),
and number of shared polymorphisms: (B) in pairwise comparisons averaged across 48 nuclear
loci, Figure S5: The results of the principal component analysis (PCA) showing differentiation of
species (P. pinaster included as an outgroup) by the first two principal axes, Figure S6: The results of
likelihood estimate and Evanno method for STRUCTURE runs, Figure S7: Phylogenetic relationships
(ML tree) of 132 samples of P. uliginosa, P. mugo, P. uncinata and P. sylvestris rooted with P. pinaster
based on the concatenated sequence of 48 nuclear loci, Table S1: Location samples analysed, Table
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