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Abstract: Motor-manual operations are commonly implemented in the traditional and short rotation
forestry. Deep knowledge of their performance is needed for various strategic, tactical and operational
decisions that rely on large amounts of data. To overcome the limitations of traditional analytical
methods, Artificial Intelligence (AI) has been lately used to deal with various types of signals and
problems to be solved. However, the reliability of AI models depends largely on the quality of
the signals and on the sensing modalities used. Multimodal sensing was found to be suitable in
developing AI models able to learn time and location-related data dependencies. For many reasons,
such as the uncertainty of preserving the sensing location and the inter- and intra-variability of
operational conditions and work behavior, the approach is particularly useful for monitoring motor-
manual operations. The main aim of this study was to check if the use of acceleration data sensed at
two locations on a brush cutter could provide a robust AI model characterized by invariance to data
sensing location. As such, a Multi-Layer Perceptron (MLP) with backpropagation was developed
and used to learn and classify operational events from bimodally-collected acceleration data. The
data needed for training and testing was collected in the central part of Romania. Data collection
modalities were treated by fusion in the training dataset, then four single-modality testing datasets
were used to check the performance of the model on a binary classification problem. Fine tuning of
the regularization parameters (α term) has led to acceptable testing and generalization errors of the
model measured as the binary cross-entropy (log loss). Irrespective of the hyperparameters’ tunning
strategy, the classification accuracy (CA) was found to be very high, in many cases approaching
100%. However, the best models were those characterized by α set at 0.0001 and 0.1, for which the
CA in the test datasets ranged from 99.1% to 99.9% and from 99.5% to 99.9%, respectively. Hence,
data fusion in the training set was found to be a good strategy to build a robust model, able to deal
with data collected by single modalities. As such, the developed MLP model not only removes the
problem of sensor placement in such applications, but also automatically classifies the events in
the time domain, enabling the integration of data collection, handling and analysis in a simple less
resource-demanding workflow, and making it a feasible alternative to the traditional approach to
the problem.

Keywords: big data; automation; artificial intelligence; multi-modality; acceleration; classification;
events; performance; motor-manual felling; willow; Romania

1. Introduction

Short-rotation willow crops (SRWC) are seen nowadays as a valuable alternative
to produce renewable energy, contributing also to the rural development, job market
diversification, carbon sink, biodiversity and diversification of agricultural crops and bio-
products. They are commonly established on agricultural lands and share many features
with the traditional forestry, in particular the silvicultural practices [1]. Moreover, willow
was found to be suitable for other engineering purposes, commonly exhibiting features
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such as a rapid growth rate, high biomass production, increased coppicing ability and
tolerance to high planting densities [2].

When grown to produce biomass as a feedstock for the energy industry, one of the
final SRWC production steps consists of harvesting operations. Several fully-mechanized
operational systems were developed, tested and are currently in use for large-scale commer-
cial willow harvesting purposes [3,4]. Still, the increased costs associated with harvesting
operations [5] are seen as a limiting factor of profitability, which requires optimization [6].
While other operations which are common to SRWC cultivation can be done directly by
their owners using equipment and machines of general agricultural purpose, it has been
shown that, irrespective of the SRWC scale, the farmers cannot afford to own and operate
expensive harvesting equipment [3,5]. In many cases, the lack or the limited availability
of such equipment [7] has been tackled by the use of motor-manual means [8,9], which
seem to be more adapted to harvesting operations carried out on small and dispersed
plots [10], especially in those geographic regions in which the cost of the manual labor is
still affordable, and may compensate for lower productivities [11].

Irrespective of the harvesting system used, its optimization requires at least data on
production outputs and resources used (i.e., time, fuel, money) [12], and it is quite typical
to implement time studies to evaluate its operational performance [13] as a common input
for optimization. There are many examples, including those referenced in this paper, of
using time-and-motion studies to evaluate the performance of operations. Unfortunately,
most of the currently used methods to get time consumption data are resource inten-
sive [14], requiring qualified personnel and specific logistics to collect, process, analyze
and interpret it.

In relation to the use of motor-manual equipment to harvest SRWCs, some progress
has been made by the use of dataloggers equipped with acceleration sensors to automate
field data collection, which was then coupled with Global Positioning System’s (GPS) data
to infer the operational behavior in such operations [7,10]. In those studies, the analytical
procedures of accounting and categorizing the time consumption on operational tasks
were done by human intervention, requiring prior knowledge of the process mechanics
and sensors’ response and, more importantly, a hands-on approach to data processing,
summarization and categorization. To eliminate much of that effort, Artificial Intelligence
(AI) techniques have been lately used for a number of applications with excellent results
in the recognition and classification of operational time, based on signals produced by
various sensors, including accelerometers [15–18]. Nevertheless, the applicability of the
developed models stays well inside their intended application, mainly due to the labelling
outcomes, which are application-specific, and to the sensing modality which could produce
contrasting responses in magnitude, calling for the location preservation when using
unimodal sensing designs [17,18]. To this end, a sensing modality could be characterized
by the type of physical parameter measured by a sensor and by the location of sensing it
on a given study object. As such, multimodal sensing may involve the use of at least two
sensors measuring the same physical parameter at different locations or the use of at least
two sensors measuring different physical parameters at the same location.

Going back to the use of accelerometers to collect signals which may be useful for
operational activity recognition in motor-manual felling of willow, unimodal sensing
becomes important to save resources, and the use of a single sensor is desirable and
affordable. However, there are many possible locations in which an accelerometer could be
placed on a given tool, such as a brush cutter, making it likely to get signals characterized
by a high variability in magnitude due to the sensing location. In addition, there is a
high variability given by the operational conditions themselves, which may change even
in the same harvested plot, and by the operational behavior of the workers. In such
conditions, the models developed by training an AI algorithm need to have an acceptable
generalization ability, in such a way that at least the location of signal collection would
become irrelevant for a given classification algorithm. In our knowledge, a robust model
able to reliably deal with unimodally sensed acceleration signals, i.e., acceleration sensed
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at a single location on the tool irrespective of the location, was not studied so far, while
developing it from multimodally sensed data could help overcome the limitations stated
above; if such a model would prove to be reliable irrespective of the sensing location,
then it will contribute to resource saving while easing the data collection, handling and
analysis workflow.

The goal of this study was to develop a modality-invariant operational prediction
model with application in motor-manual felling of willow by brush cutters. The problem
was approached by the means of training and testing a Multi-Layer Perceptron (MLP) with
backpropagation on acceleration signals. Acknowledging that there could be many other
approaches to the problem, the choice of the MLP as a technique to be used, as well as of
the acceleration data as input signals, was mainly based on the author’s experience with
the MLP algorithms and the availability of acceleration signal data; in addition, the choice
was guided by the findings of recent work, repeatedly showing excellent results in task
recognition applications when using acceleration signals as inputs in the AI algorithms. By
a modality-invariant model we are referring to a model able to acceptably generalize from
any acceleration signal collected by the same sensor type, anywhere of an observed tool,
while preserving the highest possible classification performance and the lowest possible
generalization error.

