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Abstract: Spatial time-series measurements of forest degradation rates are important for estimating
national greenhouse gas emissions but have been challenging for open forests and woodlands. This
lack of quantitative data on forest degradation rates, location and biomass is an important constraint
to developing national REDD+ policy. In Malawi, and in most countries in Africa, most assessments
of forest cover change for carbon emissions monitoring tend to report only deforestation in the public
forest estate managed by the government, even when important forest degradation also occurs in
agricultural areas, such as customary forests and other tree-based systems. This study has resulted
in: (a) a new robust forest map for Malawi, (b) spatial and quantitative measurements of both forest
degradation and deforestation, and (c) a demonstration of the approach through the introduction
of a tool that maps across the broad landscape of forests and trees outside of forests. The results
can be used to support REDD+ National Forest Monitoring Systems. This analysis produces new
estimates of landscape-wide deforestation rates between 2000–2009 (22,410 ha yr−1) and 2009–2015
(38,937 ha yr−1). We further produce new estimates of the rate of forest degradation between 2000–
2009 (42,961 ha yr−1) and 2009–2015 (71,878 ha yr−1). The contribution of these new tools and
estimates to capacities for calculating carbon emissions are important, increasing prospects for full
REDD+ readiness across semi-arid Africa.

Keywords: REDD+; forest degradation; miombo; Malawi; carbon emissions

1. Introduction
1.1. Importance of Measuring Landscape-Wide Deforestation and Forest Degradation

The lack of quantitative spatial information on forest degradation is an important
gap in our understanding of anthropogenic forest disturbance throughout the tropics,
but especially in tropical woodlands and other sparse tree ecosystems [1,2]. Although
deforestation rates and spatial extent are being monitored increasingly well, degradation
rates are less well documented [3], especially using remote sensing [4] even though they are
as important as deforestation data for estimating carbon emissions and biodiversity loss.

Forest disturbances by human activities in tropical forests and woodlands occur as a
gradient of severity, from complete forest conversion to various degrees of degradation
within forests. While deforestation results in complete change from forest cover to another
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land cover, degradation occurs without removal of the forest canopy nor as a change
in the land cover [4–6]. The Intergovernmental Panel on Climate Change (IPCC) has
established a definition of forest degradation [5–7], as the loss of ecosystem properties such
as biomass or carbon stocks. Specifically, “degradation is defined as a negative trend in land
condition, caused by direct or indirect human-induced processes including anthropogenic
climate change, expressed as long-term reduction or loss of at least one of the following:
biological productivity, ecological integrity, or value to humans. Forest degradation is
land degradation that occurs in forest land. Deforestation is the conversion of forest to
non-forest land and can result in land degradation” [7].

In the Miombo woodlands of Malawi, there is informal evidence that degradation is
a major form of forest disturbance. The Miombo is a woodland type of immense value
covering approximately 2 million square kilometers in seven countries and supporting
over 150 million people [8]. They are open forests of low carbon stocks, ranging from 35 to
45 Mg ha−1 [9–11] and in some cases as low as 8 Mg ha−1 [12] in Malawi. One of the major
anthropogenic disturbance factors is the removal of biomass by culling individual trees to
produce charcoal for domestic energy and as a small-scale commercial enterprise [13,14].
These activities reduce standing biomass in an already sparce woodland ecosystem [15].
Over the last 30 years, there has been a significant loss of woodlands outside the gazetted
forest estate as these forests have been converted to agriculture [16,17]. Today, a large
amount of charcoal biomass extraction occurs within national forest reserves [18,19]. Due
to a lack of resources and ground-based monitoring, protection of these woodlands has
been difficult. Remote sensing offers an opportunity to monitor these forests.

Detecting changes due to forest degradation using remote sensing has been difficult
even for highly degraded areas [4]. Selective removal of biomass without complete canopy
loss leaves conventional remote sensing classification methods ineffective. Spectral clas-
sification using low resolution data do not reveal sub pixel level variation necessary to
detect degradation [20]. Natural variation in tree density results in a range of canopy
and carbon densities in undisturbed Miombo [21], so a single observation or single-date
analysis makes it difficult to separate human disturbances from natural variation. Another
factor that has hindered the quantification of Miombo woodland biomass loss is the lack of
good biomass or carbon inventories [22]. Miombo woodlands have not been considered a
commercially important timber resource. As such, there has never been a good argument
for using scarce human and financial resources to maintain a national forest inventory.
However, with the emerging importance of carbon and biodiversity ecosystem services it
is important to demonstrate new woodland measurement applications for biomass and
habitat management in countries such as Malawi.

The objectives of this research were threefold: (1) measure and spatially map at
high resolution (30 m) the recent and current forest cover, producing a new robust forest
vegetation map for Malawi including forests outside the established public protected
areas; (2) measure and map changes in forest cover and density due to both deforestation
and forest degradation, within the established forests of national parks and reserves, as
well as within customary forest land; and (3) demonstrate a new tool for comprehensive
measurement and mapping that supports carbon inventories country-wide in Malawi.
The tool measures and maps both deforestation and forest degradation separately in an
internally consistent framework. There has been some uncertainty about the rates of
deforestation in Malawi. There is considerably more uncertainty on the additional impacts
from degradation. Often reports will combine or overlap deforestation and degradation,
even though carbon stocks, emission factors, and drivers may be very different. This causes
reporting confusion and makes interventions, policies, and measures ineffective.

1.2. Importance of East and Southern African Forests and Climate Change Mitigation

Although the total emissions from Malawi and most countries in East and Southern
Africa are very low relative to other countries, the fraction of their national emissions
attributed to forest and agriculture is high, as much as 90% in Malawi [18]. Furthermore,
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in Malawi and across the region, there is great potential for increasing forest and tree cover
through programs aimed at forest landscape restoration (FLR) [23] both within national
forests and across landscapes with tree-based systems outside of forests. Thus, the forests
and woodlands of the region have important roles for mitigation and adaptation. Most
forests in the region are losing carbon and are a net source of emissions, but there is
growing evidence that in some landscapes of trees outside of forests (TOF) are increasing
tree biomass and could be important sinks for carbon [24]. The most important hotspots for
this phenomenon are TOF systems in agricultural landscapes in semi-arid woodland zones.
Africa is a particularly important region, as recent studies have identified the occurrence of
farmer-mediated and promoted increases in biomass in savanna and woodland landscapes
in rural areas. For example, in West Africa, Brandt et al. [25] observe elevated tree biomass
around village areas compared to stocks in natural savannas.

Eastern and Southern African agricultural landscapes are traditionally known for
their occurrence of tree systems that are used to capture a range of ecosystem functions
and as a source of food, fiber, and energy. Many of the farming practices in the region are
tree-based systems that combine trees with land management practices for food and animal
production. Tree cover on agricultural land is now 10–30% in sub-humid Africa [26]. Most
agricultural lands are suited to growing trees. Traditionally, farmers have managed the
natural regeneration of trees on their farmlands. However, before these kinds of outcomes
for positive mitigation of carbon emissions can be realized, we need to know how and
where these woodlands and trees outside of forest are declining.

1.3. National Policy Context for Forest Degradation Monitoring

The lack of quantitative data on forest degradation rates, location and biomass is
an important constraint to policy formulation related to mitigation of greenhouse gas
emissions in Malawi, as it is in most countries in Africa [27,28]. As a result of the new
international climate agreements from COP 21 in Paris in 2015, national governments
are taking steps to include forests in their Nationally Determined Contributions (NDCs)
to climate change mitigation and their policies and measures for Reducing Emissions
from Deforestation and Degradation (REDD+). There are five agreed scope elements
under the REDD+ framework: (1) Conservation of Carbon Stocks, (2) Reducing Emissions
from Deforestation, (3) Reducing Emissions from Forest Degradation, (4) Enhancement of
Carbon Stocks, and (5) Sustainable Forest Management. Yet, many countries are uncertain
about the appropriate scope for implementing their REDD+ programs. Much of this
uncertainty relates to the lack of available tools and methods for the measurement and
monitoring forest degradation as part of these scope elements [29]. Many countries have
important disturbance regimes related to both deforestation and forest degradation [30].
Excluding forest degradation in the scope of a national REDD+ program limits the actions
that would reduce an important greenhouse gas (GHG) emission source. Furthermore,
countries that include enhancement actions, such as forest landscape restoration (FLR),
would overestimate the positive impact of these mitigation efforts without also accounting
for degradation. This could lead to misleading reporting on progress with NDCs.

