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Abstract: Although the radial movement of minerals in tree trunks is a widely accepted phenomenon,
experimental evidence of their movement in standing trees and underlying mechanisms is very
limited. Previously, we clarified that cesium (Cs) artificially injected into the outer part of the
sapwood of standing Japanese cedar (Cryptomeria japonica D. Don) trunks moved to the inner part of
the sapwood, including the intermediate wood, via active transport by xylem parenchyma cells and
diffusion through cell walls and then moved into the heartwood by diffusion. To understand the
mechanism underlying the radial movement of minerals in the standing tree trunk, it is necessary to
clarify their movement in the opposite direction. Therefore, the present study aimed to determine the
radial movement of minerals from inside to outside in the trunks of standing trees at the cellular level.
For this, a long hole across the center part of the trunk, which reached the heartwood, intermediate
wood, and sapwood, was made in standing Japanese cedar trunks, and a solution of stable isotope
Cs was continuously injected into the hole for several days as a tracer. The injected part of the trunk
was collected after being freeze-fixed with liquid nitrogen, and the frozen sample was subjected to
analysis of Cs distribution at the cellular level using cryo-scanning electron microscopy/energy-
dispersive X-ray spectroscopy. The Cs injected into the inner sapwood or intermediate wood rapidly
moved toward the outer sapwood via xylem ray parenchyma cells together with diffusion through
the cell walls. In contrast, the Cs injected into the heartwood barely moved to the sapwood, although
it reached a part of the inner intermediate wood. These results suggest that minerals in xylem ray
parenchyma cells in the sapwood are bidirectionally supplied to each other; however, the minerals
accumulated in the heartwood may not be supplied to living cells.

Keywords: bidirectional; cesium; cryo-scanning electron microscopy; energy dispersive X-ray spec-
troscopy; parenchyma cell; xylem

1. Introduction

Minerals are absolutely necessary for tree growth and are generally absorbed by
the roots along with water from the soil and transported throughout the tree [1]. This
transport is thought to occur via the combination of the apoplasmic system through the
sap solution in the longitudinal direction and the symplasmic system using living cells in
the radial direction [2–5]. The longitudinal movement of the sap solution has long been
studied [6–10]; however, there are few studies on long-distance radial movements in tree
trunks, although short-distance radical movements have been experimentally shown using
tomato [11], Eucalyptus saligna stem [12], and tree branches [13,14]. Okada et al. [15,16]
showed that rubidium injected into the sapwood of Japanese cedar trunk was detected
in the heartwood. They concluded that the movement was caused by the function of ray
parenchyma cells; however, no experiments have been conducted to provide direct evidence
of radial movement via parenchyma cells. Because there is a network of parenchyma cells
in the xylem [5,17], it is natural to imagine that the minerals move in a radial direction
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in the trunk using this network. Nevertheless, this has not been experimentally proven
because it is difficult to directly analyze the phenomena occurring inside a large trunk.
Therefore, we proposed a novel experimental method to directly analyze minerals inside
standing trees to elucidate the radial movement of minerals in the trunk [18,19]. In previous
studies, we found that, when the stable isotope Cs was injected into the outer part of the
sapwood in the trunks of standing Japanese cedar as a tracer, it moved to the inner part
of the sapwood, including the intermediate wood, via rapid active transport by xylem
parenchyma cells and diffusion through the cell walls of parenchyma cells and tracheids,
and then moved to the heartwood via diffusion [19]. On the other hand, to elucidate the
entire mechanism underlying mineral movement in standing tree trunks with heartwood,
it is necessary to clarify mineral movement from inside to outside in trunks, a question that
remains unelucidated in previous studies.