2. Materials and Methods
2.1. Data Collection
2.1.1. Study Location and Crop Layout

The data used in this study were collected in the center of Romania, from three
locations (Table 1), where motor-manual willow felling operations were observed in the
Spring of 2017. The plots taken into study were located in an intra-mountainous depression
at an altitude of ca. 600 m a.s.l. The climate in the area is characterized by a strong
continentalism with warm summers and cold winters. All the plots (Poian 1, Poian 2
and Belani, Covasna County, Romania) were planted according to the European willow
planting layout, in which the planting is done in twin rows distanced at 75 cm, and each
twin row is distanced at 1.5 m from the next one; commonly, the distance between the
cuttings used for planting is of 60 cm [19].

Table 1. Locations of data collection and the summarized description of the datasets.

Location Dataset a Size b [s]
Date of

Collection Coordinates

Poian 1
TRAIN_E 18,377 04/11/2017 46◦04.373′

N–26◦10.924′ E

TRAIN_S 18,377 04/11/2017 46◦04.373′

N–26◦10.924′ E

Poian 2
TEST_E1 26,493 02/27/2017 46◦04.354′

N–26◦10.904′ E

TEST_S1 22,885 02/27/2017 46◦04.354′

N–26◦10.904′ E

Belani
TEST_E2 11,859 03/02/2017 46◦03.362′

N–26◦11.208′ E

TEST_S2 9285 03/02/2017 46◦03.362′

N–26◦11.208′ E

TOTAL - 107,276 - -
Note: a TRAIN means that the dataset was used in the training phase of the MLP, TEST means that the dataset
was used in the testing phase of the MLP, E means that the data was collected by datalogger placement on the
tool’s engine, S means that the data was collected by the datalogger placement on the tool’s transmission shaft, 1
means that the dataset was the first of the same modality class, 2 means that the dataset was the second of the
same modality class; b size refers to the number of one-second sampled observations retained in the training and
testing datasets.
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Willow crops are becoming a common land use feature in the landscape of the study
area, though they are typically established on small and dispersed plots whose previous
use was agricultural [20]. In addition to the size and dispersion of the plots, the cultivation
practice in the area is strongly influenced by the available technology for planting, cutback
and harvesting operations, which are partly mechanized [7,9,10,19–21]; many of them, such
as harvesting, are relying to a great extent on motor-manual operations which are usually
done by the use of brush cutters [7,9,10]. This situation is often leading to practicing rota-
tions of 2–3 years, and typical for the area is that motor-manual willow felling operations
are done in the early spring. Most of the operations related to willow cultivation in the
area are done by employing local people on a daily basis.

2.1.2. Tool Description, Work Organization and Relevant Process Mechanics

The tool used for felling was a brush cutter made by Husqvarna (Model 545 RX,
Husqvarna AB, Stockholm, Sweden), featuring an engine output of 2.1 kW at 9000 rpm
and a transmission shaft that enables the connection and power transfer between the
engine and the cutting device (Figure 1); tools from this class are assumed to produce a
noise level of 100 db(A) [22]. Harvesting work is typically done by motor-manual felling
followed by manual bunching, transportation and chipping at a biomass terminal, or by
bunching and chipping on site [23]. Brushcutters are commonly used in the study area to
motor-manually fell the willow, being tools that can be adapted easily to a variety of jobs,
simply by changing their active cutting devices [22,24]; when used for willow felling, they
are usually equipped with steel saw blades (discs).

Figure 1. Work organization, tool description and instrumentation of data collection. Legend: (a)—the typical work
organization (1—bunch of stems to be felled, 2—bunches of felled stems, 3—wooden stick used to direct the felling,
4—throttling control, 5—engine, 6—transmission shaft, 7—steel blade, 8—triaxial accelerometer, 9—helmet equipped with a
sound pressure level datalogger), (b)—the general layout of the felling operations (example from Poian 1 location, close to
finishing the felling work in a plot), (c)—detail of the acceleration datalogger (8) placed on the shaft, (d)—details on the
instrumentation used to collect the data (8—triaxial accelerometers, 9—sound pressure level datalogger).

The felling work is commonly done by two workers (Figure 1) of which one is the
brush cutter operator who is in charge of the mechanical felling tasks and tool maintenance,
and the other one assists the felling by a wooden stick [7,9,10,19].



Forests 2021, 12, 406 5 of 26

While being rather simple, the organization of felling work is influenced by the
capability limits of the used tools, layout of the crops and weather conditions [7,19], and it
needs to be done with much attention and caution to ensure the safety of both workers. As
such, felling direction is commonly adopted toward the exterior of the crop, felling work is
progressing on a single row (one of the twins), and in such cases in which the length of the
crop is very long, transversal corridors are often practiced to shorten the distances covered
per turn, to be able to refuel and maintain the tool [19]. The assistant needs to place himself
at a considerable distance behind the feller and he interacts with the stems to be felled
only by the wooden stick, while the feller needs to be able to coordinate and control his
motions on very short trajectories. The relevant work elements which may occur in such
operations are the effective on-row felling, moving at the headlands or on a transversal
corridor to approach a new willow row at the opposite side of the crop, maintenance and
refueling, rest and meal breaks, as well as other kind of delays [7,9]. The distinctive feature
of these operations is that, excepting the felling, the rest of work elements are typically
characterized by engine non-use. Therefore, monitoring the engine working time makes
it possible to accurately monitor the main work time consumption, which stands for a
category of time in which the direct transformation of the work object takes place [13], and
which is also useful and important to account for the fuel intake as specific to motor-manual
operations [24,25].

Looking at a finer scale, however, the felling consists of worker’s advancement on the
row with various engine running regimes, combined with movements of the active cutting
device of the tool toward outside and inside the crop to make the cuts, which are likely to
produce variability in the responses given by the use of various sensors. Another relevant
issue is the placement location of the dataloggers. For instance, accelerometer dataloggers
could be placed at different locations on the engine block, as well as at different locations of
the transmission shaft, therefore making it possible to receive different magnitudes of the
acceleration during engine use; however, when the engine is switched off, the responses
collected by accelerometers placed at different locations of the tool could be similar.

In the study area, felling work is always done by workers having an extensive ex-
perience in SRWC felling operations, gained on already more than a decade of SRWC
management in Romania. Field data collection, which was done in 2017, was based on the
informed consent of the observed workers and of the SRWCs’ owner. They were informed
about the intended use of the data and agreed to be observed when performing their jobs.