Under the Warsaw Framework, countries developing national REDD+ programs
are requested to include five fundamental measurement and reporting streams in their
national planning: (1) a national REDD+ strategy, (2) a National Forest Monitoring System
(NFMS), (3) forest reference emission levels (REL), (4) safeguards information systems, and
(5) a national reporting structure. This REDD+ framework requires countries to develop
a national platform for measuring, reporting, and verifying (MRV) GHG emissions and
removals on a regular basis. For the most part, this requires that countries have the technical
capacity to systematically measure a set of factors related to: (a) changes in the extent and
condition of forest cover; (b) carbon stocks in forests with varying stature and condition,
that change over time; and (c) emissions or removals of GHGs associated with changes in
forest cover and changes in carbon stocks.
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The government of Malawi (GoM) is active in developing capacity for its national
REDD+ program [31]. However technical limitations in MRV are obstacles to achieving
advanced readiness. For instance, in Malawi’s recent publication of a national forest
reference emission level (FREL) one method is used for forest cover stratification (medium
resolution national cover from remote sensing), another method is used to estimate rates
of deforestation (sample-based visual interpretation of Google Earth), and an indirect
modeling method is used to estimate forest degradation (a fuelwood demand model using
proxy data) [31]. This can result in incompatible and inaccurate results [32]. For instance,
the direct visual sampling method covers all forest areas while the indirect estimation of
fuelwood demand from a model that uses external data, such as population, does not
accommodate for these areas. As such, this could easily result in double counting when
observed and mapped deforestation was due to fuelwood extraction. Thus, improvements
in MRV are needed to develop a uniform and consistent methodology, which is what this
study aims to demonstrate.

2. Materials and Methods
2.1. Basic Approach

The threefold objective of this research was to develop a new robust forest map of the
forests of Malawi, measure and map deforestation and forest degradation in Malawi, and
demonstrate a new forest assessment tool that can support national REDD+ programs in
Africa. The current paucity of data and measurements of forest cover, including accurate
high-resolution maps that depict coverage, condition and change, requires new analysis
and observations as we describe for this study.

This project developed, tested and deployed a remote-sensing-based tool as a proto-
type for mapping REDD+ Activity Data for the country of Malawi (Figure 1). Activity Data
are observations of the rate and spatial extent of activities that drive GHG emissions to the
atmosphere and GHG removals from the atmosphere (sequestration) in the forest land-
scape [33,34]. The focus of this analysis is on geospatial quantitative measurement of rates
and extent of deforestation and forest degradation to support the development of a NFMS
for Malawi’s national REDD+ programming. The tool, referred to as the f C Tool, uses
Landsat-class satellite data at 30 m spatial resolution with national coverage. The f C Tool
produces a continuous field product using a spectral mixing model with 2 endmembers
over a time series [35–37]. With a continuous field approach, the difference in fractional
cover values over time portrays changes within forests due to degradation [36,37], as well
as changes from forest to other land covers due to deforestation. The choice of a fractional
cover approach is based on the rationale that it is a well-tested method for forest monitor-
ing [38,39] and thus represents an appropriate and accessible approach, given Malawi’s
human and technical resources context. However, the specific application of this approach
to REDD+ MRV has not been widely demonstrated [4].

A continuous field approach is also well suited to monitoring the Miombo woodlands
of Malawi. These sparse forest systems are ubiquitous throughout Southern Africa and are
similar forests to the Acacia woodlands in East Africa. Traditional classification mapping
using supervised or unsupervised methods is less effective due to variability in tree and
crown density, an attribute that may be better addressed through sub pixel mixture model
methods [40]. Conversely compute-intensive approaches using very large datasets, such as
machine learning [38], present obstacles to developing nationally owned forest monitoring
products, as do some big data processing frameworks [41] that are performed externally to
national agencies and their forest management units [42].

In a methods development context, our focus is on using direct observations to
measure and map forest degradation over large areas at moderate spatial resolution (30 m),
in conjunction with deforestation mapping. Deforestation measurement and mapping
with remote sensing has been studied for a long time with considerable success [43],
although there has been less progress for woodlands than for closed tropical forests [44,45].
Forest degradation is particularly difficult to map [4] since it occurs within forests and is
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characterized by changes in forest cover density rather than an outright loss of forest and
conversion to another land cover type.
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Figure 1. Vegetation of Malawi, showing the distribution of forests. The majority of forest is Miombo
woodlands, both open and closed forests. This map was generated by the Food and Agriculture
Organization of the United Nations (FAO. 2013. Atlas of Malawi Land Cover and Land Use Change,
1990–2010, Rome. 139 pp.) Codes are URB: Built Up, TP: Tree Plantation, AG: Agriculture, TREO:
Tree Cover Open, TREC: Tree Cover Closed, SCO: Shrub Cover, HCO: Herbaceous Cover, BS: Bare
Land, and WAT: Water Bodies.

2.2. National Study Area

This work was conducted for the country of Malawi. Malawi forest ecosystems
are dominated by the Miombo forest type, a semi-arid tropical woodland. The forest
environment in Malawi is almost completely represented by the Miombo woodlands. The
Miombo system covers 90% of natural forest area, with some dense evergreen forest located
in the highlands. Other forest types exist with less coverage, including the Northern
Zambezian and Mopane types. The Miombo woodland ecosystem is the most extensive
vegetation type in Africa, covering an estimated ~2 million km2 in regions receiving greater
than 700 mm mean annual rainfall on nutrient-poor soils [8,46]. Miombo is a type of tropical
woodland which is dominated by the genera Brachystegia, Julbernadia and Isoberlinia.
These woodlands cover vast areas of Africa stretching from Angola through Zimbabwe,
Zaire to Mozambique, the entirety of Zambia, Tanzania and most of Malawi.

Although there are no reliable data on the area of Miombo that has been degraded,
for recent years it is believed to be more extensive than the area cleared outright. Anthro-
pogenic activities play an important role in the land use dynamics and ecological impacts
in Malawi Miombo woodlands. Charcoal production, firewood collection for subsistence
use and for tobacco curing, conversion of woodlands to cropland, and seasonal fires are
among the major drivers of deforestation and forest degradation [18,19,47]. Informal
estimates of deforestation in Malawi have been reported to vary widely from 50,000 to
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150,000 ha yr−1 [16], but there has not been a systematic assessment in which there is
clear distinction between rates of deforestation and rates of degradation within forests [48].
Other issues include vagaries in how much tree cover is included in forest cover, and how
much change is tabulated in forests compared to tree formations outside of forests.

Most of the standing forests exist in national forest reserves and other protected areas.
Approximately 1.0 million hectares of forest are in these nationally gazetted forest areas in
protected areas and perhaps an additional 1.1 million hectares in intact dense forests outside
these but not on agricultural land [47,49]. Other forests are found in customary land, that
is managed by local communities often under control of traditional authorities [50] and
may account for an additional 1.1 million hectares [51]. Agricultural land contains systems
of trees outside of forests, sometimes at very high densities. Our study includes all three of
these forest categories.

2.3. Data Processing

The f C Tool is a method for using remote sensing data and specific algorithms to
produce forest cover maps along continuous fields (Figure A1). Most forest and land
cover maps from satellite remote sensing are based on discrete classes of forest or land
cover, represented as homogeneous polygons of a single cover type. The continuous
fields approach produces land and forest cover maps with robust gradients of cover, more
accurately representing natural and anthropogenic variations within cover types. Without a
continuous fields approach it is not possible to measure carbon stock degradation or capture
natural variations in carbon stocks within forest cover classes. The f C Tool produces forest
fractional cover, f C, which is a measure of the fractional cover in forest vegetation, ranging
from 0 to 100 percent. It maps variations in these fractional cover values to represent
variation in the landscape of forest density, and changes in these fractional cover values
to represent various intensities of degradation and deforestation. It is produced from
30 m resolution Landsat data, which are free to the user, to produce a spatial product at a
landscape scale relevant to the scale of the disturbance regime in Malawi, and useful for
community-based interventions and forest management planning.

We use 30 m Landsat TM, ETM+ and OLI data for three dates, 2000, 2009 and 2015, to
detect and map changes in Miombo woodlands in Malawi. The analysis derives vegetation
continuous field fractional cover (f C) data products for the whole of Malawi and computes
pixel-level changes through a spatially explicit rule model (Figure A1). The f C products
are used to map deforestation and forest degradation inside national forest reserves and
also in customary land outside of the forest reserves.