Regarding mineral movement from the inner to the outer parts of the trunk, min-
erals should move via diffusion and active transport by xylem parenchyma cells if this
movement occurs via a mechanism similar to that from the outer to inner trunk [18,19].
The xylem parenchyma cells are known to store nutrients in winter to form new cells in
spring [20,21]. For this purpose, accumulated nutrients must be supplied to the cambium
and/or differentiating cells. To provide such a supply, it is necessary to transfer nutrients
from the storage compartments (inner part) to the outer part. The transport of chemicals
from parenchyma cells to the phloem in plants has been reported in review papers [22,23].
In tree species, however, studies on chemical movement from the sapwood to the cambium
are very limited [13,14]. Trees must have the function of mineral movement from the inner
sapwood to the outer parts via parenchyma cells. Therefore, proof of this movement is
essential for a complete understanding of mineral transport in standing trees.

The movement of minerals from the heartwood to the sapwood has also not been
clarified. The formation of heartwood is a phenomenon peculiar to trees. Further, the for-
mation of large heartwood with high decay resistance is important for tree stability [24–26].
One of the important features of heartwood is its accumulation of minerals. The elements
in tree trunks have been investigated in many trees [27–31]. Okada et al. [27,28] classified
the radial pattern of the mineral distribution of trees into three types. In the first, the
concentration in the heartwood is higher than that in the sapwood; in the second, the
concentration in the sapwood is higher than that in the heartwood; in the third, there is a
peak in the concentration in the boundary between the heartwood and sapwood. Among
the 8 softwood and 21 hardwood species studied, the pattern was non-uniform among
elements or species. For example, potassium concentration in the heartwood of Japanese
cedar was higher than that in the sapwood, whereas an opposite pattern was observed
for manganese concentration in the same species as well as for the same elements in other
species, such as Japanese larch. This kind of non-uniformity was also found in the lists
of other articles [29–31]. What causes these differences among species and elements? If
mineral movement from the heartwood to the sapwood occurred only via diffusion, the
minerals would move to the sapwood whenever mineral concentration in the heartwood
was higher than that in the sapwood. In this case, the tree trunk might have a mechanism
to keep accumulated minerals in the heartwood. On the other hand, if the minerals in
the heartwood were actively transported to the sapwood, trees might strategically use the
heartwood for mineral storage to reuse minerals in the sapwood. This would be a new
discovery and is worth exploring.

The aim of this study was to elucidate the radial movement of minerals from inside to
outside in trunks of standing trees. For cellular-level analysis, we used a previously devel-
oped method with modifications in the injection protocol, which allowed direct analysis
of mineral movement in freeze-fixed trunks to reflect the standing tree state as much as
possible [18,19]. Then we examined radial mineral movement from the inner sapwood
to the outer sapwood and that from the heartwood to the sapwood to understand the
mechanism underlying mineral movement in the trunks of standing trees with developed
heartwood.
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2. Materials and Methods
2.1. Plant Materials

Japanese cedar trees, which had developed heartwood planted at the Chiyoda nursery
of the Forestry and Forest Products Research Institute (Kasumigaura, Ibaraki, Japan), were
used in this study (Table 1).

Table 1. Basic information about the samples.

Injection

Tree
Number

* Injection
Hole Depth

Period of
Injection

Starting Date
(D/M/Y)

Harvesting Date
(D/M/Y) Age Tree Height

(m)
Girth at

1.2 m (cm)

Summer
191 SW 4 days 03/08/2020 07/08/2020 38 17.2 55
197 SW 4 days 03/08/2020 07/08/2020 39 18.2 58
195 SW 11 days 03/08/2020 14/08/2021 37 16.0 52
193 IW 11 days 03/08/2020 14/08/2020 38 14.8 57
81 HW 4 days 10/07/2017 14/07/2017 34 16.3 52
163 HW 11 days 18/06/2018 29/06/2018 35 16.5 47
165 HW 11 days 18/06/2018 29/06/2018 35 14.2 48
185 HW 16 days 10/07/2019 26/07/2019 38 17.3 56
183 HW 21 days 26/06/2019 17/07/2019 35 17.4 45

Winter
179 IW 5 days 08/02/2019 13/02/2019 37 18.2 57.5
181 IW 5-less days 08/02/2019 13/02/2019 38 16.4 59

* The injection hole depth was checked after the trees were cut. SW, sapwood; IW, intermediate wood; HW, heartwood.