2.1.3. Instrumentation

Two datalogger types were used to collect the field data used in this study. Accel-
eration response, as the main data stream used, was measured and recorded using two
Extech® VB300 triaxial dataloggers (Extech Instruments, FLIR Commercial Systems Inc.,
Nashua, NH, USA). Irrespective of the study location, the acceleration dataloggers were set
by the use of the dedicated software to collect data in the motion detection mode (threshold
of 1 g), at a sampling rate of one second. One of them was placed on the engine’s block and
the other one was placed on the transmission shaft, at locations that were chosen carefully
in such a way that they would not interfere with work safety. Both dataloggers were
reinforced on the tool using highly-resistant plastic straps and were checked for holding
before running the experiments and during the work breaks. An Extech® 407,760 sound
pressure level datalogger (Extech Instruments, FLIR Commercial Systems Inc., Nashua,
NH, USA) was used to collect additional data needed for labelling purposes. It was set
to continuously collect the sound pressure level on the dB(A) scale, at a sampling rate
of one second, and it was placed on the helmet worn by the brush cutter operator. The
main technical features of the used dataloggers are available on the producing company’s
website [26,27]. Figure 1 shows the approach used to equip the tool and the worker with
the used dataloggers.
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2.1.4. Datasets

Six acceleration datasets were collected in the three locations taken into study (Table 1)
and the intention was to get for each of them a time overlapping sound pressure level
dataset. However, due to a battery malfunction, sound pressure level data was lost in the
case of Belani location. By the construction and setup of the acceleration dataloggers, the
data is collected and stored as discrete triaxial (X, Y and Z) time-labelled responses; they
are further summarized in the form of vector magnitudes, also known as the Euclidian
Norm (EN), which is some sort of data fusion [28], and which is enabled by the dedicated
software. The EN, which is named by the dedicated software under the generic term of
“vector sum”, may be written as in Equation (1) and it allows for a first normalization of
the data, making it invariant to the axis movement. In fact, raw acceleration signals contain
movement, gravity and noise components [29], while the instruments used to collect them
respond well to vibration, a property which was used in this study.

Ai =
√

x2
i + y2

i + z2
i (1)

where Ai is a discrete value, in the form of Euclidian Norm (vector magnitude, vector
sum), computed for a given sampling rate (adopted to one second in this study), and xi, yi
and zi are the accelerometer’s raw responses on the axis X, Y and Z, respectively, for the
observation i.

Sound pressure level data was collected and outputted in a similar way, being time
and date labelled, and showing the sound pressure level measured in dB(A) at a sampling
rate set at one second. In addition, both dataloggers can output data in computer-friendly
formats such as the Microsoft Excel® (Microsoft, Redmond, WA, USA). CSV files, and both
of them provide data ID’s and some summary statistics placed at the beginning of each file.
Figures A1–A5 are showing the patterns of Ai in the datasets used for training and testing
of the MLP, emphasizing the amplitude and magnitude differences due to the location of
the datalogger and engine working regimes.

2.2. Data Preprocessing Workflow
2.2.1. Data Pairing, Segmentation and Labelling

To ease the effort of labelling the training data, as well as to compare the multimodal
responses collected by the two acceleration dataloggers placed on the same tool, data
pairing procedures were applied to the first two datasets (TRAIN_E and TRAIN_S) based
on their time labels. This procedure was necessary to be able to label both datasets at
once. Data pairing was done in Microsoft Excel®, and it accounted for those observations
which were present in both datasets and shared the same time label, an issue which was
computationally approached, assessed and solved using logical functions. For example, if
an observation from a given training dataset did not have had a corresponding time-labeled
observation in the other training dataset, then it was deleted. This process was also run
vice versa, until reaching a double set of observations sharing their time labels.

Labelling of the training datasets was done by considering the responses recorded
by the acceleration and sound pressure level dataloggers (Figure 2), based on known
experience on their responses in terms of magnitude. Two states were documented by
labelling and segmentation, namely the engine running (labelled in the database by the
string code ON) and the engine turned off (labelled in the database by the string code OFF).
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Figure 2. A sample from the acceleration and sound pressure level datasets used jointly to label the data. Note: for
convenience, the sound pressure level data was downscaled by a factor of 100 to help in data comparison and labelling tasks.
Legend: TRAIN_E stands for the training dataset collected by the placement of acceleration datalogger on the tool’s engine,
TRAIN_S stands for the training dataset collected by the placement of acceleration datalogger on the tool’s transmission
shaft, LABELLING stands for the sound pressure level data downscaled by a factor of 100; Events: 1—engine off and no
movement of the worker (labelled as OFF), 2—engine on and felling (labelled as ON), 3—engine on and not felling (labelled
as ON), 4—engine off and movement of the worker (labelled OFF), 5—data segments which were transient (inter-class
variability) between the two engine states (labelled as ON).

For instance, sound pressure levels close to those described by the manufacturer for
the operation of the tool (ca. 100 dB(A)) have pointed that the engine was on and throttled,
therefore indicating that the worker was engaged in the effective felling operations. Drops
in the magnitude of the sound pressure level (as shown in Figure 2 by the data labelled with
3), were considered to be the events in which the engine was on but no felling was done
(idle running); these events were labelled as ON. Moreover, acceleration responses in the
range of 1.1–3.0 g were compared to the data on sound pressure level, generally leading to
their classification as engine OFF events. Transient events (Figure 2, data labelled by 5) were
included in the engine working category as well. However, due to the acceleration data
collection mode (motion detection) and pairing procedures used, which have led to some
missing data, the sound pressure level dataset was paired by doing some adaptations in the
time domain such as removing some data or moving some data segments to pair them with
the acceleration data. This was done for approximately 10% of the joint dataset, then the
patterns generated by the magnitude of acceleration data were used for further labelling.

Based on the experience gained during the labelling and segmentation tasks done on
the training dataset, the distributions of data in specific patterns were used as a condition to
label the data in the rest of the datasets, which were used for MLP testing (Figures A2–A5).
Prior to the labelling and segmentation tasks, these datasets were preserved to their
original number of observations, as they were outputted by the acceleration dataloggers.
Therefore, the datasets shown in Figures A1–A5 contained the final number of one-second
observations as described in Table 1, and each observation contained in them was the
Euclidian Norm computed according to the Equation (1).
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2.2.2. Fusion of the Training Datasets

All the datasets used in this study were subjected to early data fusion by the computa-
tion of Euclidian Norm. However, to simultaneously capture both the local dependencies
over time and the spatial dependencies over modalities of collection, the approach was
similar to that described in [30], and consisted of fusing the training datasets by a procedure
referred as vertical stacking [28]. In particular, it was assumed that a more accurate data
representation in the trained model, which could be achieved by the inclusion of spatial
dependencies over the modalities of collection, could be important for the evaluation of
datasets coming from other experiments using a single modality for field data collection,
enhancing the trained model’s recognition capacity. In addition, the procedure was as-
sumed to improve the data representation in the trained model by actually doubling the
size of the training dataset.

Procedurally, data fusion followed a simple procedure, by keeping the dataset col-
lected on the engine as it was, and by merging the dataset collected on the transmission
shaft at the end of the first dataset, resulting in the fused dataset (Figure A1). Following
data merging, the ID’s of the observations were updated, and the resulting data vector was
used as input for data normalization.

2.2.3. Data Normalization

Data normalization is commonly done by transforming the original data, and it aims at
giving all the attributes an equal weight; in MLP applications with backpropagation it also
helps in speeding up the learning process [31]. A min-max normalization procedure was
used in this study, according to the Equation (2), which performs a linear transformation of
the data, outputting values in a new range (0, 1), while preserving the relationships among
the original data values [31]. Although there are many other procedures that may be used
to scale the data, the choice of this normalization procedure was based on its simplicity
and ease of use.