The acquisition of Landsat data was based on the following criteria: (1) WRS2 path
row images for complete coverage, wall to wall, of Malawi, (2) three years of analysis,
2000, 2009 and 2015 plus or minus two years from the target year, with a preference for
along path, same date imagery, (3) seasonal phenology in the early dry season prior to
leaf senescence with reduced agricultural field productivity (months of April–June), and
(4) minimal cloud cover. For path row images where clouds were present, we acquired
multiple images to be used for gap-filling. Fifty-eight (58) images covering 11 WRS2
path/row combinations at three dates were used to provide complete cloud-free coverage
of the country (Table 1). All data were level 1G or 1T and acquired through the United
States Geologic Service’s Eros Data Center.

The data analysis workflow included seven processing steps: Level 1 digital number
(DN) data were converted to top of atmosphere reflectance (TOA) values using [52]. TOA
reflectance NIR and Red bands were used to produce an NDVI (Normalized Difference
Vegetation Index) product. We created a vegetation continuous-field, fractional cover
(f C) product from the NDVI data using a two endmember, linear un-mixing algorithm
following [35,37]. We identified cloud and cloud shadow pixels in each path/row scene
using the Fmask software [53,54] and then masked these “contaminated” pixels from each
path/row image. The national f C product was then developed by gap-filling, mosaicking
path/row images, and clipping the mosaicked data to the Malawi border for each target



Forests 2021, 12, 426 7 of 30

year. This product was then adjusted by masking pixels of no-data, wetland, marsh,
grasslands, plantations and water bodies. A two-date f C change detection analysis was
performed for the periods 2000–2010 and 2010–2015, which produced national ∆f C change
intensity. This was performed for woodland forest areas within protected areas, village
forest areas (VFAs) and other customary forests, and trees outside of forest (ToF).

Table 1. Listing of all Landsat path/row combinations, acquisition date and scene identifier for imagery used in this analysis.

Path/Row Year 2000 Year 2010 Year 2015

Scene ID Acq. Date Scene ID Acq. Date Scene ID Acq. Date

167/70 LE71670702002146SGS00 26 May 2002 LT51670702008155JSA01 26 May 2008
LC81670702015158LGN00
LC81670702014155LGN00
LC81670702015126LGN00

7 June 2015
4 June 2014
6 May 2015

167/71 LE71670712002146SGS00 26 May 2002 LT51670712009157JSA02 6 June 2009
LC81670712015158LGN00
LC81670712014155LGN00
LC81670712015126LGN00

7 June 2015
4 June 2014
6 May 2015

167/72 LE71670722002146SGS00 26 May 2002

LE71670722009149ASN00
LT51670722010128JSA00
LT51670722008123JSA00
LT51670722008139MLK00

29 May 2009
8 May 2010
2 May 2008

18 May 2008

LC81670722015158LGN00
LC81670722014155LGN00
LC81670722015126LGN00

7 June 2015
4 June 2014
6 May 2015

168/68 LT51680681998134JSA00
LE71680682002073SGS00

5 May 1998
14 March 2002

LT51680682009148JSA02
LT51680682009164MLK00

28 May 2009
13 June 2009 LC81680682015229LGN00 17 August 2015

168/69 LT51680691998134JSA00 14 May 1998
LT51680692009148JSA02
LT51680692009180JSA02
LT51680692009148JSA02

28 May 2009
29 June 2009
28 May 2009

LC81680692015165LGN00
LC81680692015133LGN00

14 June 2015
13 May 2015

168/70 LT51680701998134JSA00 14 May 1998
LT51680702009148JSA02
LT51680702009180JSA02
LT51680702009164MLK00

28 May 2009
29 June 2009
13 June 2009

LC81680702015165LGN00
LC81680702015133LGN00

14 June 2015
13 May 2015

168/71 LT51680711998134JSA00 14 May 1998 LT51680712009148JSA02
LT51680712008130JSA00

28 May 2009
9 May 2008

LC81680712015165LGN00
LC81680712015133LGN00

14 June 2015
13 May 2015

169/67

LE71690672002128SGS00
LT51690671998157JSA00
LE71690672002192SGS00
LT51690671999144JSA00

8 May 2002
6 June 1998
11 July 2002
24 May 1999

LT51690672009155JSA02
LT51690672008185JSA00
LE71690672009259ASN00

4 June 2009
3 July 2008

16 Sept. 2009
LC81690672015156LGN00 5 June 2015

169/68 LE71690682002128SGS00 8 May 2002 LT51690682009155JSA02 4 June 2009 LC81690682015156LGN00 5 June 2015

169/69 LE71690692002128SGS00 8 May 2002 LT51690692009155JSA02 4 June 2009 LC81690692015156LGN00 5 June 2015

169/70 LE71690702002128SGS00
LE71690702001125SGS00

8 May 2002
5 May 2001 LT51690702009155JSA02 4 June 2009 LC81690702015156LGN00 5 June 2015

We used the constants and radiometric calibration procedure for each sensor (TM,
ETM+ and OLI) provided in [52]. This pre-requisite step of radiometric characterization
and calibration is known to produce higher quality “down-stream” products, by reducing
errors in observed Earth surface changes from sensor artifacts when using long-term series
of remote sensing data for scientific information [55]. The computation for the spectral
radiance at the sensor’s aperture uses scene specific metadata that accompanies each set of
spectral bands when data are acquired from the USGS EROS Data Center. These constants
are also noted in a series of tables in [52]. The conversion of at-sensor spectral radiance to
exo-atmospheric TOA reflectance reduces the scene-to-scene variability. Conversion to TOA
reflectance uses scene specific data related to the date of acquisition and position relative to
the sun’s position at the time of acquisition. The conversion from level 1, digital numbers
(DNs) data to at-sensor spectral radiance and then to TOA reflectance is performed for
each spectral band for each acquired image.

Normalized Difference Vegetation Index data products are created using the NIR and
Red TOA reflectance bands [56]. The NDVI product is a measure of vegetation across
the landscape with values between −1 and 1. NDVI pixel values closer to one contain
vegetation with high photosynthetic capacity. The equation for NDVI is (NIR − Red)/
(NIR + RED).

The detection of pixels “contaminated” by cloud and cloud shadow is accomplished
with the “Function of mask” or Fmask series of algorithms first developed by [53] and later
improved by [54]. Fmask runs as a DOS prompt executable and processes data through a
series of algorithms that identify Landsat pixels as clear-sky, cloud, cloud shadow, water
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and ice. Missing pixels from the cloud removal are gap-filled with clear sky pixels from
other, overlapping data to create a near complete cloud-free landscape for all of Malawi.
Recoding was performed for specific agricultural areas in Malawi where irrigated lands
included growing crops at the date of acquisition. Pixels in these areas that showed a high
f C value were recoded to a value of 0 but included in the deforestation analysis if they
were forest at a previous date. A wetland mask was also used to exclude marsh vegetation
mapped as high f C. Several data sets were used to mask non-forest areas: these include an
internally consistent water mask used across all three dates, grassland, marsh/wetland,
and tree plantations.

2.4. Deforestation and Forest Degradation Models

Vegetation continuous field fractional cover (f C) data products are generated from
the NDVI data using a two end-member, linear un-mixing algorithm (Figures 2 and 3
and Figure A1). The algorithm uses two end-members representing pure soil (VIsoil) and
100% closed canopy vegetation (VIforest) [35–37]. The end-members are selected using
an AOI tool through expert knowledge visual analysis for each Landsat NDVI image or
along-path mosaic paired with a histogram stretched RGB three-band false-color composite
image. Several AOI samples are selected for each end-member throughout an image. The
minimum, maximum, mean, and standard deviation are computed from the AOI end-
member samples. Along path (same date) and individual scene f C products are created
using the minimum, maximum and average end-member values and each are evaluated for
path-to-path and gap-filling consistency prior to selection for mosaicking and gap-filling.
The f C data are produced as thematic integers and scaled 0 to 100. The f C algorithm is
specified as follows: (NDVI − VIsoil)/(VIforest − VIsoil). Figures 2 and 3 present an
example of the f C product. The final version of the along-path and individual Landsat f C
products are then mosaicked and clipped to the national boundary of Malawi.

