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Abstract: Anthropogenic emissions of nitrogen- (N) and sulfur (S)-containing pollutants have de-
clined across China in recent years. However, the responses of N and S depositions and dynamics
in soil remain unclear in subtropical forests. In this study, the wet and throughfall depositions of
dissolved inorganic N (DIN) and SO4

2− were continuously monitored in a mildly polluted subtropi-
cal forest in Southeast China in 2017 and 2018. Moreover, these solutes in soil water along the soil
profile were monitored in 2018. Throughfall deposition of DIN and S decreased by 59% and 53%
in recent 3 years, respectively, which can be majorly attributed to the decreases in wet depositions
of NO3

− and SO4
2−. Meanwhile, NH4

+ deposition remained relatively stable at this site. Even
though N deposition in 2018 was below the N saturation threshold for subtropical forests, significant
N leaching still occurred. Excess export of N occurred in the upper soil layer (0–15 cm), reaching
6.86 ± 1.54 kg N/ha/yr, while the deeper soil (15–30 cm) was net sink of N as 8.29± 1.71 kg N/ha/yr.
Similarly, S was excessively exported from the upper soil with net flux of 14.7 ± 3.15 kg S/ha/yr,
while up to 6.37 ± 3.18 kg S/ha/yr of S was retained in the deeper soil. The significant N and S
leaching under declined depositions suggested that this site possibly underwent a transition state,
recovering from historically high acid deposition. Furthermore, the rainfall intensity remarkably
regulated leaching and retention of SO4

2− and DIN at this site. The impacts of climate changes on N
and S dynamics require further long-term monitoring in subtropical forests.

Keywords: acid deposition; acidification; input–output budget; sulfate adsorption; nitrogen mineral-
ization; retention

1. Introduction

Elevated nitrogen (N) and sulfur (S) depositions have been widely reported to cause
acidification and eutrophication in terrestrial ecosystems, influencing nutrient balance,
vegetation growth, and biodiversity in Europe [1,2] and North America [3] in 1970s, and
in East Asia in around a decade later [4]. Nitrogen deposition could act as an external N
supply and improve ecosystem productivity if total biotic N demands in the ecosystems
are not exceeded. However, excel N input would lead N saturation, indicated by significant
N leaching from soil [5]. Enhanced atmospheric S and N depositions resulted primarily
from increased anthropogenic emissions of sulfur dioxides (SO2), nitrogen oxides (NOx),
and ammonia (NH3) [4]. Following dramatic economic development since the 1970s,
the anthropogenic emissions of these air pollutants rapidly increased in China [4]. The
concomitant high loads of N and S to forests have caused significant soil acidification,
especially in South China, where the forest soils are susceptible to acid deposition [6,7].

Due to successful implementations of pollution control policies in China, SO2 and NOx
emissions have significantly declined since 2006 and 2011, respectively [8,9], while total
NH3 emissions have remained relatively stable [9]. It has been suggested that N and S de-
positions generally decreased across China in recent years [6,8,10,11]. However, the actual
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status of N and S depositions and responses of subtropical forest soils are not completely
understood. To date, long-term field investigations of N and S depositions in subtropical
forests are scarce, and even fewer studies have monitored N and S dynamics in soil, as most
studies have focused on the impacts of N addition in forest ecosystems [12,13]. Generally,
NO3

− concentration in soil water and N leaching respond more rapidly than soil organic
matter and wood to changes in atmospheric N deposition [13–15]. A sharp decline in N
deposition has led to an instantaneous reduction in N leaching and soil mineralization and
immobilization rates in a heavily N-polluted subtropical forest in Southwest China [13,16].
Nevertheless, changes in N leaching from soil at this site did not follow the hysteretic
model proposed to predict the responses of temperate forests to declined N deposition [15].
The SO4

2− leaching decreased concomitantly with S deposition (180 kg S/ha/yr) and net
accumulation of SO4

2− in soil continued to occur in this forest [8,17]. In contrast, long-
term monitoring in Europe and North America indicated excess S export from temperate
forest soils under low atmospheric SO4

2− deposition (<16 kg S/ha/yr) [1,2,18], which
can possibly be attributed to the historic accumulation of S in soil, e.g., the desorption of
SO4

2− and mineralization of organic S [19]. Net release of SO4
2− may delay the recovery

of forest ecosystems from acidification if it is caused by the legacy effects of historic S
deposition [1,2,4,18,20]. Regarding the spatial variation of atmospheric N and S deposi-
tions [13,21], more field investigations in subtropical forests are required to understand the
status of N and S depositions and the corresponding responses of subtropical forest soil.

So far, the responses of subtropical forests to declined N and S depositions in China
have only been investigated in a forest that still receives high inputs of N and S. How less
polluted subtropical forests in China respond to the declined depositions remains unknown,
to our knowledge. In this study, a mildly polluted subtropical forest in Southeast China was
revisited in 2017 and 2018 and temporal characteristics of the dissolved inorganic nitrogen
(DIN, represented as sum of NO3

− and NH4
+) and SO4

2− depositions via precipitation
and throughfall were investigated. In addition, the dynamics of NO3

−, NH4
+, and SO4

2−

in soil water along the soil profile were monitored in 2018. The N and S budgets in the
surface soil (0–30 cm), where most interactions between vegetation, soil, and microbes
occurred, were established and compared with previous monitoring [22] to demonstrate
the responses of this forest to the decreased depositions.