Anij = (Aij − Aminj)/(Amaxj − Aminj) (2)

where Anij is the normalized value of observation i coming from the dataset j (Anij can
takes values between 0 and 1, inclusively), Aij is the Euclidian Norm of the observation
i coming from the dataset j, Aminj is the minimum value of the Euclidian Norm coming
from the dataset j, Amaxj is the maximum value of the Euclidian Norm coming from the
dataset j.

The use of Equation (2) required the computation of the minimum and maximum
values of Ai in each dataset j (j = 5), then it was applied to all observations from each dataset,
using for this purpose the Microsoft Excel® software. The transformed data was saved as
new datasets, then it was used for training and testing purposes of the MLP model.

2.3. Setup of the MLP
2.3.1. Software Used and General Architecture of the MLP

The software used for training and testing of the MLP was the freely-available open-
source Orange Visual Programming Software (version 3.27.1) [32], which holds function-
alities of implementing a multi-layer perceptron with backpropagation. All the training
and testing tasks were run on a computer architecture that included the following features:
system type—Alienware 17 R3, processor—Intel® Core™ i7-6700 HQ CPU, 2.60 GHz,
2592 MHz, 4 cores, 8 Logical Processors, installed physical memory (RAM)—16 GB, operat-
ing system—Microsoft Windows 10 Home.

The size of the MLP was set in advance of the training and testing tasks to the highest
values of depth and width enabled by the software used, based on the author’s experience,
practical recommendations formulated by [33], and recent results showing the effect of
MLP’s architecture on the classification performance for similar equipment [16]. Three
hidden layers (depth) of 100 units each (width, as the number of neurons) were set for
the MLP’s architecture, and the number of iterations was set at 1,000,000. Training and
scoring were done by cross-validation using a stratified approach and a number of folds
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set at 20. The recommendations of [33], as well as the information available in the recent
literature, were used to choose the activation function and the optimization algorithm. One
of the most popular activation functions in the rectified linear unit function (ReLu), which
is supposed to provide high performances in solving complex, nonlinear problems [34,35],
and it was chosen for this study. In simple words, an activation function takes the weighted
inputs of a node (neuron), adds a bias and based on its result decides whether or not that
node should be activated (fired); typically, ReLu makes such decisions when the results are
positive. The optimization algorithm chosen for the MLP architecture was the stochastic
gradient descent-based optimizer (Adam), which is one of the recently developed and used
solvers due to its low training costs [36].

2.3.2. Tunning and Error Metric Used to Evaluate the Generalization Ability

A manual tuning approach was taken to check the training and testing performance
of the MLP, and it aimed at altering the α parameter of the regularization term (L2 penalty
regularization), by a trial-and-error approach. By doing so, the intention was to check what
regularization strategy would reduce the generalization error [33] in combination with
the architecture of the MLP and hyperparameters already set as described in Section 2.3.1.
In MPL applications, the regularization term helps in avoiding overfitting by penalizing
weights with large magnitudes; α is a parameter of the regularization term, whose increased
values may fix high variance while decreased values may fix high bias [33,37]. Values
of the α parameter were set successively at 0.0001, 0.001, 0.01, 0.1, 1 and 10, then MLPs
were trained and tested over all four testing datasets, accounting each time for the training
and generalization error. The error metric chosen for the evaluation of generalization
ability was the binary cross-entropy (Equation (3)), which is commonly used in binary
classification problems. A detailed worked example can be found at [38]. Its calculation is
enabled by the used software and it works based on predicted probabilities assigned to
the observations.

Hp(q) = − 1
N

N

∑
i = 1

li × log(p(li)) + (1− li) × log(1− p(li)) (3)

where Hp(q) is the binary cross-entropy (log loss) function, N is the number of observations
in a given dataset, li is the label of a given observation i (i = 0, 1), and p(li) is the predicted
probability of an observation being ON for all the observations (N). Note: the label ON
received the value of 1 and the label OFF received the value of 0.

For instance, if the label of an observation is ON, therefore li = 1, then Equation (3)
will add log (p(li)) to the loss, which is the probability of that instance of being ON; if the
label of an observation is OFF, therefore li = 0, then it will add log (1−p(li)) to the loss,
which is the probability of that instance of being OFF. Training and testing results of the
binary cross-entropy function were used in conjunction to choose the best model in terms
of training and testing generalization capacity. Since training and testing was run on a
number of 5 models (1 for training and 4 for testing), the values of binary cross-entropy
were plotted against those of the tuned α parameter. Then, minimum and maximum
values of each repetition done for each α value were computed, and the range found at the
minimum value was used as a criterion to keep the best performing models.

2.3.3. Classification Performance Metrics

In addition to the log loss function, the software used for training and testing enables
the computation of the training and testing time, area under curve (AUC), classification
accuracy (CA), F1 metric, precision (PREC), recall (REC) and specificity (SPEC). The mean-
ing and the possibility of use for these metrics is comprehensibly described in papers such
as [39,40], therefore their complete definitions and formulae are not given herein. While
all of these metrics were computed at the class (ON, OFF) and overall (dataset) level, in
both, training and testing phase, the focus was on the classification accuracy (CA) and
recall (REC) metrics; in binary classification problems, the first one stands for the number
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of correctly classified true positives and negatives of the total number of observations in a
dataset, and the second one stands for the number of true positives classified as such of the
total number of positives in a given dataset [39,40].

2.4. Evaluation

The best performing models in terms of error rate minimization and generalization
ability were retained as final and selected for an additional evaluation. The additional
evaluation consisted of a more detailed description of the misclassifications in the training
and testing datasets as well as of developing plots to depict the predicted probabilities of the
data. Misclassification issues were addressed by exporting the outputs of the training and
testing phases into Microsoft Excel® files, followed by the application of logical functions to
extract the number of correctly classified datapoints (true positives—TP and true negatives—
TN), false positives (FP) and false negatives (FN), based on a paired comparison of the
ground truth against the predictions made on the training and testing datasets. This new
data was summarized in the form of tables and plotted as graphs in the time domain, in the
form of Euclidian Norm (Equation (1)) against misclassifications. Probability plots were
developed by mapping the original data on Euclidian Norms (Equation (1)) against their
predicted probability of falling in either the ON or OFF classes.

3. Results
3.1. Description of the Labelled Datasets

The datasets used in this study accounted for a cumulated size of 107,276 s (ca. 30 h,
Table 2) of which the fused dataset used for training (TRAIN) represented ca. 34%. Datasets
used for testing accounted (in their order shown in Table 2), for ca. 25%, 21%, 11% and 9%,
respectively.

Table 2. Statistics of the used datasets.