The intermediate wood was defined as the part inside the sapwood that developed a
white color under frozen conditions [18,19]. The intermediate wood and the heartwood
were also distinguished using cellular-level water distribution by cryo-scanning electron
microscopy (cryo-SEM) observation [32].

2.2. Cs Injection in Standing Tree Trunk and Sample Collection

Cs injection and sample collection were performed according to Kuroda et al. [18,19]
with modifications. A cesium chloride solution (final concentration, 1.0 M; CsCl, FUJIFILM
Wako Pure Chemical, Osaka, Japan) was prepared in aqueous acid fuchsin (final concen-
tration, 0.1% w/v; Nacalai Tesque Inc., Kyoto, Japan). Acid fuchsin was used to readily
identify the solution movement area in the trunk.

To trace the Cs from the inner trunk to the outer part, a long hole was made in
each tree approximately 1.2 m above the ground using an increment borer (3-threaded
borer with 5.15-mm diameter, Haglöf Sweden AB; Långsele, Västernorrland, Sweden) to
reach the xylem of the opposite side across the center part (near the pith) of the trunk
(Figure 1). The depth of the hole was identified after cutting the tree trunk (Figure 2). A
1000 mL polyethylene bottle filled with Cs solution was set on the trunk of each sample
tree approximately 20 cm above the drilled hole. The solution was injected into the hole
through a plastic tube (Tygon LMT-55; Saint-Gobain, Tokyo, Japan) with a stainless steel
tube (20 cm long, 2.84 mm ø) attached to the end. The hole was filled with a silicone sealant
to prevent leakage of the solution. The solution was continuously injected for a set period
(Table 1), with the termination of injection <20 min before the trunk was frozen.
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Figure 1. Schematic presentation of sample preparation. (A) Cs solution was injected into a 
standing Japanese cedar (Cryptomeria japonica) tree trunk. (B) A hole was designed to reach the 
opposite sapwood or intermediate wood (1) or the opposite heartwood (2) through the center part 
of trunk, and these were compared to the normal injection (3) used in our previous reports [18,19]. 
(C) Holes were drilled using an increment borer. (D) Each hole was filled with silicone sealant 
after setting the tube. (E) The length of the hole was checked by measuring the core before the 
injection. BK, bark; SW, sapwood; IW, intermediate wood; HW, heartwood. 

Figure 1. Schematic presentation of sample preparation. (A) Cs solution was injected into a standing Japanese cedar
(Cryptomeria japonica) tree trunk. (B) A hole was designed to reach the opposite sapwood or intermediate wood (1) or the
opposite heartwood (2) through the center part of trunk, and these were compared to the normal injection (3) used in our
previous reports [18,19]. (C) Holes were drilled using an increment borer. (D) Each hole was filled with silicone sealant after
setting the tube. (E) The length of the hole was checked by measuring the core before the injection. BK, bark; SW, sapwood;
IW, intermediate wood; HW, heartwood.
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Figure 2. Typical images representing the injection holes in each trunk. A stainless steel tube was inserted into the hole,
and Cs solution was injected from the outlet of the tube. The fuchsin red color spread widely when the hole reached the
sapwood, which was not the case when the hole reached the intermediate wood or the heartwood. Abbreviations are the
same as described in Figure 1.
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Following injection, the trunk part was frozen with liquid nitrogen (LN2) for approxi-
mately 30 min, and the tree was felled [18,19]. Serial disks (1-cm-thick cross-sections) were
cut from the frozen part of the trunk, immediately immersed in LN2, and stored at −80 ◦C
in a deep freezer.