Each year-date is referred to as an observation year (OY). Change detection between
three OY data layers of national f C is used to measure and map deforestation and forest
degradation. Each OY f C data layer and change-intensity ∆f C products are created using
separate models for deforestation and forest degradation specified as f C(OYt+1 − OYt).
The deforestation and forest degradation models identify pixels that meet pre-defined
threshold and criteria in terms of f C values when comparing one date to a second date.
These are spatially explicit models written in ERDAS Imagine modeling language. Two
input data sets f Ct and f Ct+1 are compared. The quantitative subtraction of two values
produces a continuous field of ∆f C which is the change intensity value (Figure 2).

An initial evaluation of the value of ∆f C is made to test for a minimum magnitude of
change, which accommodates for normal variation in f C values unrelated to disturbance
(e.g., phenology). All pixels with ∆f C > 15 are considered change cases. Deforested pixels
are those where f Ct > 45 and f Ct+1 < 45. Forest degradation occurs when the pixel value
of f Ct > 45 and in the f Ct+1 > 45. Because of the continuous fields characteristic of the f C
change detection, we can map the magnitude of change, ∆f C, which we refer to as change
intensity. This change intensity mapping is demonstrated in Figure 2B and can be used to
measure and map the intensity of forest degradation.
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Figure 2. The f C model of forest cover and change measures the intensity of forest disturbance as a continuous field of
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and tones of orange and red are high-intensity degradation.
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2.5. Delineation of Tree Cover and Forest Base Layer

The analysis uses a base layer of forest cover with which we quantify and map defor-
estation and forest degradation from the f C product and the change detection products. We
define forest extent as all pixels with an f C value greater than or equal to 45. In addition,
forests as defined in this analysis include mapped areas larger than 0.1 ha, with a height
more than 5 m, which is essentially the Malawi national definition. The types included are
Miombo woodlands and other woody systems with canopy cover equal to or greater than
10%. Included are forest reserves, other protected areas such as game parks and national
parks, village forest areas, community woodlots, other tree covers in agricultural areas, and
clusters of trees outside of forests in customary lands. Our base data layer was measured
to have 4.27 × 106 ha of forest. This represents ~45% of the national land area. The value
we use includes customary forest, sparce tree covers and closed canopy forests, and thus is
larger than some other reported areas. Figure 2 shows a detail section around the Liwonde
Forest Reserve and shows how our multi-date change-detection based on ∆f C produces a
gradient of change intensities. A national map of forest and tree cover using the f C method
is shown in Figure 3 for 2009 and 2015.

3. Results
3.1. National Forest Area

Our analysis mapped and quantified the total forested area in forest reserves, other
protected forests, customary lands, village forest areas, community woodlots, large agro-
forestry, and other clusters of trees outside of forest dense enough to qualify as forest by
our definition based on minimum f C value (cf. 45). The total area in 2000 was estimated to
be 4.27 × 106 ha (Figure 3, Table 2), which includes 2.56 × 106 ha of forests in reserves and
protected areas, and 1.70 × 106 ha of customary tree systems, woodlots and village forest
areas in customary or rural land. This map was used as a baseline and was reprocessed in
2009 and 2015 to detect areas of deforestation and forest degradation based on the change
in forest fractional cover (∆f C).

Table 2. Baseline Area of Forest Cover. The baseline forest cover is presented with our minimum mapping unity (MMU) of
0.1 ha, broken down by (a) intact major forest areas outside of reserves and not on agricultural land, forest reserves, and
other protected forests, and (b) tree complexes, woodlots, agroforestry and other forest areas in agricultural land with MMU
greater than 0.1 ha. Also presented are forest area estimates using larger MMUs from 0.27 ha, 0.54 ha (which closely aligns
with the Government of Malawi’s definition), and 0.9 ha. Forest area estimates do not vary significantly with changes in the
MMU but larger MMUs produce lower estimates.

Area (ha)

Land Class MMU = 0.1 ha MMU = 0.27 ha MMU = 0.54 ha MMU = 0.9 ha

Intact forests, forest reserves and protected areas 2,561,722 2,556,864 2,547,390 2,530,602
Customary forests on rural and customary lands 1,703,708 1,666,980 1,624,057 1,570,397

Total Area 4,265,431 4,223,844 4,171,447 4,101,000

The forest area definition we use includes small patches of forest greater than 0.1 ha
(one pixel) with a density based on f C values great than 45. The Malawi national definition
of forest in the reporting of Reference Emission Levels (RELs) to the United Nations
Framework Convention on Climate Change uses a patch size of 0.5 hectares. When all
patches less than 0.5 ha are eliminated from our dataset, we do not see a significant change
in the total forest area nor its distribution. Using a minimum mapping unit (MMU) of
0.5 ha, the total forest area is 4.17 × 106 ha, 98% of our baseline forest area. Table 2 shows
the total baseline forest area using different definitions of the minimum area specification.
There is only a 4% difference between our MMU and the largest MMU we tested.
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3.2. Deforested Areas and Annual Rates

From 2000 to 2009, the total area deforested, which is the complete conversion of forest
to another land cover, was 201,688 ha (Table 3). The average annual rate of deforestation
was 22,410 ha yr−1. The area deforested between 2009 and 2015 was slightly higher at
233,624 ha. This is an annual average rate of deforestation of 38,937 ha yr−1. The annual
rate of deforestation increased markedly during the study period, with the rate increasing
by 74% for 2009–2015 over 2000–2009, although we do not have interannual data to evaluate
if there were any years that deviated from average rates. Through the study period the
total area deforested was 435,312 ha, or 17% of forest area.

Table 3. Area estimates of deforestation and forest degradation in Malawi. Estimates are present for two time periods,
2000–2009 and 2010–2015, for both intact forests and forest reserves and forest land in agriculture and customary land. The
total area deforested or degraded between time periods and the average annual rates in time periods are presented.

2000–2009: Area (ha) Rate (ha yr−1)

Deforested Degraded Deforested Degraded
Intact forests, forest reserves and protected areas 39,661 248,576 4407 27,620
Customary forests on agricultural and other land 162,028 138,072 18,003 15,341

TOTAL 201,688 386,648 22,410 42,961

2010–2015: Area (ha) Rate (ha yr−1)

Deforested Degraded Deforested Degraded
Intact forests, forest reserves and protected areas 136,040 309,694 22,673 5161
Customary forests on agricultural and other land 97,584 121,572 16,264 20,262

TOTAL 233,624 431,266 38,937 71,878

Table 3 also shows estimates for deforestation areas and rates in protected areas
and other gazetted forests under government management compared to deforestation in
customary and other rural land. These results are very interesting in that they portray
a marked shift in the location of deforestation over the 15 year period. From 2000 to
2009, 80% of all deforestation occurred in customary woodlots, tree complexes, and forests
(162.0 × 103 ha) compared to 20% (39.7 × 103 ha) in forest reserves and protected areas.
By 2009–2015 only 42% of deforestation occurred in customary landscapes (97.6 × 103 ha),
while fraction of deforestation occurring in forest reserves and protected areas rose to 58%
(136.0 × 103 ha). These results demonstrate the importance of separately mapping forest
reserves and rural customary land because the drivers and dynamics are different and
change differently over time. Moreover, considerable tree cover loss occurs outside of
government-managed areas and contribute to Malawi’s greenhouse gas emissions.

3.3. Forest Degradation Areas and Annual Rates

The total area of forest degradation from 2000 to 2009 was 386,648 ha, and from
2009 to 2015 was 431,266 ha (Table 3). On an average annual basis we estimated forest
degradation rates for the period, 2000–2009, to be 42,961 ha yr−1 and from 2009 to 2015
to be 71,878 ha yr−1. Unlike deforestation, forest degradation has always been highest in
forest reserves and other government managed areas: 64% of all degradation detected in
the period 2000–2009 was in government managed areas, increasing to 72% in 2009–2015.
Forest degradation exceeds deforestation throughout the time series, and by a significant
amount in some locations when examined as a map. In the period 2000–2009, forest
degradation was 92% higher than deforestation, and 2009–2015 forest degradation was
85% higher. It is notable that in the period 2000–2009, forest degradation rates were 6-fold
higher than deforestation in forest reserves, declining considerably to 2-fold during the
period 2009–2015. Generally, in customary and other rural landscapes deforested area
and degraded areas and rates were quantitatively approximately equal, but in the early
period deforestation areas and rates slightly exceed forest degradation areas and rates.
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Thus, currently forest degradation is the dominant form of anthropogenic forest cover
disturbance.

The combined disturbance from deforestation and forest degradation from 2000 to
2009 was 588,336 ha, and from 2009 to 2015 was 664,890 ha an increase of 13%. Total forest
disturbance for the entire period was 1,253,226 ha.

