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Abstract: The goal of the study was to characterise chemical interactions between waterlogged archae-
ological wood and organosilicon compounds applied for its conservation to shed lights on the mecha-
nism of wood dimensional stabilisation by the chemicals. Two alkoxysilanes (methyltrimethoxysilane
and (3-mercaptopropyl) trimethoxysilane) and a siloxane (1,3-bis(diethylamino)-3-propoxypropanol)-
1,1,3,3-tetramethyldisiloxane) were selected for the research since they already have been proven
to effectively stabilise waterlogged wood upon drying. Fourier transform infrared spectroscopy
was used for structural characterisation of the degraded wood and evaluation of reactivity of the
applied chemicals with polymers in the wooden cell wall. The results obtained clearly show much
stronger interactions in the case of alkoxysilanes than the siloxane, suggesting a different mechanism
of wood stabilisation by these compounds. The results of this study together with other data obtained
in our previous research on stabilisation of waterlogged archaeological wood with organosilicon
compounds allow the conclusion that the mechanism of waterlogged wood stabilisation by the used
alkoxysilanes is based on bulking the cell wall by silane molecules and wood chemical modification,
while in the case of the applied siloxane, it builds upon filling the cell lumina.

Keywords: archaeological wood; degraded wood; silane; FT-IR; alkoxysilanes; wood-silane interac-
tions; wood stabilisation; wood conservation; silane treatment

1. Introduction

Organosilicon compounds are chemicals containing a silicon atom and carbon–silicon
bonds. Differing in the molecular weight, size and shape of molecules as well as the type
of the side chain, they have found numerous applications in a broad range of industries,
including the pharmaceutical, cosmetic, medical, chemical, food, agricultural, building,
automobile, textile or paper industries. Most common are binding agents and adhesives,
sealants, adjuvants, coatings or surface modifiers produced from organosilicons [1–6].

Due to the specific chemical structure and the resulting properties, the alkoxysilanes
(particularly trialkoxysilanes) are the most frequently used organosilicon compounds.
They are bifunctional chemicals containing alkoxy groups and organic groups (i.e., alkyl,
fluoroalkyl, aminoalkyl, phenyl, thiol, hydroxyl, hydrogen, vinyl) which provide the
specific functionality [3,7]. Alkoxy groups are easily hydrolysed in the presence of water.
The resulting silanols are very reactive and condense readily, forming new covalent Si–O–Si
bonds between silane monomers. A series of subsequent hydrolysis and condensation
reactions, called the sol-gel process, leads to the formation of linear or spatial polymers [8,9].
Silanols can not only crosslink with the neighbouring molecules, but also react with
hydroxyl groups of wood components by establishing siloxy bonds (Si–O–C) [10,11]. All
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the above features make alkoxysilanes very useful for modification of wood and wood-
based products. They have so far been applied to increase wood durability against fungi
and termites, limit leachability of other wood preservatives, improve wood weathering
performance, reduce its flammability and hydrophilicity, or as coupling agents to improve
bonding strength in various composites [12–17]. They have also proved to penetrate
and bulk the cell wall, forming a three-dimensional network of polysiloxane and wood
polymers which improves dimensional wood stability [8,13,18]. Therefore, they were also
tried for archaeological waterlogged wood conservation, and some of them proved effective
in stabilisation of wood dimensions upon drying, which is one of the most crucial issues
related to conservation of this type of wood [19–22]. However, the method still requires
further study, e.g., on the mechanical properties of the treated wood, the influence of the
chemicals on wood colour, gloss and texture, or their long-term effect on wood before it
could be proposed as a reliable conservation method.

The results of the research by Broda et al. [21,22] clearly showed that the stabilisation
effect on waterlogged wood depends mainly on the type of an organic group attached to a
silicon atom in organosilicons. Great dimensional stabilisation of waterlogged wood was
obtained among other things due to methyltrimethoxysilane (MTMS), (3-mercaptopropyl)
trimethoxysilane (MPTES) and 1,3-bis(diethylamino)-3-propoxypropanol)-1,1,3,3-
tetramethyldisiloxane (DEAPTMDS) treatment, reaching anti-shrink efficiency values
of about 81%, 98% and 90%, respectively. The chemicals applied vary in the effectiveness
of wood stabilisation, as well as in the chemical structure. But in general, they represent
two groups of organosilicons tested in our research on waterlogged wood stabilisation:
alkoxysilanes (MTMS and MPTES) and siloxanes (DEAPTMDS). Therefore, as represen-
tative and the most effective ones, they were selected for further study on their reactivity
with wood as this is considered one of the factors presumably affecting their stabilisa-
tion efficiency. Gaining this knowledge is the first step towards understanding the full
mechanism of waterlogged wood stabilisation by organosilicon compounds, and it will be
necessary to explain the results of different ongoing and future mechanical tests performed
on untreated and treated wood.