2.3. Cryo-SEM/Energy-Dispersive X-ray Spectroscopy (EDX)

Sample preparation and cryo-SEM/EDX analysis were performed according to Kuroda
et al. [18,19]. Small blocks, approximately 3 mm × 3 mm × 10 mm, were made from the
frozen disks obtained from 1–3 cm above the Cs injection hole, and the fresh transverse
surfaces of these disks were smoothly cut using a cryostat (Cryostar NX70; Thermofisher
Scientific, Tokyo, Japan) at approximately −30 ◦C. The observations and analyses were
performed using the cryo-SEM/EDX system with the Analysis Station software ver. 3.8
(JSM6510A, JED-2300; JEOL, Tokyo, Japan). Secondary electron (SE) images were obtained
at acceleration voltages of 3 and 15 kV with gold coating in the cryo-SEM/EDX system. For
point analysis, several points of the lumen of tracheid (TL), which was filled with water,
cell wall between tracheids (TW), lumen of ray parenchyma cell (PL), and cell wall between
ray parenchyma cells (PW) were selected on each SE image, and characteristic X-rays were
collected for 300 s at an acceleration voltage of 15 kV. The Cs-Lα peak (4.286 keV) at each
point was defined in terms of the presence of Cs.

3. Results
3.1. Cs Distribution in the Xylem Following Cs Injection into the Sapwood and Intermediate Wood
in Summer

The Cs solution injected into the hole reached the inner sapwood or the outer part of
intermediate wood at the opposite side from the injection. Outward Cs movement in the
sapwood was investigated using cryo-SEM/EDX (Figure 3). In the 4-day (No. 191 and 197)
and 11-day (No. 195) injection samples, the red-colored area which was stained by acid
fuchsin was distributed over the intermediate wood and inner sapwood (Figures 2 and 3).
Cs distribution was analyzed along a radial position from this area to the phloem. In the TL,
the Cs peaks were detected in the red-colored area. In the TW, the Cs peaks were detected
approximately a few annual rings from the border of red-colored area. In the PL and PW,
the Cs peaks were detected farther from that in the TW, which reached the phloem. In the
11-day injection sample, in which the hole reached the middle part of the intermediate
wood (No. 193), the red-colored area was distributed in the middle part of the intermediate
wood (Figures 2 and 3). In the TL, the Cs peaks were detected only in the red-colored area
and not detected outward from this area in the intermediate wood. In the TW, the Cs peaks
were detected in all areas of the intermediate wood but not in the sapwood. In the PL and
PW, the Cs peaks were detected in all areas from the intermediate wood to the sapwood.

3.2. Cs Distribution in the Xylem Following Cs Injection into the Heartwood in Summer

To clarify Cs movement from the heartwood to the sapwood, the Cs solution was
injected into the heartwood and its Cs distribution was investigated using cryo-SEM/EDX
(Figure 4). In the 4-day injection sample (No. 81), two radial directions were analyzed:
line A was from the middle part of the stainless steel injection tube and line B was from
the outlet of injection to the outside. In line A, Cs peaks were detected in all structures in
the heartwood, except for the outer part (blocks 6, 7). In line B, Cs peaks were detected
in all structures in the heartwood (blocks 11, 12) as well as in the TW, PL, and PW in the
boundary between the heartwood and intermediate wood (block 13). Cs peaks were not
detected in any structures in the outer part of the intermediate wood or sapwood (blocks
14, 15).

In the 11-day injection sample (No. 163), Cs peaks were detected in the TL, TW,
PL, and PW in the heartwood. Weaker Cs peaks were detected in the TW and PW of
the innermost annual ring of the intermediate wood (the inner annual ring of block 4),
although Cs peaks were not detected in any structures in the outer part. In the other 11-day
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injection sample (No. 165), Cs peaks were detected in the TW and PW in the heartwood,
except in the outer part, which was farther from the injection outlet compared with PL. No
Cs peak was detected in any structure in the outer part of the heartwood.

The 21-day injection sample (No. 183) had a wide whitish color area between the in-
termediate wood and heartwood, in which the outer part with white color was determined
as intermediate wood and the inner part with a brownish white color was identified as
heartwood because of its color and water distribution. In the middle part of the heartwood,
Cs peaks were detected in the TW, PL, and PW, but not in the TL (blocks 1, 6). With
increasing distance from the outlet in the heartwood, the Cs peaks in TW and PW were
detected farther than those in the PL (blocks 1–4, 6–7).

