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Abstract: Information about tree biomass is important not only in the assessment of wood resources
but also in the process of preparing forest management plans, as well as for estimating carbon stocks
and their flow in forest ecosystems. The study aimed to develop empirical models for determining the
dry mass of the aboveground parts of black locust trees and their components (stem, branches, and
leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees)
of black locust located in western Poland. The model system was developed based on multivariate
mixed-effect models using two approaches. In the first approach, biomass components and tree height
were defined as dependent variables, while diameter at breast height was used as an independent
variable. In the second approach, biomass components and diameter at breast height were dependent
variables and tree height was defined as the independent variable. Both approaches enable the
fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of
black locust. Cross-model random-effect prediction was obtained using additional measurements of
two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height
in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass
for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root
mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively).
The use of height as an independent variable increases the possibility of the practical application of
the proposed solutions using remote data sources.

Keywords: Robinia pseudoacacia; carbon sequestration; model’s additivity

1. Introduction

Black locust (Robinia pseudoacacia L.) is an alien tree species in Poland. Its natural
range covers the southeastern part of the United States, and its optimum elevation range
is between 150 and 1500 m above sea level in the Appalachian Mountains [1]. This tree
species was brought to Europe around 1600 by the French gardener Jean Robin [2]. Initially,
black locust was grown mainly as a park tree. Over time, due to its properties, the species
has found a wider application [2–4]. The mechanical properties of the black locust wood
make it suitable for veneers, fence posts, poles, flooring, furniture, and boat building. It
is also a source of valuable fuelwood because of its high calorific potential [4,5]. This tree
species is recommended for soil restoration and regeneration of damaged habitats. Due
to its low habitat requirements and ability to fix atmospheric nitrogen, it is planted on
degraded, post-industrial, post-agricultural, and initial soils [6–10]. Black locust is now
quite common in the United Kingdom, Germany, France, the Netherlands, Belgium, Italy,
and Switzerland [11]. It is the most frequently planted tree species in Hungary, occupying
23% of the total forest area of the country [12]. Moreover, the distribution of black locust
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throughout Europe appears to be mostly limited by low temperatures, but global warming
might enhance its growth in presently colder areas [13,14].

Black locust was brought to Poland in 1806 [15]. Currently, this tree species occurs
almost all over the country, but most of it is found in the western part of Poland. The black
locust stands occupy over 273,000 ha and provide 84,000 m3 of wood annually. In areas
with a high share of this tree species, wood demand outweighs the supply [16,17].

The information about tree biomass is important not only for the assessment of wood
resources, but it is also a significant element in the process of forest management plan
preparation. This data is needed for the estimation of carbon stock in forest ecosystems [18].
Concerning climate change, there is a need to monitor changes in the forest carbon stock
and how they influence the atmospheric CO2 concentration. Obtaining reliable data on
forest biomass and carbon stock allows to improve the estimation of the forest carbon sink
and its role in the global carbon cycle as a counteraction to the global climate change [19].

The estimation of the carbon stock accumulated in the forest is difficult and requires
reliable tools for its estimation. Despite the growing importance of remote sensing methods
in collecting biological data about the forest (including volume, aboveground biomass,
and amount of accumulated carbon, etc.), the methods based on field measurements are
still important tools to assess forest resources [20] and often are used to verify the results
obtained by remote sensing techniques [21].

One of the methods of assessing the tree and stand biomass is to use empirical models
based on easy-to-measure tree parameters such as diameter at breast height (DBH) or
height (H). Due to the high variability in the shape and structure of tree stems (observed
even within one tree species) resulting from the genetically determined variability, local
growing conditions, forest treatments, etc., it seems necessary to develop local models to
determine the biomass of trees and their components [22,23].

The tree and stand biomass data are characterized by a grouped structure, containing
information about trees and sample plot. Modeled relationships between dependent and
independent variables differ among sample plots. The mixed-effects models make it
possible to describe dependencies at different levels of the data [24,25]. The fixed-effects
approach allows modeling data for a typical sample plot (defined grouping level), while the
random-effects approach defines difference between each plot and the typical plot [26]. The
description of dependencies at different levels translates into the flexibility of predictive
model. If no local information is available to estimate the random effects, the prediction
using the fixed part of the model can be used. In the case of sufficient data availability,
a more accurate random-effects prediction can be carried out [27–29]. Random-effects
prediction takes on a new meaning in the case of multivariate models, in which the cross-
model correlations within the system of developed models based on the estimated best
linear unbiased predictor (EBLUP) is used [28]. In addition, mixed-effects biomass models
are fitted in different forms, as they can be nonlinear [30] or linear with logarithmic data
transformation [26,27,31].