Fourier transform infrared spectroscopy (FT-IR) is a fast, simple and sensitive method
for the structural characterisation of many different materials, including wood. It has al-
ready been used for qualitative and quantitative evaluation of main wood components [23]
or to study chemical and structural changes in wood polymers during biodegradation and
weathering [24–26]. As the method requires only a small amount of the studied material,
the technique proved to be useful for research on historical wooden objects. It allows,
i.e., the evaluation of the extent of archaeological wood deterioration, the effectiveness of
penetration and potential reactivity of conservation agents with wood or the monitoring of
the impregnation agent polymerisation during the conservation process [27–31].

The aim of the present study is to characterise the reactivity of three organosilicon com-
pounds differing in the chemical structure and type of the organic groups (methyltrimethoxysi-
lane, (3-mercaptopropyl) trimethoxysilane and 1,3-bis(diethylamino)-3-propoxypropanol)-
1,1,3,3-tetramethyldisiloxane) with archaeological waterlogged elm wood by using the
infrared spectroscopy method in order to understand better their ability to stabilise di-
mensions of waterlogged wood upon drying. Moreover, the evaluation of the chemical
composition of the waterlogged elm was performed to assess the extent of its degradation.

2. Materials and Methods
2.1. Materials

Waterlogged archaeological elm (Ulmus spp.) wood, dated back to the 10–11th cen-
turies (Figure 1), along with fresh-cut elm wood as a reference, were used in this study. The
archaeological elm log was excavated from the Lednica Lake (Greater Poland Voivodeship,
Poland), where it was buried in the bottom sediments near the remains of the medieval
bridge named “Poznań” connecting the medieval stronghold on the Ostrów Lednicki island
with a road leading to Poznań city. The degree of wood degradation was severe, with
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maximum wood moisture content (MCmax) of 425%, the wood basic density of 160 kg/m3,
loss of wood substance calculated to be 70%, and cellulose content reduced to about 5%
(calculated as a percentage of the oven-dried mass of wood before degradation) [20].
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Figure 1. Waterlogged elm (Ulmus spp.) wood excavated from the Lednica Lake (dated back to the
10–11th centuries).

For the present study, small cuboid samples with dimensions of 20 × 20 × 10 mm3 (in
the tangential, radial and longitudinal direction, respectively) were cut out from the log, de-
hydrated in 96% ethanol for four weeks and divided into four sets (five specimens for each
set). One set remained untreated, while the other three were treated with different organosil-
icon compounds: methyltrimethoxysilane (MTMS-1), (3-mercaptopropyl)trimethoxy silane
(MPTES-2) and 1,3-bis(diethylamino)-3-propoxypropanol)-1,1,3,3-tetramethyldisiloxane
(DEAPTMDS-3) (Figure 2), using the oscillated vacuum–pressure method as described
before [20].
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All the samples (treated and untreated) were air-dried for two weeks, then powdered
and sieved, and the fraction with an average diameter less than 0.2 mm was retained for
further analyses.
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2.2. Methods
2.2.1. Scanning Electron Microscopy

The microstructure of untreated and treated wood was analysed using a scanning
electron microscope (SEM) JEOL 7001F (Tokyo, Japan) with a Secondary Electron Imaging
(SEI) detector (JEOL, Tokyo, Japan). The samples were air-dried, cut into smaller pieces and
thoroughly cleaned from remaining dust and wooden particles by purging with nitrogen.
Such prepared specimens were then coated for 240 s with a thin layer of chromium,
mounted in the specimen holder and analysed. Imaging was performed at 1 kV or 5 kV
accelerating voltage, depending on a wood sample.