The water distribution of the analyzed sample parts is shown in Figure 4. Water
distribution helps identify the area of the intermediate wood because the earlywood
tracheid loses water from its lumen in the intermediate wood and some of them are refilled
in the heartwood [32]. In addition, we hypothesized that water distribution might become
the key property of sap (solution) movement between the heartwood and sapwood [19].
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Figure 3. Schematic presentation of radially distributed cesium (Cs) in the xylem of Japanese cedar (Cryptomeria japonica)
trees after Cs was injected into the sapwood or the intermediate wood in summer, as observed using cryo-scanning electron
microscopy/energy-dispersive X-ray spectroscopy (cryo-SEM/EDX). Bars below the sample image represent the area
where Cs was detected. Dotted red rectangles represent the area of the injection hole (about 2 cm below this plane); black
rectangles represent the analyzed area for cryo-SEM/EDX; TL, lumen of tracheid; TW, cell wall of tracheid; PL, lumen of ray
parenchyma cell; PW, cell wall of ray parenchyma cell. Other abbreviations are the same as described in Figure 1.
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Figure 4. Schematic presentation of radially distributed cesium (Cs) in the xylem of Japanese cedar (Cryptomeria japonica)
trees after Cs was injected into the heartwood in summer, as observed using cryo-scanning electron microscopy/energy-
dispersive X-ray spectroscopy (cryo-SEM/EDX). Water distribution in some samples was analyzed by observing secondary
electron images, in which the cells filled with water and cell walls appeared light gray and the cell lumen without water
appeared dark gray. Circle, Cs was detected; triangle, Cs was detected in part; Cross, Cs was not detected. Other
abbreviations are the same as described in Figures 1 and 3.

3.3. Cs Distribution in the Xylem Following Cs Injection into the Intermediate Wood in Winter

To clarify the seasonal difference in Cs movement in the sapwood, the Cs solution
was injected into the intermediate wood of Japanese cedar trunks in winter and its Cs
distribution was investigated using cryo-SEM/EDX (Figure 5). Although we tried to inject
the Cs solution for 5 days using two trees in winter, one bottle of the Cs solution became
empty before 5 days (No. 181). Because Cs was detected in the sapwood, this sample was
used to trace Cs so as to analyze mineral movement in winter. Both samples had injection
holes that reached past the middle part of the intermediate wood. The red-colored area was
distributed over the outer part of the intermediate wood, whereas it was not distributed in
the sapwood (Figures 2 and 5). In the 5-day injection sample (No. 179), clear Cs peaks were
detected in the TL, TW, PL, and PW in the red-colored area. The Cs peaks were analyzed
along a radial position from the red-colored area to the outer xylem. However, the Cs peak
in the TL was not detected outside the red-colored area. The Cs peaks were detected in the
TW, PL and PW in the inner sapwood, and the Cs detection area reached farther in the PL
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and PW than that in the TW. Additionally, Cs reached farther in the PW than that in the PL.
In the 5-less-day injection sample (No. 181), clear Cs peaks were detected in all structures
in the middle part of the intermediate wood where fuchsin red was observed. In the outer
intermediate wood, even in the red-colored area, Cs peaks were not detected in the TL but
were detected in the TW, PL, and PW. The Cs peaks in the TW were detected only in the
innermost part of the sapwood. The Cs peaks in the PL and PW were detected farther into
the sapwood than in the TW, whereas that in the PL reached farther than that in the PW.
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4. Discussion