During biomass modeling, it is worth considering the logical assumption that the
sum of the biomass components of the tree estimated using equations should be equal
to the estimated biomass of the whole tree (so-called additivity of the biomass models).
This assumption can be met by seemingly unrelated regression application [32,33]. The
assumption about the additivity of the biomass model was the basis of biomass models
e.g., in Germany [34], Canada [35], and Poland [36]. Above papers are examples of using
the seemingly unrelated regression. However, the knowledge of the authors indicates that
no research has been undertaken yet that focuses on the development of model systems
using diameter at breast height and height as both independent and dependent variables.

This study aimed to develop empirical models for determining the dry mass of the
aboveground part of black locust trees and its components (stem, branches, and leaves).
The models were developed using multivariate mixed-effects models with sample plot
as grouping level. To obtain a compatible set of models, we used a seemingly unrelated
regression [32,33]. We fitted two approaches of the models. In the first one, as a classic
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one, DBH was the independent variable. In the second one, the H was defined as the inde-
pendent variable. Second approach is a new concept to biomass modeling, which allows
to increase the practical application of the proposed solutions using remote sensing data
sources. Moreover, we developed the model system applying the cross-model calibration
(random-effects prediction) of the biomass component models using H and DBH.

2. Materials and Methods
2.1. Study Sites

The data was collected in West Poland (two State Forest Districts with a total area
equal to 50,000 ha, 52◦08′–51◦30′ N, 15◦23′–16◦14′ E), which is the region with the highest
abundance of black locust in Polish forests [17]. We selected 13 stands located on olig-
otrophic sites that are typically occupied by the investigated species in Poland (Table 1).
The chosen stands grew on moderate fertile rusty soils. The study sites are located in
a transition zone from maritime temperate to continental temperate climate [37]. The
mean annual temperature reaches 9.5 ◦C. January is the coldest month with an average
temperature slightly below 0 ◦C, while the highest average temperature is recorded in July
(+19.0 ◦C). The average annual precipitation is rather low and rarely exceeds 550–600 mm.
The majority of the rainfall is recorded during the vegetation period [38].

Table 1. Summary characteristics of the black locust sample plots located in West Poland: average
stand age (A, years), stocking (N, trees ha−1), basal area (BA, m2 ha−1), average diameter at breast
height (Dg, cm), and average height (Hg, m).

Minimum Maximum Mean Median Standard Deviation

A 16 85 50 50 21
N 167 1134 586 507 304

BA 10.06 40.52 21.73 20.53 7.72
Dg 11.47 43.94 23.94 25.23 9.08
Hg 9.84 27.19 20.30 21.18 5.19

2.2. Material Collection and Preparation

At each study site, we established a rectangular sample plot whose size was set to
comprise at least 100 trees (size range of sample plots varied between 864 and 5944 m2).
We measured DBH of all live trees on the study plot (accuracy 0.1 cm). Then, we randomly
chose three samples representing the whole range of diameter structure and felled them
for further analyses (a total of 38 sample trees [39]). The DBH of the harvested trees varied
from 8.1 to 46.7 cm and their height ranged from 7.5 to 29.22 m. The mean values of these
parameters amounted to 24.1 cm and 20.11 m, respectively (Table 2).

Table 2. Diameter at breast height (DBH, cm), tree height (H, m), stem dry biomass (SDB, kg),
branches dry biomass (BDB, kg) and foliage dry biomass (FDB, kg) of black locust sample trees.