2.2.2. Fourier Transform Infrared Spectroscopy

The infrared spectra of fresh-cut elm, untreated and treated archaeological elm wood
samples, as well as for pure silanes were recorded in KBr tablets on a Bruker ALPHA
FT-IR spectrometer (Bruker, Billerica, MA, USA), with a resolution of 4 cm−1 using the
4000–400 cm−1 spectral range. The concentration in the tablets was constant: 2 mg of
powdered sample and 200 mg KBr. For spectral processing, the Grams 9.1 software
(Thermo Fisher Scientific, Waltham, MA, USA) was used. Five recordings were performed
for each analysed sample, and the average spectrum obtained was used for the evaluation.

Principal component analysis (PCA) is a multivariate statistical technique which is
usually used to extract the systematic variance in a data set. The outputs are represented
by the PC scores and PC loadings. To perform PCA the pre-processed infrared spectra of
the untreated contemporary and archaeological as well as treated wood were used.

3. Results and Discussion
3.1. Structural Evaluation of Archaeological Elm Wood

Infrared spectra and their second derivatives for the reference (fresh cut elm wood)
and archaeological elm samples are presented in Figure 3. The spectra generally present two
main regions: 3800–2700 cm−1 (Figure 3a) assigned to –OH groups involved in inter- and
intramolecular hydrogen bonds, as well as free –OH groups and methyl, methylene groups
stretching vibrations, and 1830–800 cm−1 (Figure 3b), assigned to different stretching and
deformation vibrations of the groups related to the main wood components, also called the
fingerprint region.

From Figure 3a, the differences between the control and archaeological wood are ob-
servable, especially in the second derivative spectra. The bands from 3522/3520 (1) cm−1,
3070 (2) cm−1, 3017/3010 (3) cm−1, 2926/2932 (4) cm−1, 2884/2881 (5) cm−1 and 2853/2844
(6) cm−1 increase in intensity in the spectrum of the archaeological sample. These bands
are assigned to free OH(6) and OH(2) in cellulose, weakly absorbed water, but also to the
intramolecular hydrogen bond in a phenolic group (in lignin), to the multiple formation of
an intermolecular hydrogen bond between biphenol and other phenolic groups in lignin,
and to the symmetric and antisymmetric stretching vibration of methyl and methylene
groups. There is also a strong shifting of the band from 3431 to 3419 cm−1 assigned to the
O(2)H . . . O(6) intramolecular hydrogen bonds and this comes from the crystalline regions
in cellulose.
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In Figure 3b, there is a strong decrease of the intensity of the band from 1742/1740
(7) cm−1, 1377/1369 (12) cm−1 and 987/984 (17) cm−1 assigned to C=O stretching vibra-
tions in acetyl, carbonyl and carboxyl groups (of carbohydrate origin), C–H deformation
vibration in carbohydrates, and C–O stretching vibration in carbohydrates, and increase of
the intensity of the bands from 1593 (8) cm−1, 1510 (9) cm−1, 1464 (10) cm−1, 1426/1421
(11) cm−1, 1332/1328 (13) cm−1, 1268 (14) cm−1, 1125 (15) cm−1 and 1031/1029 (16) cm−1

assigned to C=C stretching of the aromatic ring of lignin, C–H deformation in lignin and
carbohydrates, C–H vibration in cellulose and Cl–O vibration in syringyl derivatives—
condensed structures in lignin, C–O stretching in lignin, C−O ester stretching vibrations
in methoxyl and β–O–4 linkages in lignin, and C–O–C and C–O stretching vibration in
crystalline regions in cellulose. A new band was observed in archaeological wood at
1188 cm−1 which is assigned to C–O bonds in lignin.

The strong reduction in the intensity of the bands associated to carbohydrates (espe-
cially the amorphous ones), as well as an increase in intensity and shifting of the maxima for
the bands associated to lignin and crystalline regions in cellulose, indicate the degradation
of amorphous carbohydrates during the time of burial in the lake sediments. It is known
that under severe environmental conditions (i.e., biodegradation or moisture), the most
susceptible to degradation are the hemicelluloses and amorphous cellulose, the degrada-
tion taking place via hydrolysis reactions followed by breakdown of the components in
lower molecular compounds. These results are in line with the information mentioned
before that the excavated elm wood showed a significant degree of degradation and a high
percent of mass loss.