Although the radial movement of minerals in tree trunks is a well-known function
among the many functions of ray parenchyma cells [2,4,5,17,20,22], the underlying mecha-
nisms have not been completely elucidated. Our previous studies [19] revealed that mineral
movement from the outer sapwood toward the heartwood in standing Japanese cedar
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trunk occurs through a combination of active transport by parenchyma cells and diffusion
in the cell walls from the sapwood to the intermediate wood, followed by movement to the
heartwood by diffusion. Then, a new question arose as to how the movement of minerals
occurs in the opposite direction. Therefore, we designed the present study to follow the
movement of a tracer, stable isotope Cs, from the inner trunk of standing Japanese cedar
trees outward (Figure 1). We injected Cs solution using a long hole across the central part
of the trunk, and samples were taken from the opposite side of the injection. The difficulty
of this injection method was in controlling the position of the outlet of the tube. Thus,
the injection hole and fuchsin red-colored area were checked after the trees were cut to
identify the solution movement area (Figure 2). Next, the Cs distribution of frozen samples
was analyzed using cryo-SEM/EDX. For clear interpretation of the results, we evaluated
both movement from inner to outer sapwood and movement from the heartwood to the
sapwood (Figure 6).
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where Cs moved. In the middle row, red boxes represent the injection holes, and black areas and black bars represent
the areas where Cs moved. In the bottom row, the solid arrows and dotted arrows represent symplasmic transport and
diffusion, respectively. P, ray parenchyma cell. Other abbreviations are the same as described in Figure 1, Figure 3, and
Figure 4.
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4.1. Mineral Transport in Both Directions in the Sapwood by Ray Parenchyma Cells

When the Cs solution was injected into the innermost sapwood, Cs was detected in the
outer sapwood along with the radial position from the fuchsin red color area in the inner
sapwood. When we compared the Cs distribution of the TW to that of ray parenchyma cells
(together with the PL and PW), Cs had moved farther in the ray parenchyma cells than in
the TW. If Cs moved in the ray parenchyma cells via diffusion, the Cs detection area should
be the same as that of the tracheid cell walls because the diffusion of Cs in the TW and ray
parenchyma cells occurs in a similar manner [19]. In addition, when the Cs solution was
injected into the middle part of the intermediate wood, where about half of ray parenchyma
cells are alive [33,34], Cs was detected farther in the ray parenchyma cells than in the TW
in the sapwood. This indicates that ray parenchyma cells symplasmically transport Cs
from the inner to the outer sapwood and that this process is faster than diffusion in the cell
walls. Together with our previous result, ray parenchyma cells in the trunks of standing
Japanese cedar trees have the function of mineral transport in both directions: from outer
toward inner sapwood and from inner toward outer sapwood.

The activity of parenchyma cells is known to change with season [20,21,35]; for
example, parenchyma cells store nutrients in winter and provide them as sources for
newly forming cells in the cambial zone and developing areas in spring. The present
study showed that ray parenchyma cells can transport minerals in both directions in either
summer or winter, although the number of the studied trees was limited; this suggests
that bidirectional transport can occur in any season during the life of a tree, including
during the tree’s response to insect attack [36] or to sudden environmental changes [37].
Therefore, what exactly determines the direction of transport? Our studies showed that
Cs migrated from the injected side, i.e., from the higher concentration side to the lower
concentration side. So, detecting high-concentration sites might be a key for starting Cs
transport. On the other hand, some switches are required to initiate active transport from
lower concentration sites to higher concentration sites. Further studies are warranted
to obtain information on these switches to determine the entire bidirectional transport
mechanism of ray parenchyma cells.

4.2. Minerals Rarely Move from the Heartwood to the Sapwood

The color and size of the heartwood are one of the features that identify tree species,
and the properties of the heartwood affect the usage and value of the trunk. Many tree
species have higher mineral concentration in the heartwood than in the sapwood [27–31].
In the case of Japanese cedar, high concentration of potassium is accumulated in the
heartwood [27,38,39]. For minerals to accumulate at a high concentration in the heartwood
after being transported from the sapwood, minerals in the heartwood should not move to
the sapwood, or the amount of mineral movement from the sapwood to the heartwood
should be greater than that from the heartwood to the sapwood. When Cs was injected into
the heartwood in this study, it moved to the vicinity of the heartwood–intermediate wood
boundary but did not spread to the outer part; that is, Cs did not move to the intermediate
wood and sapwood. This result indicates that there is some sort of a barrier that prevents
the free diffusion of Cs between the heartwood and sapwood, which may determine the
direction of the movement.