Minimum Maximum Mean Median Standard Deviation

DBH 8.1 46.7 24.1 23.6 10.13
H 7.50 29.22 20.11 20.77 5.87

SDB 10 940 261 187 230
BDB 2 227 53 35 54
FDB 1 26 7 6 5

The felled trees were measured section-wise (1-m-long sections) and divided into the
following biomass components: stem, branches, and foliage. All parts of each sample tree
were weighed in the field using portable scales (precision 0.1 g). Samples of each of the
components (stem discs in the middle of each section, and 50–150 g random samples of
branches and foliage) from every tree were taken to determine the relationship between
fresh and dry biomass. The samples were oven-dried at 105 ◦C until they reached a constant
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weight [40]. The dry biomass of various components (Table 2, Figure 1) was calculated for
each sample tree based on corresponding fresh to dry mass ratios [41].
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relationship (c), biomass components (SDB—stem dry biomass, BDB—branches dry biomass, FDB—
foliage dry biomass)–DBH relationship (d–f), biomass components–H relationship (g–i) of black
locust sample trees.

2.3. Individual Mixed-Effect Models

Two approaches were used when elaborating individual mixed-effects models. To
ensure that the predicted variables are positive, the first approach involved modeling
the dependence of dependent variables, as logarithms of dry biomass components (stem,
branches, and foliage) and H-1.3, on DBH defined as the independent variable. In the
second approach, the logarithms of dry biomass components and DBH were dependent
variables, while H was defined as an independent variable. Thus, the general model for
the dependent variable of tree j was:

ln yj = β0 + β1xj (1)

For both approaches, linear mixed-effects modeling with sample plot as a single
grouping factor (no other potential factors of grouping were present) was used. Each
model for the tree j, j = 1, . . . , ni of plot i, i = 1, . . . , M, was of the following form:

yij = x′ijβ + z′ijbi + εij (2)

where x′ijβ is the fixed part and z′ijbi + εij describes the random part. Moreover, it is
assumed that:

bi ∼ N(0, ψ) (3)

where bi are independent among plots and of the residual errors εij. Matrix ψ is a positive
definite variance–covariance matrix of random effects. The zero-mean residual errors
εij were mutually independent, normally distributed, with variance calculated using the
following formulas:
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First approach [24]:
var
(
eij
)
= σ2DBHij

δ (4)

Second approach:
var
(
eij
)
= σ2Hij

δ (5)

where σ2 and δ are the estimated scale and shape parameters of the power function,
respectively. The special case when δ = 0 leads to homoscedastic residuals.

2.4. Seemingly Unrelated Mixed-Effects Model System

Seemingly unrelated (multivariate) mixed-effects models with random group effects
are useful in the case when several independent variables are measured for the same
sample units. In this modeling context, random-effects prediction utilizes the cross-model
correlations of the model system, thus taking into account the logical interactions between
the biomass components. Moreover, their use in addition to the fixed-effects prediction
enables to apply the relationship among the random effects and residuals across models for
random-effects prediction. Assuming that we have L individual mixed-effects models and
series of the observations of the mth of plot i to vector yi

(m) and the corresponding model
matrices of the fixed and random elements to Xi

(m) and Zi
(m), the seemingly unrelated

mixed-effects model system for each plot i, i = 1, . . . , m can be elaborated as [25,27]:

y(1)
i = X(1)

i β + Z(1)
i bi

(1) + ε
(1)
i

y(2)
i = X(2)

i β + Z(2)
i bi

(2) + ε
(2)
i

...
y(L)

i = X(L)
i β + Z(L)

i bi
(L) + ε

(L)
i

(6)

where var
(

b(l)i

)
= ψ(l) for l = 1, . . . ,L. We assume that the cross-model correlations of the

random effects and residuals are the same for all groups. The above multivariate model
can be written as an univariate one:

yi = Xiβ + Zibi + εi (7)

where yi =
(

y(1)′
i , y(2)′

i , . . . , y(L)′
i

)
′, correspondingly for bi and εi and Xi and Zi are block-

diagonal matrices, which have the response-specific model matrices on the diagonal [25,27].

2.5. Fixed- and Random-Effects Prediction

The main purpose of creating regression models is to use them for predicting depen-
dent variable. The strength of mixed-effects models lies in the fact that, depending on the
circumstances, it is possible to perform both fixed- and random-effects predictions, whereas
the system of seemingly unrelated mixed-effects models allows to use also the cross-model
correlations of random effects and residual errors to predict all dependent variables using
measurements of some of them. This is possible by defining vectors that include only
observed components and by defining matrices by removing rows and columns that corre-
spond to the unobserved variables. During the analysis, the best linear predictor of the
complete random effect vector is calculated, and the fixed part and variance–covariance
matrices are replaced by their estimates, which leads to the EBLUP [25,27].