The SEM image of archaeological elm (A), presented in Figure 4, confirms its bad
state of preservation. The wood cells are flattened, of irregular shape, which indicates a
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high degree of shrinkage during drying, characteristic for degraded wood. In comparison
with sound, contemporary elm (C in Figure 4), the cell walls of archaeological wood are
significantly thinner, full of smaller and bigger holes, which result from microbial attack.
Their layers are peeled-off from middle lamellae in some places. Additionally, fungal
hyphae can be visible in some cells (marked with “ˆ”), which suggests fungal decay and
explains the degradation of amorphous carbohydrates showed by FT-IR measurements.
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to the thickness of the cell walls of non-degraded (C) and degraded (A) wood, red arrows indicate organosilicon layers on
the cell wall of treated archaeological elm (A1, A2, A3), ˆ indicate fungal hyphae.

3.2. Interactions between Organosilicons and Archaeological Elm

In order to preserve waterlogged archaeological elm and stabilise its dimensions
upon drying, treatment with the use of three different organosilicons (MTMS, MPTES and
DEAPTMDS) was applied. After the wood impregnation, the weight percent gain (WPG)
for the samples treated with MTMS (A1), MPTES (A2) and DEAPTMDS (A3) was about
242 ± 6.6%, 148 ± 12.0% and 230 ± 8.4%, respectively [22]. Reduction in the shrinkage
of the treated wood in comparison with the untreated control, expressed as anti-shrink
efficiency (ASE), was 81 ± 2.6% for A1, 98 ± 1.3% for A2 and 90 ± 7.8% for A3, which
indicates high stabilising effectiveness of the applied chemicals [22]. However, comparison
of SEM images of the treated wood revealed significant differences in the deposition of
particular compounds in the wood structure. In the case of MTMS-treated wood (A1



Forests 2021, 12, 268 7 of 16

in Figure 4), the cells have a more regular shape in comparison with untreated wood,
the cell lumina are empty, and a cobweb-like polymer network is visible on the cell wall
surface (red arrows). The structure of MPTES-treated wood (A2 in Figure 4) looks similar.
However, for the DEAPTMDS-treated elm (A3 in Figure 4), the image is different. The
layers of siloxane look different. They are thicker and not only cover the cell walls, but also
fill the cell lumina. The observation suggests then that alkoxysilanes applied can incrust or
coat the cell walls, while the siloxane is present not only as a coating on the cell walls but
also inside the cell lumina.

The aforementioned results indicate a different mechanism of wood stabilisation by
various organosilicons, hence the decision to conduct the infrared spectroscopy study to
shed some light on the issue.

The spectrum of untreated archaeological elm wood sample was compared with the
spectra of the treated samples, as well as their derivatives. As in the previous case, the
spectra were divided into two regions, presented in Figure 5a,b, respectively.
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Figure 5. Infrared spectra and their derivatives for the untreated archaeological elm wood (A) and silane-treated samples
(A1, A2, A3, respectively) in 3750–2750 cm−1 (a) and 1800–400 cm−1 (b) regions.

Compared to the control (A) sample spectrum, the spectra of treated samples with
organosilicons (A1–A3) present (aside from the bands present in the wood material) bands
that are expected to appear due to the presence of chemical bonds from silanes and the
bands that appear after the interactions between the wood and organosilicon compounds. A
detailed list of the bands’ position and their assignments according to the literature [24,32–38]
is presented in Table 1.
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Table 1. Band assignments and their position [24,32–40].

Bands Assignment
Bands Position, cm−1

A A1 A2 A3

symmetric stretching vibration of C–H bonds in CH3
groups in wood and silanes/siloxanes 2966 2974 2961 2968

asymmetric stretching vibration of C–H bonds in CH3
groups in wood and silanes/siloxanes 2935 2933 2929 2932

symmetric stretching vibration of C–H bonds in CH2
groups in wood and silanes/siloxanes 2877 2883 2885 2882

asymmetric stretching vibration of C–H bonds in CH2
groups in wood and silanes/siloxanes 2842 2841 2853 2843

C=O stretching vibration of carbonyl, carboxyl and
acetyl groups 1738 1738 1736 1738

conjugated C–O in quinines coupled with C=O
stretching of various groups; N-H bending vibration 1663 1661 1659 1660