3.4. Analysis by District

When deforestation and forest degradation rates are examined by district, we see
a general shift in the location of these disturbances from the northern districts to the
southern districts (Table 4). For both deforestation and forest degradation, the districts
in the north generally declined during the second period, while districts in the south
generally increased. For the most part, all districts had higher degradation rates than
deforestation rates. These regional characteristics reflect some significant hot spots at the
district level. In the north Mzimba District had the highest levels of disturbance, with
the highest deforestation levels in the country. In the south the districts of Mangochi,
Thyolo and Chikwawa were important hot spots, with the latter presenting the highest
forest degradation levels in the country. The districts of Kasungu, Nkhotakota and Salima
represented the Central regions hot spots.

Table 4. Reporting of deforestation and forest degradation quantities by District (ha).

Region District 2000–2009
Deforestation

2000–2009
Degradation

20010–2015
Deforestation

2010–2015
Degradation

Northern Chitipa 10,458 47,618 8495 10,979
Northern Karonga 14,540 74,749 15,820 12,837
Northern Mzimba 64,966 87,013 35,180 32,717
Northern Mzuzu City 566 1056 546 434
Northern Nkhata Bay 6687 21,433 4776 27,317
Northern Rumphi 13,936 41,037 12,364 20,021
Sub Total 111,154 272,906 77,182 104,306

Central Dedza 7250 9053 9402 18591
Central Dowa 9178 6941 8378 6691
Central Kasungu 10,622 17,064 16,358 20,357
Central Lilongwe 4625 4001 7870 19,381
Central Lilongwe City 655 366 734 591
Central Mchinji 386 654 2425 2242
Central Nkhotakota 8370 11,829 7369 15,877
Central Ntcheu 5351 5860 5143 9703
Central Ntchisi 8317 8257 7128 7921
Central Salima 7150 6335 9258 10,559

Sub Total 61,904 70,361 74,065 111,914

Southern Balaka 4417 4848 1073 2275
Southern Blantyre 1088 1808 1263 2833
Southern Blantyre City 427 523 753 874
Southern Chikwawa 1484 1999 15,507 56,150
Southern Chiradzulu 587 814 2233 2226
Southern Machinga 3019 3124 1969 6328
Southern Mangochi 8875 13,840 14,406 30,130
Southern Mulanje 881 2273 6641 18,733
Southern Mwanza 384 1019 6408 21,297
Southern Neno 1480 3159 6601 21,472
Southern Nsanje 1869 2533 4171 5716
Southern Phalombe 653 908 1442 2975
Southern Thyolo 841 2554 11,467 34,940
Southern Zomba 1964 2788 7344 7414
Southern Zomba City 44 81 222 409
Sub Total 28,014 42,272 81,501 213,772

TOTAL (ha) 201,072 385,539 232,748 429,992
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3.5. Mapping and Spatial Analysis

The analysis using remote sensing provides a mechanism to map forest and forest
cover change with considerable spatial detail over the entire country. We have two basic
formats of our spatial datasets. In the first we present the direct measurement of continuous
fields as products from the f C analysis. This spatial dataset can be inspected at the
landscape level, at the full 30 m spatial resolution of the f C product (Figures 2 and 3).
Disturbance intensity shows the degree of disturbance and is the primary tool for mapping
forest degradation. The use of a pixel mixing models allows each pixel’s representation to
reflect the sub-pixel fractions of cover. Figure 2A illustrates this point. This is a display
of the map derived around the Liwonde Forest Reserve and reveals the continuous fields
delineation of forest and woodland density (shades of green). The use of multi-date ∆f C
allows for mapping the magnitude, or intensity, of change (color tones, blue/green as low
to yellow/red as high). Figure 2B shows this map as a change intensity where the highest
intensities represent complete forest conversion (deforestation) while the lower intensities
represent forest degradation. The continuous results are split into separate classes for
degraded areas and deforested areas. Based on a measure of intensity of change, the spatial
dataset can be used to locate specific “hot spots” of deforestation or degradation.

A second mapping product is produced by aggregating 30 m resolution pixels into
grid cells of 25 km2 for presenting national coverage in documents. Figure 4 shows the
fractional cover map of baseline forest cover for this study. The northern region of Malawi
has considerably more forest cover than the other regions of the country, although there are
isolated areas with important dense Miombo woodlands throughout the country. Dense
forest cover above 75% (f C > 75) of each 25 km2 grid cell exists only in isolated clusters, most
of which are forest reserves and other protected areas under government management. To
map nationally the magnitude of deforestation, we computed at the pixel level the change
in f C (∆f C) between dates, and all pixels that drop f C levels below 45 are considered
deforested and aggregated to the 25 km2 grid cell and presented (Figure 5). Not surprising
many of the areas of high deforestation are also areas of high forest cover. There are definite
hot spots of deforestation in both periods of time, and these have shifted south over the
course of the 15 years of analysis. Spatially, deforestation expands considerably into the
agricultural landscapes in the second period of analysis, even while the annual rate remains
almost constant (Table 3).

The national situation for forest degradation can be examined in a map produced
when ∆f C is between 15 and 55 with the final f C value is equal to or exceeds 45 (Figure 6).
Forest degradation also expands considerably into agricultural landscapes, while increasing
only slightly in magnitude (Table 3). However, it increases more in forest reserves and
intact forests, also expanding considerably to the south of the country.

As noted, forest degradation can occur as a gradient of change, within an intensity
range. Higher forest degradation has higher impact on carbon stocks. To spatially quantify
the impact of forest degradation we used the continuous field and compute an index of
degradation intensity for each 25 km2 grid cell, where the reported value is based on the
magnitude of the change in f C (∆f C) at each pixel and summed for the cell (Figure 7). The
intensity gives us a perspective on how severe the degradation is over time and place. The
map shows hot spots of higher-intensity degradation, but generally most of the country
has uniform moderate degradation intensities. Over time, there has been a significant shift
from north to south in the location of high-intensity degradation.
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country. Aggregation is used for display at this scale.
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Figure 7. Mapping of degradation intensity, 2000–2009 (A) and 2010–2015 (B). These maps are used
to display where degradadtion is most severe. Thus, two cells could have the same area of forest
degradation but containg different intensities of degradation. To compute the intesity we use the
following equation: ∑ (100 × ∆f C/55)/Af, where the difference in f C values between dates is divided
by the maximum amount of degradation weighted against a proxy for biomass emission factors and
summed for all pixels in each 25 km2 grid cell. This value is divided by the area of forest in the grid
cell. Much degradation is low intensity, but there are some notable areas of more severe degradadtion.
Further, over time there is a north to south shift in the location of highest-intensity degradation.
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3.6. Accuracy Analysis and Quality Control

A detailed visual inspection of the forest cover product suggests that it well represents
features in the landscape when we compare it to hyperspatial resolution imagery, as shown
in Figure 8. We made a more quantitative assessment of the accuracy of the f C forest cover
product using three analyses described in Appendix A (Figures A2–A4). In the first analysis
we used hyperspatial resolution data to map the forest in the landscape and compare the
quantitative estimates of forest cover by the f C product aggregated at the pixel level into
a 80 ha grid overlay in three test landscapes in and around the Perekezi and Liwonde
forest reserves (Figure A2). There was very good agreement between the independent
estimate of forest area from hyperspatial mapping at 0.5 m resolution and the predicted
estimate from the Landsat f C product, with linear regression R2 of approximately 0.9 or
better (Figure A4).
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In the second analysis we overlaid the f C product against a sample of ground valida-
tion plots. We deployed 346 30 m fixed radius plots to measure tree cover, tree density, and
biomass. A simplified error table was produced for error estimation, suggesting overall
accuracy of the f C forest cover product was 93–98% (Table A1).
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In a third quantitative analysis, we used hyperspatial satellite data to prepare an f C
product in which the fine resolution data (0.5 m) were resampled to the 30 m resolution of
our f C product and compared using a standard contingency matrix, as shown in Table A2.
Overall accuracy is 84% across all test sites. Producer’s and user’s accuracy were 84% and
94%, respectively, for forest cover mapping. It is important to note that the user’s accuracy,
or how often the mapped forest areas are also identified as forests on the ground, is very
high (Table A2).