In this study, during plot-specific cross-model random-effects prediction, we used
both seemingly unrelated mixed-effects model system approaches. To predict unobserved
biomass components during calibration in the first and second approach, we used H and
DBH as a measured dependent variable, respectively. In our case, dependent variables were
predicted in a logarithmic scale. To transform them to the original scale we applied bias
correction by adding half of the prediction variance into the predictions before applying
the exponential transformation [42]. The fixed-effects approach was applied for 0 available
trees in sample plot, whereas the cross-model random-effects prediction was created for
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two available extreme trees in sample plot [43]. We used DBH as their selection criterion.
The remaining tree in sample plot was used to calculate the root mean square error (RMSE)
based on the equation:

RMSE =

√
∑
(
yj − ŷj

)2

n
(8)

where yj describes the observed value of the dependent variable, ŷj predicted value of the
dependent variable, and n explains the number of trees.

All analyses and graphs were performed using the nlme [44] and ggplot2 [45] packages
of R 3.6.3 software [46] and RStudio 1.3.1073 [47].

3. Results

The use of the logarithm of the dependent variables and the linear individual mixed-
effects models with a sample plot as a grouping factor sufficiently reflects the modeled
dependencies for both the first and the second approach. In the case of the first approach,
Akaike Information Criterion (AIC) for height equals −9.9, while for stem dry biomass,
branches dry biomass, and foliage dry biomass, it equals 32.4, 69.7, and 57.9, respectively
(Figure 2). In the case of the second approach, AIC for DBH equals 7.2, while for stem dry
biomass, branches dry biomass, and foliage dry biomass, it equals 56.9, 104.5, and 78.2,
respectively (Figure 3).
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(SDB, (b)), branches dry biomass (BDB, (c)), and foliage dry biomass (FDB, (d)) as dependent variables with height (H) as
independent variable.

While analyzing the obtained residuals for both approaches of individual mixed-effect
models, heteroscedasticity was identified. Application of the power function (Equations (4)
and (5)) for residual variance modeling allowed achieving the stable distribution of resid-
uals (Figure 4). Furthermore, a likelihood ratio test indicated that the variance function
significantly improved the fit (p < 0.0001). The estimated fixed regression coefficients and
variance function parameters of the model system are given in Table 3.

For the first approach of the model system, the random effects for H are strongly
correlated with random effects estimated for biomass components. The strongest corre-
lation is observed between H random effects and stem dry biomass (range from −0.981
to 0.978), while the weakest correlation is observed between H and foliage dry biomass
(range from −0.579 to −0.549) (Table 4). In the case of biomass components, the strongest
correlation between random effects is between stem dry biomass and branches dry biomass
(range from −0.849 to 0.856). For the second approach of the model system, the correlation
between random effects of DBH and biomass components is within the range from −0.007
to −0.992 (Table 4). Similar to the first approach in the case of biomass components, the
strongest correlation between random effects is between stem dry biomass and branches
dry biomass (range from −0.330 to 0.982).
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Figure 4. Residual plots for individual mixed-effect model for diameter at breast height (DBH, (a),
(b)), stem dry biomass (SDB, (c), (d)), branches dry biomass (BDB, (e), (f)) and foliage dry biomass
(FDB, (g), (h)) as dependent variables with height as independent variable (second approach). Grey
dots define the models’ Pearson residuals. Large black dots show the means of residuals in 10 classes
of height (H, (a), (c), (e), (f)), and predicted values of dependent variables ((b), (d), (f), (h)). The thin
vertical lines show the confidence interval of individual observations (mean ± 1.96 SD). The thick
vertical lines (inside black dots) show the 95% confidence interval of class mean.
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Table 3. Estimated fixed parameters and standard errors (in brackets) for two approaches of seem-
ingly unrelated mixed-effects model system.