Location Dataset a Size b [s]
Class Size [s] Class Share [%]

ON OFF ON OFF

Poian 1
TRAIN_E 18,377 13,980 4487 76.07 23.93
TRAIN_S 18,377 13,980 4487 76.07 23.93

TRAIN 36,754 27,960 8794 76.07 23.93

Poian 2
TEST_E1 26,493 20,579 5914 77.68 22.32
TEST_S1 22,885 20,404 2481 89.16 10.84

Belani
TEST_E2 11,859 6806 5053 57.39 42.61
TEST_S2 9285 5886 3399 63.39 36.61

TOTAL - 107,276 c 81,635 c 25,641 c - -

Note: a meaning is similar to that from Table 1; b size refers to the number of one-second sampled observations
retained in the training and testing datasets; c calculated on the basis of the fused training dataset (TRAIN) and
testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2) datasets.

Excepting the dataset TEST_E2, data distribution on classes was found to preserve
different degrees of class imbalance. Irrespective of the dataset, more than 57% of the data
was labelled as ON, a class that accounted for ca. 90% of the TEST_S1 dataset’s size. While
from the perspective of developing robust MLPs, this is a common issue to be solved [28],
from an operational point of view this kind of data distributions emulates very well the
practice of motor-manual willow felling, where the effective felling itself dominates.

3.2. Model Selection and Classification Performance

Values returned by the binary cross-entropy error as a function of the regularization
parameter’s tunning are shown in Figure 3. Irrespective of the tunning strategy used, or the
dataset in question, up to a value of α set at 1, the training and generalization errors were
found to be less than 0.074 (7.4%, TEST_E2), showing, in general, a good generalization
ability of the trained model. For values of α set from 0.0001 to 0.1, both the training
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(TRAIN) and generalization (TEST_E1, TEST_S1, TEST_E2, TEST_S2) errors were low, with
the lowest ones found for α = 0.0001 and α = 0.1. Beyond this threshold (α = 0.1) the error
started to noticeably increase at least for one of the testing datasets (Figure 3, TEST_E2).
The lowest differences in terms of errors were found in the case of α = 0.0001 and α = 0.1
irrespective of the values compared (training and testing data or just testing data). For
instance, when setting α at 0.0001, the value of the log loss in the case of training data
was of 0.005 (0.5%) and it corresponded to a maximum value of 0.036 (3.6%) found in
the TEST_E2 dataset. The figures were similar for α = 0.1, for which the error found for
the training data was of 0.006 (0.6%), which corresponded to a maximum value of 0.037
(3.7%), found in the same testing dataset (TEST_E2). In term of errors, TRAIN and TEST_E1
datasets returned similar values for the range set for α between 0.0001 and 0.1. For the
same range set for α, TEST_S1 and TEST_S2 datasets have returned a similar pattern in
terms of errors.

Figure 3. Log loss (binary cross-entropy) of the training and testing data as a function of the regularization parameter
term (α). Legend: TRAIN—fused training dataset, TEST_E1 and TEST_E2—testing datasets collected on the tool’s engine,
TEST_S1 and TEST_S2—testing datasets collected on the tools’ transmission shaft. Note: Values shown are computed by
using Equation (3), based on the normalized data (Equation (2)); models retained for further analysis are bordered by green
dashed lines.

Figure 4 is showing a comparison of the classification accuracy (CA) metric for the
training and testing datasets, reflecting the effect that the value set for the α term had on
this metric. In the training phase, all of the attempts to tune the regularization parameter
term (α) returned very high classification accuracies. However, the classification accuracy
of the training phase was preserved at the highest values (0.999, 99.9%) only in the range
set for α between 0.0001 to 0.01, and it started to decrease as the regularization parameter
approached the value set at 10. Moreover, the classification performance of the testing
datasets was preserved to its highest values for α set in between 0.0001 and 0.01. However,
the models selected for further assessment were those having this parameter set at 0.0001
and 0.1, based on the results returned by the log loss function, which are shown in Figure 3.
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Figure 4. Classification accuracy scored at the training (TRAIN) and testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2) phases,
as a function of the value of the regularization parameter (α).

Tables A1–A3 are showing the detailed classification performance metrics at the overall
(dataset) level, as well as on classes (ON, OFF). Irrespective of the class, the minimum
values of classification accuracy (CA) metric were of 0.944 (94%), indicating a high share of
correct predictions for the worst prediction case. The minimum values of the F1 metric,
which stands for the harmonic mean of precision (PREC) and recall (REC), were of 0.944
(94%), 0.948 (95%) and 0.938 (94%) for the overall, ON and OFF data. In the same order,
the minimum values of classification precision (PREC) and recall (REC) were of 0.950
(95%), 0.988 (99%), 0.884 (88%) and of 0.903 (90%), 0.903 (90%) and 0.988 (99%), respectively,
where precision stands for the fraction of true positives from the total of positives (TP
and FP) and recall stands for the fraction of correctly classified true positives from the
total positives. Accordingly, these metrics returned high values for the worst prediction
cases, with evident differences as a result of the regularization parameter tunning. Training
time of the MLP varied in between ca. 261 and 482 s, and it was of ca. 261 and 443 s for
the models trained for α = 0.0001 and 0.1, respectively. A more detailed comparison of
the classification accuracy for the former models is given in Table 3, showing some of the
highest values of the CA among the set of regularization terms used.

Table 3. Classification accuracy of the selected models.

Class
TRAIN TEST_E1 TEST_S1 TEST_E2 TEST_S2

α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1

ON 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995
OFF 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995

OVERALL 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995

Excepting the TEST_S2 dataset, no significant differences were found in terms of
classification accuracy as an effect of tuning the regularization parameter. In addition, clas-
sification performance was found to be very high in the case of most of the testing datasets,
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and in terms of classification accuracy (CA), its values ranged from 99.1% (TEST_S2,
α = 0.0001) to 99.9% (TEST_E1), proving a high generalization ability of the trained models.

3.3. Missclassification and Probability Plots

The correctly classified observations in the training dataset (TRAIN, Table 4) were
close in terms of relative frequency. In absolute numbers, however, the model using a
regularization term set at 0.1 misclassified more (25 observations) compared to that of α set
at 0.0001. When checked for the testing datasets (TEST_E1, TEST_S1, TEST_E2, Table 4), the
number of misclassifications was relatively tied in relation to the regularization parameter
term used, excepting the last testing dataset (TEST_S2, Table 4) which returned a better
performance for α set at 0.1. Figure 5 is giving a representation of misclassified data
points in the training and testing datasets for a regularization parameter term set at 0.0001.
Irrespective of the dataset, the misclassified datapoints shared a common feature, namely
their location in terms of magnitude in the transient data segments characterizing inter-
class variability. These segments were those mostly identified for operational events such
as turning on or off the tool’s engine, and which were formally included in the ON class.
However, no attempts were taken to separate another class given the results obtained on
classification performance and error metrics (Figures 3 and 4, Tables 3 and 4), which were
considered to be acceptable. In addition, the number of observations which were found to
be misclassified due to their belonging to these events is typically low in applications such
as that studied herein (Table 4).

Table 4. Descriptive statistics of misclassifications.