C=C stretching of aromatic skeletal (lignin) 1595 1598 1598 1594
conjugated C–O; C-N stretching vibration in

secondary amines 1552 1552 1551 1554

C=C stretching of aromatic skeletal (lignin) 1509 1510 1509 1511
C–H deformation in lignin and carbohydrates

C–H deformation in -CH2-CH3
1462 1462 1460 1462

C–H deformation in lignin and carbohydrates; C–H
deformation in -CH2-CH3

1417 1419 1418 1419

C–H deformation in cellulose and hemicellulose; C–H
asymmetric deformation in Si-R 1371 1382 —- 1380

C–H vibration in cellulose and Cl–O vibration in
syringyl derivatives—condensed structures in lignin;
CH2 deformation vibration and C-N stretching vibration in

primary amines

1329 1333 1338 1333

-CH2 groups twisting —- —- 1307 1299
C–O stretching in lignin; Si-C stretching vibration in

Si-CH3
1268 1272 1260 1256

C−O−C stretching mode of the pyranose ring; 1222 1224 1229 —-
asymmetric stretching vibration of Si-O-C 1187 1189

C–O stretching; Si-O-C asymmetric stretching vibration 1126 1131 1131 1123
glucose ring stretching vibration; asymmetric stretching

vibration of Si-O-Si 1082 1075 —- 1056

C−O ester stretching vibrations in methoxyl and
β–O–4 linkages in lignin; Si-O-C asymmetric

stretching vibration
1027 1027 1031 —-

Si-O in-plane stretching vibration of the silanol
Si-OH groups 955 954 —- 974

946
Si-O-C bending vibration —- 906 913 904

Si-C and Si-O-C symmetric stretching vibration 840 848 865 842
Si-O-Si bonds stretching vibration —- 818 806

-Si-C rocking in -SiCH3 —- 773 745 787
Si-O-Si bonds symmetric stretching vibration

C-S- stretching vibration —- 715 700
645 700

Si-O stretching vibration —- 582 597 —-

O-Si-O deformation vibration —- 497
444 470 467

From Figure 5a, it can be observed that the band assigned to hydroxyl groups from 3600
to 3100 cm−1 tend to decrease in intensity for the treated wood compared to the untreated
one, indicating that these groups are less available due to their reaction with silanol groups
from the organosilicons. The decrease of the available hydroxyl groups was also evidenced
by dynamic water sorption experiments [41,42] showing that wood treatment caused a
reduction in the equilibrium moisture content and the sorption hysteresis and limited access
of water molecules to primary sorption sites in comparison with untreated wood.
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Higher differences can be observed appearing in the 3100–2700 cm−1 region (Figure 5a),
assigned to antisymmetric and symmetric stretching vibration of C–H bonds in –CH3, and
–CH2 groups from wood and silanes structure. Both band intensities and their maxima vary
for each spectrum. This is due to the position of the methyl or methylene groups in the
silane/siloxane structure, as well as due to the surrounding groups which allow or hinder
their free vibration. The A1 spectrum present higher intensity of the band from 2974 cm−1

(1). At the same time, the maximum is shifted to higher wavenumber, compared to the
same band in the A spectrum (at 2966 (1) cm−1). The A2 spectrum present higher intensity
for the band from 2934 (2) cm−1 compared to similar bands from the other spectra, while in
A3 both 2969 (1) and 2931 (2) cm−1 have higher intensities comparing to other spectra. Be-
cause A1 has in its structure only –CH3 groups, the bands from 2883 (3) and 2842 (4) cm−1

are mostly due to the groups from the wood structure (A). By contrast, A2 and A3 have in
their structure –CH2 groups, and in consequence, we observe higher intensities and also
shifting of the maxima to higher/lower wavenumber values.

The fingerprint region (Figure 5b) is more sensitive; in this region, stretching and
bending vibrations of all groups from the wood and organosilicons structures can be
observed, presenting unique features specific to each component. Therefore, here the
presence of several new bands as well as increased intensity or shifting of the bands which
may be assigned to silane/siloxane structures could be identified.