First Approach

Dependent variable SDB BDB FDB H

β0 2.868 (0.319) 0.318 (0.434) −0.371 (0.325) 2.593 (0.149)
β1 0.106 (0.014) 0.139 (0.019) 0.092 (0.013) 0.019 (0.005)
δ −0.25 −0.812 −0.629 −0.384

σ2 0.3672 4.3812 1.9972 0.332

Second Approach

Dependent variable SDB BDB FDB DBH

β0 1.401 (0.322) −0.908 (0.448) −0.623 (0.319) 1.526 (0.186)
β1 0.189 (0.016) 0.217 (0.023) 0.113 (0.015) 0.079 (0.009)
δ −0.179 −0.095 −0.332 −0.235

σ2 0.532 0.8652 1.3362 0.312

Table 4. Random-effects variance–covariance matrix for two approaches of seemingly unrelated mixed-effects model system.
Matrix diagonal—variance, matrix upper triangle—correlation between random effects.

First Approach

Dependent variable
SDB BDB FDB H

b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i

SDB b(1)i
1.0952 −0.989 0.605 −0.849 0.419 −0.652 0.978 −0.981

b(2)i
- 0.0482 −0.603 0.856 −0.357 0.620 −0.943 0.968

BDB b(1)i
- - 1.3942 −0.920 −0.027 −0.024 0.677 −0.748

b(2)i
- - - 0.0662 −0.065 0.243 −0.873 0.931

FDB b(1)i
- - - - 1.0252 −0.926 0.417 −0.346

b(2)i
- - - - - 0.0412 −0.597 0.549

H b(1)i
- - - - - - 0.5022 −0.984

b(2)i
- - - - - - - 0.0172

Second Approach

Dependent variable
SDB BDB FDB DBH

b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i

SDB b(1)i
0.8362 −0.975 0.530 −0.982 −0.493 −0.693 0.873 −0.952

b(2)i
- 0.0412 −0.330 0.917 0.673 0.517 −0.744 0.862

BDB b(1)i
- - 0.4572 −0.679 0.475 −0.978 0.876 −0.763

b(2)i
- - - 0.0332 0.323 0.815 −0.948 0.992

FDB b(1)i
- - - - 0.1292 −0.285 −0.007 0.205

b(2)i
- - - - - 02 −0.957 0.880

DBH b(1)i
- - - - - - 0.5132 −0.980

b(2)i
- - - - - - - 0.0242

Comparing both approaches of the model system in terms of the correlation of the
random effects of the non-biomass component with the biomass components, it is difficult
to find an unambiguous trend. In the case of stem dry biomass, the strongest correlation
is visible for H (first approach), while for branches dry biomass the strongest correlation
between random effects occurs with DBH (second approach, Table 4).

The strongest correlation between residual errors for the first approach of the model
system occurs for branches dry biomass and foliage dry biomass (0.557, Table 5), while the
weakest correlation is present between stem dry biomass and foliage dry biomass (–0.100).
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The strongest correlation between residual errors for the second approach is visible for
stem dry biomass and diameter at breast height (0.933). Generally speaking, the stronger
correlation between residual errors for all analyzed dependent variables occurs in the
second approach of the model system (Table 5).

Table 5. Correlation between residual errors for both approaches of seemingly unrelated mixed-
effects model system.

First Approach

Dependent variable SDB BDB FDB

BDB 0.257 - -
FDB −0.100 0.557 -

H 0.474 −0.300 −0.287

Second Approach

Dependent variable SDB BDB FDB

BDB 0.889 - -
FDB 0.701 0.712 -
DBH 0.933 0.844 0.766

Fixed-effects prediction for the second approach allows reaching lower RMSE for
biomass components than the fixed-effects prediction for the first approach (Table 6). Both
H and DBH measurements for two extreme (the thickest and thinnest in sample plot)
trees indicated that plot-specific cross-model random-effects prediction allowed to obtain a
smaller RMSE than fixed-effects prediction. The only exception was branches dry biomass
for the second approach. Random-effects prediction for the first approach allows reaching
the smallest RMSE value (the exception is foliage dry biomass, Table 6).

Table 6. Root mean square error achieved during cross-model fixed and random-effects prediction
for both approaches of seemingly unrelated mixed-effects model system.