Regularization
Term Dataset a Size b [s]

Correctly Classified
Misclassified as

False Positives False Negatives

N Share (%) N Share (%) N Share (%)

α = 0.0001

TRAIN 36,754 36,711 99.88 28 0.08 15 0.04
TEST_E1 26,493 26,465 99.89 2 0.01 26 0.10
TEST_S1 22,885 22,795 99.61 40 0.18 50 0.22
TEST_E2 11,859 11,788 99.40 15 0.13 56 0.47
TEST_S2 9285 9202 99.11 73 0.78 10 0.11
TOTAL 107,276 - - - - - -

α = 0.1

TRAIN 36,754 36,686 99.82 23 0.06 45 0.12
TEST_E1 26,493 26,469 99.90 12 0.05 12 0.05
TEST_S1 22,885 22,787 99.57 21 0.09 77 0.34
TEST_E2 11,859 11,784 99.37 8 0.07 67 0.56
TEST_S2 9285 9237 99.48 26 0.28 22 0.24
TOTAL 107,276 - - - - - -

Note: a meaning is similar to that from Table 1; b size refers to the number of one-second sampled observations retained in the training and
testing datasets.
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Figure 5. Distribution of misclassifications in the training (TRAIN) and testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2)
datasets for a regularization term (α) set at 0.0001. Legend: green points stand for the Euclidian Norm (EN); red lines stand
for correctly classified datapoints when drawn horizontally at an EN of 0, and for misclassified datapoints when drawn
vertically. Note: for convenience the datasets were merged in their order of analysis.

Figure 6 is showing a selection of predicted probability plots in a comparative ap-
proach. The data shown stands for the dataset used for training (TRAIN), as well as for
datasets TEST_E2 and TEST_S1 used for testing. It compares the predicted probabilities of
the datapoints from the abovementioned datasets of belonging to the classes ON and OFF,
respectively, against the values of those datapoints computed according to the Equation (1).

For a value of the regularization parameter term set at 0.0001, the minimum values
of the Euclidian Norm found to be predicted as ON were close to 3 g in all the datasets
(detailed statistics are not shown herein, and Figure 6 shows only a selection of predicted
probability plots). Accordingly, the maximum values of the Euclidian Norm found to be
predicted as OFF were close to 3 g in most of the datasets. In comparison, for a value
of the regularization parameter term set at 0.1, the minimum and maximum threshold
values (as described above) of the Euclidian Norm were close to 4 g in most of the datasets.
These statistics can be followed quite easy in Figure 6, where in the left panels (α = 0.0001)
the predicted probability data is split for a probability set at 0.5 by a value close to 3.
Accordingly, the left panels of the figure (α = 0. 1) split the predicted probability data, at
the same probability threshold (0.5), by a value of the Euclidian Norm close to 4 g.



Forests 2021, 12, 406 15 of 26

Forests 2021, 12, x FOR PEER REVIEW 15 of 26 
 

 

  

(c) (d) 

  

(e) (f) 

 

Figure 6. Selected plots showing the predicted classification probability. Legend: P(OFF), shown in red, stands for the 

predicted probabilities of the datapoints being OFF and P(ON), shown in green, stands for the predicted probabilities of 

the datapoints being ON. Note: (a and b)—predicted classification probability for the TRAIN dataset; (c and d)—predicted 

classification probability for the TEST_E2 dataset; (e and f)—predicted classification probability for the TEST_S1 dataset; 

left figure panels show the data for α = 0.0001 and the right figure panels show the data for α = 0.1. 

For a value of the regularization parameter term set at 0.0001, the minimum values 

of the Euclidian Norm found to be predicted as ON were close to 3 g in all the datasets 

(detailed statistics are not shown herein, and Figure 6 shows only a selection of predicted 

probability plots). Accordingly, the maximum values of the Euclidian Norm found to be 

predicted as OFF were close to 3 g in most of the datasets. In comparison, for a value of 

the regularization parameter term set at 0.1, the minimum and maximum threshold values 

(as described above) of the Euclidian Norm were close to 4 g in most of the datasets. These 

statistics can be followed quite easy in Figure 6, where in the left panels (α = 0.0001) the 

predicted probability data is split for a probability set at 0.5 by a value close to 3. Accord-

ingly, the left panels of the figure (α = 0. 1) split the predicted probability data, at the same 

probability threshold (0.5), by a value of the Euclidian Norm close to 4 g. 

4. Discussion 

Monitoring the operational performance is one of the common ways to get the data 

needed for sound decisions on running and improving the way that various businesses 

Figure 6. Selected plots showing the predicted classification probability. Legend: P(OFF), shown in red, stands for the
predicted probabilities of the datapoints being OFF and P(ON), shown in green, stands for the predicted probabilities of the
datapoints being ON. Note: (a,b)—predicted classification probability for the TRAIN dataset; (c,d)—predicted classification
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show the data for α = 0.0001 and the right figure panels show the data for α = 0.1.
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4. Discussion

Monitoring the operational performance is one of the common ways to get the data
needed for sound decisions on running and improving the way that various businesses
work. It is already a fact that many manufacturing industries are currently collecting
sensor-based data to improve their operations and to respond by informed decisions
to various production anomalies and problems [41], enabling them to be more compet-
itive, responsive and resilient. In forest and SRWC operations, getting monitoring data
was traditionally based on observing workers, tools and machines by time-and-motion
studies [12–14], which have evolved from pen-and-paper to various sensing-based tech-
niques; the latter are often implementing an external rather than a built-in sensor system
e.g., [7,10,15,17,18,20,23,42–46] mainly due to their purpose for collecting such data, which
was often purely scientific. Although the modern machines may incorporate production
monitoring systems that may work in real time, there are still few options to collect and
handle such data for hand-operated tools. Recent studies have shown that the accelera-
tion sensors may be successfully used to collect long term operational monitoring data
e.g., [7,10,16,17,23,43,45,47] including by the use of platforms such as the smartphones [15].
In many cases, however, such data comes as modality-variant, unannotated sets, requir-
ing significant resources to process and analyze it [7,10,47]. In this regard, the merit of
this study is that it developed data collection invariant models able to automatically and
accurately classify, analyze and interpret signals collected by triaxial accelerometers, en-
abling the possibility to extend their applicability to new coming datasets. As such, the
implementation of MLP can serve to automatically classify new data recorded by triaxial
accelerometers, irrespective of the datalogger placement on the tool.