The wood sample treated with silane 1 (A1) shows the presence of strong absorption
bands at 1271 (9), 1169 (10), 1128 (11), 1075 (12), 959 (15), 811 (19), 772 (20) and 449 (23) cm−1

(see assignments in Table 1).
The samples of wood treated with silane 2 (A2) present most informative bands at

1340 (8) and 1308 (8) cm−1 assigned to deformation of –CH2 groups present in the spectra
due to existence of a larger number of these groups in the solid network. Furthermore,
similarly to A1, were observed bands at 1187 (10), 1130 (11), 1030 (14), 1004 (14), 918 (16),
861 (17), 807 (19), 768 (20), 692 (21), and 474 (22) cm−1 (see assignments in Table 1).

The A3 treated wood sample shows new bands at 1662 (5), 1552 (6), 1371 (7), 1329
(8), and at 1056 (13) cm−1. All these bands are overlapped with the bands present in the
wood spectrum (A), but for the treated wood, compared to the reference one, they present
higher intensities.

In order to identify the possible interactions between the organosilicons and the wood
substrate, spectra of the pure chemicals were recorded, and their second derivatives were
plotted against the second derivatives of the archaeological wood and the treated wood
(see Figure 6).

Analysing the first set of spectra (A, A1 and 1) for the MTMS silane, differences can be
observed as follows: the bands from the 1444 (1) and 1406 (2) cm−1 in spectrum of the silane
are not observable in the spectrum of treated wood, due to the overlapping of these bands
with the bands from the wood structure at 1462 (1) and 1417 (2) cm−1. The same behaviours
show bands from 1278 (4), 1139 (5), 945 (7), and 854 (9) cm−1 in the silane spectrum, which
are overlapped with the bands from the 1268 (4), 1126 (5), 955 (7) and 840 (9) cm−1 in the
wood spectrum and are shifted towards each other in the spectrum of the A1 (1272 (4),
1131 (5), 954 (7) and 848 (9) cm−1). The bands from 1357 (3) and 674 (11) cm−1 (observable
in the silane spectrum) are not observable in the treated wood spectrum (A1), while the
band from 448 (13) cm−1 decreases in intensity in the spectrum of the treated wood sample.
These bands are assigned to C–H asymmetric deformation and Si–O stretching vibration in
silanes and to deformation vibration of the O–Si–O bonds. At the same time, new bands at
1382 (3) and 497 (12) cm−1 are observed in the spectrum of the silane treated wood sample.
They are assigned to C–H asymmetric deformation in Si–R groups, as well as to Si–O–C
stretching vibration. The observed differences in the analysed spectra indicate changes in
the silane monomers due to their condensation with other monomers or wood polymers.
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Other differences can be observed for the band from 1080 (6) cm−1 (in the spectrum
of silane) and from 1083 cm−1 (in the spectrum of wood), which are of low intensity, but
increase drastically in the spectrum of the treated wood (A1) and is shifted to 1076 (6) cm−1.
This band is assigned to asymmetric stretching vibration of Si–O–Si groups, indicating the
presence of condensation reactions between silane monomers via alkoxy groups.

The bands from 947 (7) and 907 (8) cm−1 (from the silane spectrum) increase in the
spectrum of the treated wood and are shifted to 955 (7) and 909 (8) cm−1. Furthermore, the
band from 821 (10) cm−1 which is observable as a small shoulder in the silane spectrum,
appear as a well-defined band at 818 (10) cm−1 in silane treated wood sample (A1). These
three bands are assigned to in-plane stretching vibration of the Si–O in silanol Si–OH
groups, bending vibration of Si–O–C groups, and stretching vibration of the Si–O–Si bonds.

The aforementioned increase in the intensity of the bands assigned to Si–O in silanol,
Si–O–C and Si–O–Si bonds confirms that the sol-gel process took place between the silane
and wood polymers, in which through a series of hydrolysis and condensation reactions,
silane monomers can not only polymerise into a spatial polymer network (observed by Si–
O–Si bonds), but can also react with –OH groups present on all the main wood components,
forming a wood–silane composite and establishing siloxy bonds (Si–O–C) [7]. Moreover,
the disappearance or decrease in intensity of the bands assigned to C–H asymmetric
deformation and Si–O stretching vibration in silanes and to deformation vibration of the
O–Si–O bonds, indicate the reduction of the Si–O and O–Si–O bonds, confirming the
effectiveness of the sol-gel process.