4. Discussion

Most estimates of Malawi’s forest area are reported only for the recorded forest area in
government reserves and protected areas, and often include designated forestland that may
not contain tree cover at the time of reporting. In spite of recent claims that Malawi has
the highest rate of deforestation in Southern Africa [57], we find almost no consistent and
comprehensive data on the national deforestation rates and location. There is considerably
less information available on forest degradation, which is also common across most of
Africa [4,58]. There are important policy requirements for quantitative data on Malawi’s
forest status, and growing interest in having improved monitoring capacity to support
a range of national policies and measures (PAMs), including implementing Malawi’s
new National Forest Policy [59], National Forest Landscape Restoration Strategy [60,61],
national initiatives for scaling tree-based systems [23], and National Charcoal Strategy [62].
Accurate spatial data (maps) are particularly critical to support Malawi’s full participation
in the United Nations Framework Convention on Climate Change, including its Nationally
Determined Contributions [63], National Forest Reference Emission Levels [31], and REDD+
National Forest Monitoring System [47,57,59]. Having capacity for a National Forest
Monitoring System is necessary for receiving performance-based payments.

There have been several previous remote sensing mapping exercises that have taken
a broad examination of Malawi’s forests but based on a thorough review by [64] these
products are highly variable and inconsistent in estimating national forest cover area,
which ranges from 18 to 29% of the country area. Forest area in these studies ranged from
2.15–3.49 × 106 ha in 2010. The minimum mapping unit for these analyses is much larger
than our study, representing MMUs as large as 25–100 ha. In these reports no attempt was
made to explicitly quantify forest cover outside of the recorded forest area (reserves and
protected areas) or to include tree clusters, woodlots, agroforestry and village forests on
agricultural or customary land. Our analysis reports area estimates that are comparable
to these previous estimates for 2010 if we only use the area of forest cover confined to the
forest reserves (2.52 × 106 ha for this study), but we have considerably higher estimates
overall because we include forests and tree cover on customary and rural land outside of
the recorded forest areas (4.27 × 106 ha).

Estimates for the rate of deforestation during the period of our analysis range from
~6 × 103 ha yr−1 to 30 × 103 ha yr−1 [49,65,66], while our estimate ranges from
22 × 103 ha yr−1 to 39 × 103 ha yr−1. The Global Forest Watch (GFW) estimated total defor-
ested area (i.e., total converted tree cover) between 2001 and 2009 of 51.8 × 103 ha. Our mea-
surement for the same period was 201.7 × 103 ha, almost four-fold higher (Table 3). Like-
wise, the GFW estimates for total deforested area between 2010 and 2015 was 60.7 × 103 ha
compared to our estimate of 233.6 × 103 ha. These differences are most apparent over
the entire period of analysis, 2000–2015 where our measurement of the total area defor-
ested is 435.3 × 103 ha, which is considerably higher than GFW (Table 3). The most likely
explanation for the difference is perhaps the consideration of deforestation in rural and
customary land in addition to the contiguous forests of the national reserves and parks,
which constitute 60% of our measurement of deforestation. These areas of customary
forests, village forests, woodlots and agroforestry are abundant but are widely scattered
and do not constitute an extensive and continuous canopy and are thus features that may
get removed when processing medium resolution imagery. It has been known that there
is substantial tree cover in areas outside of national parks and reserves [66] and informal
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evidence that tree-based systems are increasing [23,60]. Our measurements suggest that
40% of the national forest cover is on customary or other rural land, which is consistent
with [49] who report 42% of forest cover is in trees outside of forests.

The contribution of customary forests is important, but quantitative information has
heretofore been hard to find. Some customary forests have been officially designated as
Village Forest Areas (VFAs) which are supervised by traditional authorities and managed by
Village National Resources Management Committees (VNRMC). The VFAs are important
tools for sustainable land management and conservation of public forestlands. However,
only a small number of VFA have been registered, and fewer have been surveyed. The
exact area and cadastral information do not readily exist [66]. The f C Tool used in this
analysis could be deployed to create an inventory and monitoring framework for VFAs,
although information concerning species would be difficult. Further investigation of
this potential could be productive; supplementing this with very high-resolution (VHR)
imagery (Figure A3) might be required.

Our analysis suggests that rates of deforestation are increasing, although the location of
the deforestation has notably shifted away from customary forests to public forests (Table 3).
There is some indication from informal reports that rates of deforestation during the period
prior to 2000 were higher, particularly during the period of one-party government under
Hastings Banda. One widely cited assessment [67], which was used in the FAOs Forest
Outlook Studies in Africa, reports very high estimates, and that 2.5 × 106 ha of forests were
cleared in total, or 125 × 103 ha yr−1, between 1972 and 1992. It is difficult to evaluate these
large estimates because no formal study was published, and the methods and definitions
are unclear. We know that it was a two-date analysis using Landsat MSS and TM data, so
it is quite possible that the results included areas of heavy forest degradation in addition
to deforestation. Additionally, possible effects of phenology could have introduced errors
because the Landsat collection was not very large, and older coarse resolution MSS data
would be difficult to use for this application.

The Malawi State of the Environment and Outlook Report from 2010 [66] reports
deforestation rates during the period after the formation of multi-party government. From
1992 to 2010, forest cover change is reported at five-year intervals, with annual deforestation
rates at a constant 33 × 103 ha yr−1. Whether rates were exceptionally high in the 1970s
and 1980s and declined thereafter, as these reports suggest, is difficult to evaluate. Thus,
we have no reliable long term, multi-decadal record of deforestation in Malawi, but it
might be possible to reconstruct a reasonable picture, at least to 1986 using Landsat’s
historical archive that extends back to 1975. This would be useful for historical, political
and economic development studies.

There have been no national-scale direct measurements of forest degradation for
Malawi, although it is likely that past deforestation estimates produced without mapping or
direct observations also included areas that were heavily degraded rather than completely
cleared. Differences between various reports are likely to be related to the degree to which
an estimate includes degraded forest in addition to deforestation, or the degree to which the
study included disturbances in customary and agricultural landscapes. The results from our
study highlight the importance of having a means to make direct measurements of forest
degradation, since most of the forest disturbance is associated with forest degradation;
degraded forest is almost 2-fold higher than cleared forest. Most of the forest degradation
is occurring in public land (Table 3). In the current set of programs and activities under
Malawi’s national REDD+ program, forest degradation rates are estimated indirectly from
models of fuelwood demand.

This national example for Malawi suggests that new global datasets for forest cover
change [41,65] are likely to have limited application to the national REDD+ MRV require-
ments for Activity Data. The mapping from Global Forest Watch includes almost no forest
loss occurrences in rural and customary land outside of the dense Miombo forests of the
public forest. Most of the forest loss in GFW is documented in industrial forests in the
zone between Mzimba and Mzuzu. At the same time, degradation within forests is not
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mapped, which from an area perspective is greater than deforestation. An important aim
of a National Forest Monitoring System for REDD+ is to identify important locations of
both deforestation and forest degradation to proscribe specific controls and interventions,
such as forest landscape restoration (FLR). This requires capacity to monitor drivers and
post-intervention tree cover outcomes across whole landscapes, especially outside the
public forest estate. The dense time series that are provided by these “big data” models
may be less necessary than improved specificity of landscape-scale tree cover pattern,
distribution and status.

Our spatial analysis suggests that in places where the forest resource base has di-
minished, deforestation and forest degradation has shifted location in response. This
changing geography over time appears to have had three components: (1) an increase in
the use of forest reserves, especially due to increased deforestation rates, (2) an expansion
of the degradation of forests and tree complexes in customary land across an increasingly
wider swath of landscape, and (3) a shift in the location of most deforestation and forest
degradation from the northern region of the country to the southern region of the country
(Figures 5 and 6). Likewise, the intensity, or severity, of degradation has increased and has
shifted from north to south, meaning more forests are being degraded and they are being
more severely degraded, especially in the south (Figure 7).

We can examine the pressure on the forest resource base by calculating the ratio of de-
forestation or degradation per unit of forest, localized within a 25 km2 area (Figures 9 and 10).
This can be performed spatially which gives a more accurate representation of resource
pressure than using nationally aggregate or average estimates. Some areas stand out
because they are experiencing significant pressure on their local forests. In terms of both
deforestation and particularly degradation forest pressure has declined in the north while
increased in the south over the period of record. Commonly though, local pressure on the
forest resource from deforestation, and forest degradation is stabilizing, or declining in
some places. However, deforestation and forest degradation rates are indeed increasing
because the degradation is expanding spatially over more area.
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Regions with the highest rates of disturbance are also, generally, areas of highest
amount and density of forest cover. This is particularly true for the northern region of the
country, during the first period of analysis and the southern region in the second period of
analysis. Thus, while the rates of conversion may be high the pressure on the remaining
stock of forest may be lower than other places where there is considerable pressure on
low density remaining forest. Typically, conservation priority would be placed on these
threatened forests. However, from a carbon context, these areas of high forest cover density
where relative pressure is lower may also need mitigation because the emissions may be
higher from these forests. The usual management proscriptions to conserve areas of vestige
forests may not result in emissions reductions compared to conservation of high cover and
high-density forests. Therefor a multi-level approach to management will be required that
places conservation strategies on endangered forests and high emissions forests.