One of the relevant issues for discussion is the sensing modality itself. Dealing
with sensing modalities is not a new approach brought by this paper as it has been dis-
cussed [28] and used by other studies making use of sensors to measure various physical
variables [15,17,30,47,48]. However, as there is no certainty that in follow-up field data
collection activities the acceleration dataloggers will be placed at the same location each
time, the developed models need to produce classifications that are invariant to such issues.
By fusing the Euclidian Norm data collected on two of the most accessible parts of the tool,
this study has facilitated the attempt of making the models invariant to the data sensing
location. This is proven by the results obtained on the testing datasets, which returned in
all the cases excellent classification results (Tables A1–A3), irrespective of the datalogger
placement, operational variability or the individual handling of the tool. Moreover, the
developed models were found to deal very well with the intra-class variability of the
Euclidian Norm data (Figure 3, events labelled with 2 and 3 for a single sensing modality:
engine (TRAIN_E) or transmission shaft (TRAIN_S)), which was mostly generated by the
variation of operational behavior. As a fact, intra-class variability may be related to and
generated by the same or more individuals performing differently something in a given
activity [49]. In this study, intra-class variability was the effect of operational behavior
in relation to the crop layout, some portions requiring walking with engine in the idle
running, as well as the effect of other issues such as changes in the operational behavior
for similar operational conditions. For a comparison, the reader may consult, for instance,
Figures A2 and A4. However, a speculation that could be raised here is that the use of
vibration data sensed by a direct contact with the tool has more potential in generating
more clearly separable events; hence, it could stand for a good approach to eliminate much
of the intra-class variability which could be generated by different persons carrying on
the same task. Due to the vibration characteristics of the tools equipped with two-stroke
engines, the models developed and tested in this study might work well also on data
collected by sensor placement on the chainsaws to distinguish between engine working
(ON) and non-working states (OFF). For instance, the work of [16] has shown a similar data
pattern and vibration magnitudes for engine working states. However, further studies are
needed to check if the models would work on tools from other classes that are characterized
by contrasting constructive concepts.
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Class imbalance [28,49] and inter-class similarity [49] are common issues causing
classification problems in various applications of the human activity recognition. On
the one hand, class imbalance biases the prediction of conventional models toward the
classes holding the majority of data [28]. On the other hand, experiments that are purely
observational hold few if no ways to address this challenge [12,14], as the occurrence of
the datapoints in given classes is imposed by the operational conditions. Class imbalance
was a defining feature of the datasets used in this study, which have shown a data majority
attributed to the ON class (Table 2). Given the results of classification performance, however,
it seems that this characteristic had small effects on the datasets if compared, for instance,
to inter-class similarity (transient events such as turning on and of the engine), which
resulted in some misclassifications (Table 4, Figures 5 and 6).

Classification performance of the models was found to be very high, while keeping the
error rates at a low level in both the training and testing datasets. For instance, classification
accuracy was higher than 99% irrespective of the explored dataset, a value that is frequently
termed as being very good [40]. However, there was a tradeoff between achieving high
classification performances and keeping the generalization errors low, which in this study
was evaluated by a trial-and-error approach which tuned the regularization parameter and
lead to a selection of two final best-performing models. The final models (for α set at 0.0001
and 0.1, respectively), which were retained based on their lowest generalization errors,
shared similar classification accuracies, excepting that of the TEST_S2 dataset, a case in
which the model trained for α = 0.1 performed better. Given the similarity of classification
accuracy for the rest of comparisons (Table 3), this outcome could be attributed to the
functions and decision boundaries learned by the MLP model.

In addition to the hyperparameters’ tuning, classification performance is affected
by the architecture of the MLP (particularly the size) but also by the sensing modalities.
Most often, the size of the MLP is selected based on rules of thumb [50,51]. However,
the work of [16] has shown how an increasing depth (number of hidden layers) and
width (number of neurons in a hidden layer) of the MLP may output increasingly accurate
classification results for a case study run on triaxial acceleration data collected on a chainsaw.
Based on that, as well as on the recommendations of [33], the size of the MLP was set
to the maximum allowed by the used software. Sensing by two or more modalities may
increase the classification performance. For instance, the work of [15] has found that the
use of sound in addition to acceleration and gyroscope-collected data contributed to the
performance increment of a Random Forest algorithm by decreasing the classification
errors, while the work of [17] has found a better classification performance when fusing
the data on acceleration and sound pressure level by horizontal staking before feeding it
into MLPs, concluding that the preservation of sensing location may be of high importance
in developing more accurate classification models. By comparison, this study removes the
problem of sensing location by training the MLPs on dual-sensed signals collected at two
locations on the tool. While further studies would be needed to check it, by its specific
learning characteristics, the developed MLP could be invariant to the sampling rate of new
coming data, because it makes its predictions based on the functions learned and not based
on the sampling rate characteristics.

Collecting, processing, analyzing and interpreting large amounts of data is one of
the approaches taken today to better understand ecological, social and technical systems,
enabling a better decision making based on deeply informed grounds. There are several
approaches, techniques and technologies to the problem which have already been de-
scribed as being opportune for the general forestry [52]. Operational monitoring of SRWCs
may benefit from sensor-based data collection approaches coupled with the techniques of
artificial intelligence by removing the human error and the effort associated to the tradi-
tional observation [53,54]. Moreover, approaches such that described in this study could be
used to prevent the safety issues associated with collecting data near dangerous machines
and tools or in difficult outdoor conditions [12], being also less intrusive in applications
that aim at observing people at work. At the time of purchasing the dataloggers used in
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this study, they were considered to be very small and useful for operational monitoring
of motor-manual operations [47,48]. However, the technology of producing affordable
miniaturized sensors in ongoing and had a significant progress, since smaller sensors are
already released on the market, facilitating the transition to sensor-based operational moni-
toring. This progress has been reflected positively in various forestry applications requiring
close-range sensing [55], and there is a lot of unexplored potential for such techniques both
in forest and in WSRC operations.

There are two main limitations of this study. The first one is related to the MLP’s
misclassifications which were mainly found for those datapoints characterizing the so-
called transient events of turning on and off the tool’s engine (Table 4, Figure 5). The
second one is related to the fact that in this study the data was segmented only in two
classes, therefore the engine idle time was included in the same class as the effective willow
felling time. Both of these problems may be easily solved by adding more context by the
use of GPS units, an approach that has shown good results in previous studies on the
topic [7,10]. In addition, in the phase of data interpretation, one can treat misclassifications
as non-felling time having in mind the knowledge gained by this study. However, further
studies are needed to evaluate whether adding primary and derived GPS location data into
the MLP would help in designing applications able to look more deeply into the underlying
process of willow felling operations. For instance, GPS coordinates and speed were used
to infer the location and operational behavior of a feller by a traditional human-assisted
classification approach [7,10] and they could provide additional context for the design of a
multiclass MLP.

5. Conclusions

For a binary classification problem which emulates the most important operational
events in SRWCs’ motor-manual felling by brush cutters, the developed MLPs have re-
turned high classification accuracies (99.1% to 99.9%) which were invariant to the sensing
modality judged by the sensors’ location. While the study has addressed hyperparameter
tunning by the modification of the regularization parameter term, two final models were
retained as being able to (i) provide high classification accuracies, (ii) generalize well on
the testing datasets collected by single modalities and (iii) retain low errors in both, the
training and testing phases. Given the obtained results, the developed models are assumed
to be invariant to the new coming data, making them useful in classification applications
and enabling the automation of most of the workflow typically implemented to collect,
process, analyze and interpret large amounts of data. Further studies could bring new
interesting and valuable insights if focused on evaluating the classification performance
by the possibility of adding more context to the developed MLPs. This could be achieved
by fusing the triaxial acceleration data with that collected by miniaturized GPS units to be
able to classify and describe in more depth the operational tasks.
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Appendix A

Figure A1. Description of the dataset used for the training phase of the MLPs. Legend: (a) training dataset before fusion
showing the effect of modality on the acceleration’s (A) magnitude; (b) training dataset after data fusion: left—data collected
on the tool’s engine (TRAIN_E), right—data collected on the tool’s transmission shaft (TRAIN_S). Note: in both figure
panels data is given as the Euclidian Norm of acceleration responses (Equation (1)) in the time domain. Conventionally, a
value set at 0 (A = 0) indicates the labels and events documented as OFF, while a value set at 1 (A = 1) indicates the labels
and events documented as ON.
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Figure A2. Description of datasets used in the testing phase of the MLPs: TEST_E1. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.