Furthermore, analysing the second series of spectra (A, A2, 2), belonging to archaeo-
logical wood, treated wood with MPTES and the pure silane spectra, differences mainly in
the fingerprint region can be observed as in the previous case. Thus, the bands from 1448
(1), 1410 (2), 1256 (5) and 1138 (6) cm−1 (in the spectrum of pure silane) are overlapped
with the bands from the wood from 1462 (1), 1418 (2), 1269 (5) and 1127 (6) cm−1. These
bands are assigned to C–H deformation in lignin and carbohydrates and in –CH2–CH3 in
silane, C–O stretching in lignin and Si–C stretching vibration in Si–CH3 in silane and to
C–O stretching in wood and Si–O–C asymmetric stretching vibration in silane.
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The band from 1348 (3) cm−1 in the spectrum of silane (2) is shifted to 1338 (3) cm−1

in the spectrum of the silane treated wood (A2) and is merged with the band from 1329
(3) cm−1 from the wood spectrum (A). This band is assigned to C–H vibration in cellulose
and Cl–O vibration in syringyl derivatives, condensed structures in lignin, and to –CH2
deformation vibration in silane. The bands from 1306 (4), 1002 (7), and 869 (8) cm−1 seen
in the spectrum of the silane are not identified in the spectrum of the wood treated with
silane. These bands are assigned to –CH2 groups twisting vibration, Si–O–Si stretching
vibration, and Si–O stretching vibration in silane and indicate changes in silane structure
due to its reactivity with other silane monomers or wood hydroxyls.

The bands from 573 (12) and 530 (13) cm−1 from the silane spectrum increase in
intensity in the spectrum of the treated wood samples, while the bands from 805 (9) and
473 (14) cm−1 decrease in intensity. They are assigned to stretching vibration of the Si–O–C
and Si–O bonds.

The bands from 692 (10) and 645 (11) cm−1 (assigned to C–S stretching vibration) in
the spectrum of pure silane are shifted to higher wavenumber and decrease in intensity
in the spectrum of treated wood, indicating that these bands participate to interactions
with wood.

As in the previous case, the modifications observed in the spectra of the silane-treated
wood compared to pure silane and wood spectra indicate interactions taking place between
the silane and the wood substrate, as well as the formation of bonds after the condensation
of the silane on the surface of the wood.

The last series of spectra (A, A3, and 3), belonging to archaeological wood, DEAPTMDS-
treated wood as well as pure siloxane are also presented in Figure 6. In this case, smaller
differences were observed; thus, the bands from 1299 (1) and 985 (5) cm−1 from the pure
siloxane spectrum are not observed in the siloxane-treated wood spectrum. These bands
are assigned to –CH2 groups twisting vibration and stretching vibration of the Si–O in
silanol groups. The band from 1055 (3) cm−1 can be identified in the siloxane-treated wood
spectrum, and the band from 1028 (4) cm−1 from the wood spectrum is not identified in
the A3 spectrum. The band from the wood spectrum is assigned to stretching vibration of
the C–O in methoxyl groups in lignin, indicating a possible contribution of these groups to
the interactions with siloxane. The band from 1055 (3) cm−1 is assigned to the asymmet-
ric stretching vibration of Si–O–Si in siloxane structure and confirms the presence of the
siloxane in the treated wood.

Furthermore, the band from 1190 (2) cm−1 from the siloxane spectrum is shifted to
higher wavenumber, at 1195 (2) cm−1 in the A3 spectrum. This band also presents the
lower intensity and higher width in the spectrum of treated wood, and it is assigned to the
asymmetric stretching vibration of Si–O–C groups. The band from 843 (6) cm−1 observed
in the siloxane spectrum decreases in intensity in the spectrum of treated wood, while
the band from 787 (7) cm−1 presents similar intensities in both spectra. Both bands could
not be identified in the wood spectrum. The modification of intensity, band width and
wavenumber maximum may indicate interactions taking place between the siloxane and
wood structure.

The PCA analysis (Figure 7) illustrated by PC scores (Figure 7a) and PC loadings
(Figure 7b) clearly show the differences appearing between the analysed spectra.
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The principal component factor 1 (PC1) describes 81% and principal component
factor 2 (PC2) describes 12% of data variance, so 93% of the variances were captured
using these two dimensions instead of the initial data (see Figure 7a). Therefore, the PC1
presents positive values for both untreated wood samples (C and A) and negative ones
for the treated samples (A1, A2 and A3). At the same time, PC2 differentiates the samples
according to control and archaeological, as well as the samples treated with the two silanes
and the sample treated with the siloxane. Both PCs are indicative to indicate modifications
in the wood structure according to state of preservation and type of treatment.