First Approach

Dependent variable SDB BDB FDB H

Fixed-effects prediction 238.716 95.157 9.313 5.752
Random-effects prediction 77.603 36.018 6.887 3.297

Second Approach

Dependent variable SDB BDB FDB DBH

Fixed-effects prediction 206.933 67.366 3.726 8.868
Random-effects prediction 188.139 70.629 3.507 8.491

4. Discussion and Conclusions

During this research, 38 felled trees from 13 sample plots located in West Poland were
the basis for the elaboration of two approaches of a seemingly unrelated linear mixed-
effects model system. In the first approach, the independent variable is the diameter at
breast height, while in the second one, tree height. During analysis, both the fixed-effects
and cross-model random-effects prediction in both approaches were taken into account.
The sample plot was included as the grouping level. During random-effects prediction,
tree height and diameter at breast height measurements for two available extreme trees in
a plot in question were tested. Fitting of seemingly unrelated mixed-effects model system
in both approaches enables the fixed-effects and cross-model random-effects prediction of
aboveground dry biomass components (stem, branches, and foliage) of black locust.

When modeling individual biomass components, it is worth considering the logical
assumption that the sum of the component of the tree estimated using equations should be
equal to the estimated biomass of the whole tree. This assumption can be met by seemingly
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unrelated regression application [32,33,48,49]. The assumption about the additivity of the
biomass model system and the use of nonlinear models was the basis of elaboration of a
consistent set of additive biomass functions for eight tree species and nine components in
Germany [34]. During that study, the authors defined two types of models: (i) a simple
model with the diameter at breast height and height as independent variables, and (ii) a
full model with more independent variables. Likewise, nonlinear seemingly unrelated
regression was also used for nationwide biomass models covering the most common
tree species of Canada’s forests [35]. Models fitted in this study allow us to estimate dry
biomass of four components (stem wood, stem bark, branches, and foliage) using either
diameter at breast height or, unlike our research, a combination of diameter at breast
height and height. Likewise, in the case of seemingly unrelated empirical equations for
estimating aboveground biomass of Betula pendula growing on former farmland in central
Poland, diameter at breast height or diameter and tree height were defined as independent
variables [36]. Seemingly unrelated empirical equations for the determination of the dry
biomass of aboveground components for Scots pine in Poland also used diameter and
height as independent variables [50], whereas simplified empirical formulas to determine
the dry biomass of aboveground components of trees for Scots pine [51] and seemingly
unrelated models for above- and belowground biomass for young silver birch [27] used
diameter at breast height as the independent variable.

The cited studies are examples of using the seemingly unrelated regression with
different approaches to the independent variables used. However, the knowledge of the
authors indicates that no research has been undertaken yet that focuses on the development
of independent model systems using diameter at breast height and height as independent
variables. On the one hand, it is a new approach to biomass modeling, and on the other, due
to the use of height as an independent variable, it increases the possibility of the practical
application of the proposed solutions using remote data sources [52–54].

Since biomass data is often characterized by a grouped structure, mixed-effects models
for biomass modeling could be used. The already-mentioned research is an example of this
solution [34]. In this case, the authors took into account groups and trees as random effects,
while Repola [55], during his research, elaborated three multivariate variance component
models for the aboveground biomass components and one for the belowground biomass
components. In this research, the multivariate model was based on diameter at breast height
and height, and for the next multivariate models, additional commonly measured tree
variables were used. It is worth to mention that unlike our research, Repola [55] included
both the stand and tree-level during prediction, whereas Fehrmann [26], similar to our
research, elaborated plot-specific linear mixed-effect biomass models. Notwithstanding, in
his case, diameter at breast height and height were used at the same time as independent
variables.

Due to the inclusion grouping data structure during modeling, the mixed-effects
models allow the flexible prediction. In the absence of the measurement, data fixed effects
can be used, whereas additional measurements allow increasing the accuracy through
random-effects prediction [24,25]. However, in the case of biomass modeling, measurement
of additional data is troublesome, because it is associated with the felling of trees. That
is why multivariate mixed-effects model application allows taking full advantage of the
mixed-effects models. In the case of our study, additional measurements of tree height
(the first approach of the elaborated model system) and diameter at breast height (the
second approach of the elaborated model system) allow us to reach more accurate random
cross-model prediction for analyzed biomass components [28,29].
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