The Government of Malawi (GoM) has produced its first national forest reference
emissions level report [31], in which they use a sampling approach based on visual inter-
pretation of tree cover using Google Earth for deforestation only, limited to forest reserves.
Their estimate of the total area deforested between 2006 and 2016 was 88,474 ha. By com-
parison, our estimate of deforestation for the period 2009–2015 was 233,624 ha, which is
considerably higher. The GoM estimate for the annual rate of 8847 ha yr−1 is low compared
to our estimate of 38,937 ha yr−1. When we include forest degradation as well, our annual
estimate is 12-fold higher at 110,815 ha yr−1. This is a significant difference and will affect
calculations of greenhouse gas emissions considerably. Moreover, the GoM reporting does
not measure forest degradation directly, but instead uses a model of fuelwood collection
derived from proxy estimators rather that direct measurements. The GoM estimated emis-
sion from deforestation to be 1.24 × 106 tCO2e yr−1, and 2.99 × 106 tCO2e yr−1 from forest
degradation by fuelwood extraction. By contrast, we measure forest degradation directly
and in tandem with deforestation so we can separate the two types of disturbance. We
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can use our spatial datasets to quantify an approximate emissions level using the same
simple method deployed by the GoM, and then present the results for deforestation and
forest degradation separately and consistently in map form, as shown in Figure 11. Our
estimate for deforestation emissions from 2010 to 2015 is 4.28 × 106 tCO2e yr−1 and forest
degradation is 3.49 × 106 tCO2e yr−1. These results suggest that the current GoM estimates
are low and misrepresented.
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Figure 11. An estimate of emissions of carbon (106 g C per grid cell) from deforestation (A) and forest
degradation (B), 2010–2015. This estimate uses the same method as found in the Government of
Malawi’s report on its National Forest Reference Emission Levels [31]. The method follows IPCC
guidance in which Emissions = Activity Data × Emission Factors. The Activity Data are produced by
this study, and we used Emission Factors from GOM National Forest Reference Emissions Levels
report [31].

The considerable difference in estimates is due to three factors. First, GoM sample
approach is very limited in the sample density, where the complete sample frame covered
only 27% of the land areas of Malawi, and 61% of the forest area with a sampling density of
only 0.04% within the sample frame. Because the spatial distributions of deforestation and
forest degradation are not uniform, low sample densities can produce errors. The GoM
report does not report an accuracy assessment for the estimated deforestation rates. Further,
the low sample frame for rural and customary land eliminates important emission sources
from both forest degradation and deforestation. Second, the GoM report uses a minimum
mapping unit of 0.5 ha, while we use 0.1 ha. Although the difference between 0.5 and
0.1 MMU does not affect the total forest area estimates, it does have an effect on estimates
of change in forest area, i.e., deforestation or forest degradation, underestimating by as
much as 40% due to the omission of large number of small disturbances. Third, the use
of models based on proxy variables rather than direct measurements may underestimate
forest degradation because it does not capture all forms of forest degradation, is limited in
geographic scope, and is based on only the wood removals rather than stand disturbance.
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5. Conclusions
5.1. New Robust High-Resolution Time-Series Maps of Forest, Deforestation and Forest
Degradation Have Been Produced

This study was based on complete national coverage at high spatial resolution
(0.1 ha MMU), which provided direct measurements of deforestation and forest degrada-
tion, thus avoiding past confusion over rates when forest degradation is omitted or both
types of disturbances are co-mingled. A mapping approach may appear to be difficult to
implement in many African countries, particularly for forest degradation measurements,
so many countries opt-out of including forest degradation in their national REDD+ scope.
However, this study demonstrates a practical and accurate modality for implementing
direct measurements of forest degradation. The mapping also enhances the utility of the
results to proscribe specific local interventions under national polies and measures (PAMs)
and for identifying locations and opportunities for forest landscape restoration.

Previous mapping work has been performed in Malawi by various partner organiza-
tions. However, these datasets and the technical methods have been limited in meeting the
requirements and national needs for REDD+ measurement and monitoring. For example,
most of previous products and approaches do not provide measures of forest degradation,
which is a critical characteristic of forest cover change in Malawi, where charcoal and
fuelwood removals are important drivers of forest degradation. Moreover, most mitigation
interventions will be implemented through local-scale changes in forest management,
and thus coarse-scale land cover classification maps that do not provide fine scale local
information for forest management and planning are inadequate. Detailed, fine-scale maps
of forest cover over large areas are needed to identify hot spots of forest degradation where
interventions would be most cost-effective. Such detailed maps are also needed to identify
hot spots for deploying detailed ground surveys to understand drivers of deforestation and
forest degradation. Fine-scale mapping of forest cover change is needed to align with the
spatial variation in carbon stocks from ground measurements for accurate GHG emissions
and removals estimation.

This study produces new estimates and maps at high spatial resolution of forests in
Malawi, which includes public land in reserves and parks as well as customary forests in
agricultural area. The forest map adheres closely to the schema developed by the Malawi
government but uses a much higher minimum mapping unit that captures considerable
amount of important customary forests. The total estimated area of all forests for 2015 is
3.83 × 106 ha, of which 21% is degraded forests.

This study also produces new estimates for the total area deforested between 2000–
2009 (201,688) and 2009–2015 (233,624 ha), and new estimates of the rate of deforestation
between 2000–2009 (22,410 ha yr−1) and 2009–2015 (38,937 ha yr−1). We further produce
new and separate estimates of the total forest degradation between 2000–2009 (386,648 ha)
and 2009–2015 (431,266 ha), and new estimates of the rate of forest degradation between
2000–2009 (42,961 ha yr−1) and 2009–2015 (71,878 ha yr−1). The implications of these new
estimates for calculating carbon emissions are important. They are approximately 3-fold
higher than reported by the GoM, with forest degradation accounting for a large fraction.
These new estimates and the associated maps should be of interest to the national REDD
community in Malawi and others for both science and policy use.

The current reporting from the GoM of carbon emissions for its national forest refer-
ence emission level (FREL) estimation is likely to be insufficient for use in the National
REDD program. The current national estimates have been produced without published
accuracy assessment. Based on our study, their quantitative results are likely to be low,
perhaps by as much as an order of magnitude, due to methodological issues and use of
proxy estimators rather than direct measurements. The choice of a MMU will have an
important impact on measurement, resulting in underestimates due to the high level of
small clearings and disturbances. Although we show that the choice of MMU only slightly
affects the total area estimate of forest nationally, computations of change, i.e., deforestation
and forest degradation areas and rates, can be very different, as appears to be the case here.
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5.2. New Tools to Support a REDD+ National Forest Monitoring System Have
Been Demonstrated

These results have implications for National REDD Programs in Malawi. The UN-
FCCC advises countries that are Parties to the Convention (COP) and are aiming to un-
dertake REDD+ activities to follow specific methodologies for estimating greenhouse gas
(GHG) emissions and removals developed by the International Panel on Climate Change
(IPCC). These methodologies require a system for estimating forest stocks and fluxes using
a national forest monitoring and measurement system (NFMS). Further, the UNFCCC
recommend national programs consider their scope of REDD activities from a list of five
elements: (1) reducing emissions from deforestation, (2) reducing emissions from forest
degradation, (3) conservation of forest carbon, (4) enhancements of forest carbon, and (5)
sustainable forest carbon. Determination of the national scope is important because it
sets the agenda for national policies and measures (PAMs). All countries participating in
REDD+ actions and programs need to have a basic level of “readiness” for implementing a
NFMS to produce the data needed for REDD+ measurement, reporting, and verification
(MRV). In this study we demonstrate potential for implementing in Malawi four of these
scope elements and provide a model for operational components of Malawi’s NFMS.