Figure A3. Description of datasets used in the testing phase of the MLPs: TEST_S1. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.
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Figure A4. Description of datasets used in the testing phase of the MLPs: TEST_E2. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.

Figure A5. Description of datasets used in the testing phase of the MLPs: TEST_S2. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.
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Table A1. Classification performance metrics of the training and testing datasets.

Regularization
Parameter

(Training Time)
Dataset Area under

Curve (AUC)
Classification
Accuracy (CA) F1 Precision

(PREC) Recall (REC) Specificity
(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.996
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.989
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.991 0.991 0.991 0.991 0.986

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.997
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.993

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.997
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.994

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.998 0.998 0.998 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.998
TEST_S1 1.000 0.995 0.995 0.995 0.995 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.994

α = 1
(482 s)

TRAIN 1.000 0.997 0.997 0.997 0.997 0.998
TEST_E1 1.000 0.994 0.994 0.994 0.994 0.997
TEST_S1 1.000 0.994 0.994 0.995 0.994 0.994
TEST_E2 0.999 0.974 0.974 0.975 0.974 0.980
TEST_S2 0.999 0.994 0.994 0.994 0.994 0.994

α = 10
(269 s)

TRAIN 1.000 0.994 0.994 0.994 0.994 0.998
TEST_E1 1.000 0.990 0.990 0.991 0.990 0.996
TEST_S1 1.000 0.994 0.994 0.994 0.994 0.995
TEST_E2 0.999 0.944 0.944 0.950 0.944 0.958
TEST_S2 0.999 0.993 0.993 0.993 0.993 0.995

Note: a regularization terms which returned the lowest log losses.
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Table A2. Classification performance metrics of the training and testing datasets for ON events.

Regularization
Parameter

(Training Time)
Dataset Area under

Curve (AUC)
Classification
Accuracy (CA) F1 Precision

(PREC) Recall (REC) Specificity
(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.998 1.000 0.994
TEST_S1 1.000 0.996 0.998 0.999 0.997 0.988
TEST_E2 0.999 0.994 0.995 0.997 0.992 0.996
TEST_S2 0.999 0.991 0.993 0.988 0.998 0.979

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.996
TEST_S1 1.000 0.996 0.998 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.998 0.992 0.998
TEST_S2 0.999 0.995 0.996 0.995 0.997 0.991

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.996
TEST_S1 1.000 0.996 0.997 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.998 0.992 0.998
TEST_S2 0.999 0.995 0.996 0.995 0.996 0.992

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.999 0.999 0.998 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.997
TEST_S1 1.000 0.995 0.997 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.999 0.991 0.998
TEST_S2 0.999 0.995 0.996 0.996 0.996 0.994

α = 1
(482 s)

TRAIN 1.000 0.997 0.998 1.000 0.996 0.999
TEST_E1 1.000 0.994 0.996 1.000 0.993 0.998
TEST_S1 1.000 0.994 0.997 0.999 0.994 0.994
TEST_E2 0.999 0.974 0.997 0.999 0.956 0.999
TEST_S2 0.999 0.994 0.995 0.997 0.993 0.995

α = 10
(269 s)

TRAIN 1.000 0.994 0.996 1.000 0.993 0.999
TEST_E1 1.000 0.990 0.994 1.000 0.988 0.999
TEST_S1 1.000 0.994 0.997 0.999 0.994 0.996
TEST_E2 0.999 0.944 0.948 0.999 0.903 0.999
TEST_S2 0.999 0.993 0.995 0.998 0.992 0.996

Note: a regularization terms which returned the lowest log losses.
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Table A3. Classification performance metrics of the training and testing datasets for OFF events.

Regularization
Parameter

(Training Time)
Dataset Area under

Curve (AUC)
Classification
Accuracy (CA) F1 Precision

(PREC) Recall (REC) Specificity
(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.998 0.998 0.997 0.999
TEST_E1 1.000 0.999 0.997 1.000 0.994 1.000
TEST_S1 1.000 0.996 0.982 0.976 0.988 0.997
TEST_E2 0.999 0.994 0.993 0.989 0.996 0.992
TEST_S2 0.999 0.991 0.988 0.997 0.979 0.998

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.997 0.997 0.997 0.999
TEST_E1 1.000 0.999 0.998 1.000 0.996 1.000
TEST_S1 1.000 0.996 0.980 0.970 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.989 0.998 0.992
TEST_S2 0.999 0.995 0.993 0.995 0.991 0.997

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.998 0.998 0.997 0.999
TEST_E1 1.000 0.999 0.998 0.999 0.996 1.000
TEST_S1 1.000 0.996 0.980 0.968 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.989 0.998 0.992
TEST_S2 0.999 0.995 0.993 0.994 0.992 0.996

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.996 0.995 0.997 0.998
TEST_E1 1.000 0.999 0.998 0.999 0.997 1.000
TEST_S1 1.000 0.995 0.979 0.965 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.988 0.998 0.991
TEST_S2 0.999 0.995 0.993 0.993 0.994 0.996

α = 1
(482 s)

TRAIN 1.000 0.997 0.994 0.989 0.999 0.996
TEST_E1 1.000 0.994 0.987 0.976 0.998 0.993
TEST_S1 1.000 0.994 0.974 0.955 0.994 0.994
TEST_E2 0.999 0.974 0.970 0.944 0.999 0.956
TEST_S2 0.999 0.994 0.992 0.988 0.995 0.993

α = 10
(269 s)

TRAIN 1.000 0.994 0.988 0.977 0.999 0.993
TEST_E1 1.000 0.990 0.979 0.960 0.999 0.988
TEST_S1 1.000 0.994 0.974 0.953 0.996 0.994
TEST_E2 0.999 0.944 0.938 0.884 0.999 0.903
TEST_S2 0.999 0.993 0.991 0.986 0.996 0.992

Note: a regularization terms which returned the lowest log losses.
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19. Talagai, N.; Borz, S.A. Concepte de automatizare a activităţii de colectare a datelor cu aplicabilitate în monitorizarea performanţei
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23. Talagai, N.; Cheţa, M.; Gavilanes Montoya, A.V.; Castillo Vizuete, D.D.; Borz, S.A. Predicting time consumption of chipping tasks
in a willow short rotation coppice from GPS and acceleration data. In Proceedings of the Biennial International Symposium “Forest
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