The PC loading plot (see Figure 7b) gives information about the chemical features
which are responsible for grouping the samples along the PC1 and PC2. The PC1 loading
presents positive bands mainly assigned to wood structure and negative ones assigned
to the polymers used, while PC2 loading presents positive bands mainly assigned to the
siloxane compound and negative ones assigned mainly to wood and silane compounds.

The modifications observed in all three series of samples indicate the interactions
between the silane/siloxane and wood substrate (primarily via hydroxyl groups) through
silylation or condensation reactions (as mentioned above). In Figure 8 are represented
the possible interactions taking place between the wood structure and the organosilicon
compounds structure as observed through infrared spectroscopy.

Comparing the three organosilicons, higher interactions with wood were observed
in the case of silanes 1 and 2, i.e., MTMS and MPTES, which have relatively short alkyl
chain and reactive alkoxy groups than for DEAPTMDS (3) with a much longer chain and
amino groups of different reactivity. Alkoxysilanes can react not only with wood hydroxyls,
but also condense with their own molecules. As a result, a potential spatial network
can be formed on the surface or inside the cell wall which would bind together wood
polymers and thus stabilise the structure of wood. Moreover, a reactive thiol group in the
MPTES molecule enables an extra bond with wood hydroxyls, additionally strengthening
interactions between the chemical and wood polymers.
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Although Figure 8 is just a schematic drawing, it captures the idea of the interactions
between organosilicons and the cell wall polymers. It shows clearly that the number and
the strength of the possible interactions are different. Therefore, although all the three
chemicals are effective in stabilisation of wood dimensions upon drying, the stabilising
mechanism must involve much more than only the chemical structure and reactivity of a
conservation agent applied.

4. Conclusions

The presence of chemical interactions between organosilicons and the cell wall poly-
mers of waterlogged archaeological wood were clearly shown through infrared spec-
troscopy. The reactivity depends on the chemical structure and varies between the applied
chemicals, indicating a higher number of interactions between the alkoxysilanes (MTMS
and MPTES) and wood, than in the case of the tested siloxane (DEAPTMDS). In the case
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of alkoxysilanes, the highly reactive alkoxy groups (3 per a silane molecule) are involved
in interactions with hydroxyls present on wood polymers. For MPTES, an additional
chemical reaction between the thiol group and wood hydroxyls occurs, which strengthens
silane–wood interactions and can be involved in auxiliary stabilisation of wood dimensions.
The chemical structure of the tested siloxane allows it only to react with wood polymers via
hydrogen or ionic bonds, in which amino groups are involved. SEM images of the treated
wood also revealed a different pattern of organosilicons deposition on wood microstructure.
Alkoxysilanes seem to form coatings on the cell walls and, perhaps, also encrust them,
while the siloxane covers the cell walls, but also fills the cell lumina. Different deposition
of organosilicons in the wood structure may result from the differences in their chemical
composition (the presence of particular reactive groups) and molecular weight—the biggest
DEAPTMDS is probably too large to encrust the cell wall. All these results and observations
suggest a different mechanism of wood stabilisation by various organosilicon compounds.

The results of our previous research on dimensional stabilisation of waterlogged
archaeological wood with organosilicon compounds showed the reduction in EMC of
wood treated with MTMS and MPTES in comparison with untreated wood and lower MC
of wood treated with MPTES and MTMS (2.6% and 5%, respectively) in comparison with
DEAPTMDS-treated or untreated (7.9% and 6.6%, respectively). Additionally, the cell wall
bulking by MTMS was shown by porosity measurements. The results of this study together
with all the aforementioned data allow the conclusion that the mechanism of waterlogged
wood stabilisation by the used alkoxysilanes can involve bulking the cell wall by silane
molecules and wood chemical modification, while in the case of the applied siloxane, it
builds upon filling the cell lumina. However, the topic is not closed yet and some more
structural and mechanical experiments performed in the nano-scale could reveal more
details about the stabilisation mechanism.
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