As with many countries in Africa the establishment of a National Forest Monitoring
System (NFMS) is a key challenge in developing its reporting stream under REDD+ and
its NDC efforts. Following COP decisions and guidance a NFMS includes three parts, or
pillars as sometimes called: (1) a satellite land change monitoring system (SLMS), which
includes a national land classification schema and mapping of changes in forest cover
due to deforestation and forest degradation, (2) a national forest inventory (NFI) that
focuses on carbon stocks from a system of field plots, using standardized methods and
field measurement protocols, and (3) routine quantitative estimation of GHG emissions
and removals from plot data and forest cover monitoring data over time, benchmarked to
reference emission levels (RELs). This study provides a demonstration of how Malawi can
bring its NFMS efforts to an operational readiness level with respect to the SLMS and its
ability to produce detailed, spatially explicit Activity Data.

5.3. The Way Forward and Next Steps

As Malawi expands its response to climate change through forest management, it will
increase its deployment of the National Forest Landscape Restoration programs. Low car-
bon forest management is an essential component of low emissions development strategies
aimed at enhancing livelihoods for millions of Malawians, and thus is an essential climate
change adaptation measure as well as mitigation strategy. Furthermore, the country’s
commitments to mitigation and adaptation through its Nationally Determined Contribu-
tions reports include increasing forest cover by 2% which requires a four-fold increase in
reforestation efforts and sequestering up to 2.6 × 106 tCO2e. Most of that would come from
FLR activities. Although this analysis focused on deforestation and forest degradation, two
important Activity Data emission sources, the approach would also apply to monitoring
for FLR for tree cover regeneration over time.

This is a priority for a follow-on analysis. The National Opportunity Assessment
for FLR produced in 2017 [61], identified candidate sites for interventions, based on a
multi-criteria analysis based on an indirect mapping of forest degradation with proxy data
inputs, while our analysis could provide an empirical, evidence-based map of actual forest
degradation. Moreover, the FLR Opportunity Assessment was limited in its ability to
identify intervention opportunities within forests, where previously degraded forest could
be restored with overplanting and other practices. An important next step for this analysis
must be the task to map regeneration. With that it will be possible to have a complete
accounting of GHG emissions and removals and track the progress toward national climate
mitigation goals.

As with many developing countries, the Government of Malawi (GoM) recognizes the
general importance of expanding its national capacities to measure and manage its forest
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resources even without the predicate of REDD+. Indeed, national interests are best met
by developing MRV capacities that satisfy carbon requirements of REDD+ and also basic
national forest management needs, with as much utilization of capacities already in place
or existing elsewhere that could be readily transferred. This strategy is often referred to as a
“no regrets REDD” strategy. For most countries in Africa, there is a recognized immediate
challenge to increase data collection, improve forest monitoring, develop measurement
standards and protocols, define appropriate mitigation measures, and expand overall
technical means. An optimal approach would be one that uses current capacities or
readily available and tested best practices for making measurements compatible with IPCC
guidelines and protocols. This study demonstrates that countries such as Malawi do not
have to go elsewhere to acquire their measurements but can readily develop and own the
necessary national technical capacity to deliver robust MRV functions from a National
Forest Monitoring System.
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Appendix A.

Appendix A.1. Data Processing

There are several steps to producing a final forest fractional cover product map,
within two broad components. In the first component, we process data using a spec-
tral mixting analysis (SMA) based on two linear end-members of NDVI according to
Matricardi et al. [37]. In the second component, we use change detection to map the
change intensity of fractional forest cover. The steps are shown in Figure A1.

https://goeslab.us/malawidata
https://lcluc.umd.edu/content/metadata
https://www.arcgis.com/apps/View/index.html?appid=181b9bdc8ae74b7b9402edb589bb6e93
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Appendix A.2. Accuracy Analysis

The To evaluate the accuracy of the forest cover product used in this analysis, we
established five test sites in and around four national forest reserves (FR): Perekezi FR,
Ntchisi FR, Liwonde FR and the Thuma-Dedza FR. Within these test sites we had access
to ground sample plots acquired in 2015 (except Thuma-Dedza which were acquired in
2017) which provided tree and cover inventory data. Within the test areas we established
four testing landscapes that included forests in the FRs and in the surrounding customary
land, where we acquired very high-resolution (VHR) satellite data imagery to be used for
ground truth (Figure A1).
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Figure A3. Landscape test sites where digital hyperspatial satellite data are used to produce an f C
product and compared to the Landsat f C product. Image on the left is the raw hyperspatial data.
Middle image is an tree cover product from hyperspatial data. Image on the right is the Landsat
f C product.

We tested accuracy using three tiers of analysis. In the first test we overlaid our f C
Tool forest cover mapping product on VHR multi-spectral satellite data (<0.5 m resolution)
from Worldview. The VHR data were classified into a high resolution, very detailed forest
cover maps, in which individual trees could be identified along with tree clusters and
closed canopy forest (Figure A2). Using the VHR data we could construct a proxy ground
thruth dataset in which we could precisely define forest cover based on our definition and
criteria. For both the VHR forest cover map and the f C Tool output product we overlaid a
grid mesh of 81 ha (810,000 m2) grid cells, representing a sample landscape (Figure A2).
Each grid contained 900 f C product pixels and 3.2 × 106 VHR pixels. In each 81 ha grid
cell we summed the total forest cover. Although the f C Tool allows for mapping forest
fraction cover we only considered total forest cover based on our definition without respect
to density. The results of these two analyses were compared and are shown in Figure A3.
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Figure A4. Test site regression analysis to compare the reference forest cover from very high-resolution (VHR) data to the
output mapping from the f C Tool. Each data point represents the mapped and estimated forest cover in each 81-hectare
grid cell covering the landscape sites shown in Figure A1.

These regressions test the coherence of the independent dataset from VHR data and
the f C derived dataset. The results indicate high values for the coefficient of determination
(R2). Lower values appear for the Ntchisi test site, which is likely due to its much higher
density of forest cover and occurrence of other forest types than Miombo, including large
establishment of evergreen forest. This suggest the spectral mixing model modulates
the results when end-members of soil and non-photosynthetic vegetation are not well
represented. However, in other areas, there is good agreement between the two datasets.

A second analysis was performed using a collection of field plots. We deployed
34,630 m fixed radius plots to measure tree cover, tree density, and biomass. We established
these plots in preparation of the Malawi National Forest Inventory (NFI) demonstration
under the national REDD+ program [27]. Field plots include measurements coincident
with our period of analysis (2015) in Liwonde, Ntchisi, and Perekesi forest reserves and
surrounding areas (N = 250) and two years later (2017) in Thuma-Dedza (N = 96). Accuracy
of the f C forest cover product in the former was 98% and in the latter was 93% (Table A1).

In a third analysis we used digital hyperspatial data classified into forest cover. These
0.5 m resolution data were resampled to 30 m and directly compared to the fractional forest
product. The forest threshold was set as an f C value of >45. Large test sites (complete forest
reserves) were established in four forest reserves and surrounding landscapes: Liwonde,
Ntchisi, Thuma-Dedza and Perekesi (Figure A1). Table A2 shows the summary statistics
for accuracy of forest cover mapping. As a forest mapping product overall accuracy is 84%
across all sites. Producer’s and user’s accuracy was 84% and 94% for forest cover mapping.
It is important to note that the user’s accuracy, or how often the mapped forest areas are
also identified as forests on the ground, is very high.
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Table A1. The Accuracy of forest cover mapping using the f C method compared to field plots in
selected forest reserves.

Liwonde, Perekezi, Ntchisi (2015)

Number of Field Plots—All Forest Areas 250
Count

f C2015 ≥ 45 (Forest) 245
f C2015 < 45 (non Forest) 5

Percent Correct 98%

Thuma-Dedza (2017)

Number of Field Plots—All Forest Areas 96
Count

f C2015 ≥ 45 (Forest) 89
f C2015 < 45 (non Forest) 7

Percent Correct 93%

Table A2. The accuracy assessment matrix comparing mapped forest cover from the f C product and
measurements from a product that used hyperspatial imagery to map cover at 0.5 m resolution and
aggregated to the 30 m grid spatial resolution. (data are shown as number of pixel samples).

Landsat 2015
Hyperspatial 2015

fC < 45 fC ≥ 45 Sum Producers
Accuracy

f C < 45 (non forest) 8325 1938 10,263 81%
f C ≥ 45 (forest) 5605 29,882 35,487 84%

Sum 13,930 31,820 38,207
Users Accuracy 60% 94%

n= 45,750
Overall Accuracy 84%
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