The anatomical features of the intermediate wood may be involved in this phe-
nomenon. Regarding the movement from the sapwood to the intermediate wood, the red
color of acidic fuchsin did not enter to the intermediate wood, even though Cs entered
when it was injected into the sapwood for a long period of time [19]. The results indicated
that movement solely via diffusion rarely occurs from the sapwood to the intermediate
wood; this indicated that diffusion was prevented at the boundary between the sapwood
and intermediate wood. In addition, Cs, as well as fuchsin red, did not move from the
heartwood to the intermediate wood when the Cs solution was injected into the heartwood.
Interestingly, Cs moved to the sapwood when the Cs solution was injected into the middle
part of the intermediate wood, indicating that Cs was taken up by living ray parenchyma
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cells when it reached the periphery of those cells and then moved to the sapwood via the
function of ray parenchyma cells. Because the number of living ray parenchyma cells is
small and some heartwood substances start accumulating at the inner part of the inter-
mediate wood [34], it is difficult for Cs to reach living ray parenchyma cells. Therefore,
Cs diffusion was prevented before Cs reached the area where there were many living
ray parenchyma cells, that is, the blocking of this direction of diffusion occurred at the
boundary between the heartwood and intermediate wood. In the intermediate wood of
Japanese cedar trunks, either tracheids or parenchyma cells dehydrate, particularly in the
earlywood (Figure 5) [18,32]; therefore, diffusion of the solute from the heartwood to the
intermediate wood is difficult [40]. This may be one of the reasons why it is difficult for
Cs to move toward living parenchyma cells. Thus, anatomical features of and the water
environment at the intermediate wood may act as a barrier to mineral movement between
the heartwood and sapwood.

On the other hand, gradual diffusion can occur from the heartwood to the inter-
mediate wood and the sapwood because the cell wall and latewood tracheids contain
water, even in the intermediate wood [32]. Therefore, it is impossible to completely stop
high-concentration minerals in the heartwood from diffusing to the periphery of living
parenchyma cells in the intermediate wood. Nevertheless, minerals are kept at a high
concentration in the heartwood, suggesting the existence of an unknown mechanism that
limits mineral movement. Although we hypothesized that the decrease in water content
of the intermediate wood has an important role in limiting diffusion, not all tree species
exhibit a decrease in water content when the sapwood is transformed into heartwood, such
as Acacia spp. [41] and Cunninghamia lanceolata [42]. To determine the unknown mechanism
underlying mineral accumulation in the heartwood, it is necessary to investigate mineral
movement in tree species that do not show a decrease in water content at the boundary
between the sapwood to heartwood.

5. Conclusions

We clarified mineral movement from inside to outside in the trunks of Japanese cedar
trees by directly analyzing mineral distribution in freeze-fixed trunks to reflect the state of
standing trees as much as possible. Together with our previous results, we experimentally
showed that, in the sapwood, bidirectional movement occurs, owing to the function of ray
parenchyma cells, regardless of the season. To determine the mechanism by which xylem
ray parenchyma cells actively accumulate minerals and discharge them when needed, it is
necessary to find the key determinant of the direction of this transport. We also clarified
that minerals move from the intermediate wood to the heartwood but not in the opposite
direction. Although the presence of the intermediate wood is important for inhibiting
mineral movement from the heartwood to the sapwood, our results suggest that there is
an unknown mechanism that prevents diffusion from the heartwood to the intermediate
wood. This unknown mechanism may control the properties of the heartwood. Controlling
heartwood formation is an important strategy in the longevity of trees. We hypothesized
that accumulated minerals in the heartwood are stored for use when they are needed by the
living cells in trees, but this might not be the case. Is there any physiological significance for
tree species in the accumulation of high mineral concentration in the heartwood? Further
elucidation of the mechanism underlying mineral movement, including the elucidation of
this unknown mechanism, will lead to an understanding of the nature of the formation of
large tree trunks.
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