2. Materials and Methods
2.1. Site Description

The field investigation in this study was carried out in Qianyanzhou Ecological Station
(QYZ, 115◦4′ E, 26◦45′ N, managed by the Chinese Academy of Sciences) from February
2017 to April 2019. This site is located in Jiangxi Province and is under a subtropical
monsoon climate, with major rainfall events appearing between March and September [23].
The mean annual precipitation and temperature are 1494 mm and 19.2 ◦C [24], respectively.
Furthermore, this site is approximately 42 km southeast of the nearest city, Ji’an City, and
there are no significant industrial plants or coal burning boilers within ~30 km [25]. The
predominant wind direction is southeast in the summer and northwest in the winter [26].
The forest is Pinus massoniana predominated, with approximately 17 ha in area, and sur-
rounded by agricultural fields [26]. The stand age of the pine trees is around 35 years
and the canopy height is about 16 m [27]. The major soil type is red earth, highly weath-
ered from red sand rock, and the soil pH is 4.6 [28]. The fine roots are concentrated at
0–20 cm depth, with approximately 63% at 0–10 cm depth [29,30]. This site received 19.9 kg
N/ha/yr and 27.8 kg S/ha/yr in precipitations in 2014 [9], which were both at lower levels
of corresponding depositions across subtropical forests in China, ranging 18.2–88.2 kg
N/ha/yr and 4.8–144 kg S/ha/yr for N and S, respectively [10,31,32]. Hence, this site
could be considered as a mildly polluted site in South China [25].
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2.2. Sampling and Chemical Analysis

A total of three 10 m × 10 m plots were randomly set up under the forest canopy,
with two throughfall collectors (at the nonadjacent corners) and two sets of soil water
lysimeters near the center in each plot. The throughfall collector consisted of an 8.6 cm
diameter funnel, covered with nylon gauze to prevent entrances of litterfall and insects,
and an opaque 3 L bottle to store water [25]. Another six sets of collectors were installed in
open areas for bulk precipitation sampling. Soil water samples at 5 cm depth (S5, topsoil),
15 cm depth (S15, in the root zone), and 30 cm depth (S30, below the root zone) were
collected through Rhizon lysimeters (Eijkelkamp, Wageningen, The Netherlands). The
bulk precipitation, throughfall, and soil water were sampled weekly and then quickly
stored at 4 ◦C in a refrigerator. The weekly samples in the month were lumped together for
subsequent chemical analysis. All the monthly mixed water samples were filtered through
0.45 µm syringe filters and then analyzed for cation and anion concentrations by ion
chromatography (ICS-2000, Dionex Corp., Sunnyvale, CA, USA). Detailed sampling and
chemical analysis method can be seen in Refs. [16,17,33]. Since humus layer accumulates
on the topsoil, solute fluxes in soil water at S5 were considered as total fluxes from the
organic layer and topsoil.

2.3. Data Processing

Monthly fluxes in precipitation, throughfall, and soil water along the soil profile were
calculated as ion concentration multiplied by the corresponding water fluxes. Mean values
of the three plots were applied to represent the monthly depositions and solute fluxes
in the soil water at this site. For soil solution, where direct measurements of the water
fluxes do not exist [21], the water fluxes were estimated based on Na+ balance according
to the conservativeness of Na+ in soil water [17]. However, the mineral weathering and
potential cation exchange might induce uncertainties to the estimation of soil water fluxes,
particularly in deeper soil [8]. In this study, the flux of soil water at S30 was approximated
as stream water flux in this region [21,22], as the evapotranspiration below the root zone
could possibly be minor. The seasonal correlations between stream water fluxes and
precipitations was applied based on hydrological researches in this region [22,34]. Since
the stream water flux was not measured in this study, there was inevitable uncertainty
of the soil water flux calculation at S30. However, the seasonal pattern of rainfall in the
previous monitoring was similar to that this study [34] and the correlations may still be
applicable to this study. The accumulative fluxes in the seasons and years were attained
by directly adding up monthly fluxes, while seasonal and annual concentrations were
volume-weighted averages. Detailed formulation could be seen in Ref. [25]. The enhanced
deposition from precipitation to throughfall was attributed to dry deposition, while the
decreased concentrations and deposition were likely due to the overriding process of
canopy interception [26,35,36]. During the transformation between NH4

+ and NO3
− in

soil, H+ could be generated (H+
prod, N) and induce soil acidification [17,37], as follows:

H+
prod, N = (NH4

+
i − NH4

+
o) + (NO3

−
o − NO3

−
i) (1)

where NH4
+

i and NO3
−

i are input fluxes of NH4
+ and NO3

−, respectively, and NH4
+

o
and NO3

−
o are the leaching fluxes of NH4

+ and NO3
−, respectively.

Due to sampling problems, the soil water collections stopped from August 2017 to
March 2018. Hence, only data of depositions and soil solution fluxes in 2018 were discussed
in detail in this study. Results in 2017 can be seen in Figures A1 and A2. All the graph
drawing and the correlation analysis were conducted in OriginPro 2021.

3. Results and Discussion
3.1. Seasonal DIN and S Concentrations and Fluxes

The annual water flux of throughfall in 2018 was 1097 mm, 3.8% smaller than the
precipitation (Figure 1), while the annual soil water flux below the root zone accounted
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for 57.0% of the throughfall. Annual mean concentrations of SO4
2−, NH4

+, and NO3
− in

precipitations were 2.84± 0.67, 0.833± 0.056, and 1.31± 0.11 mg/L, respectively. Generally,
higher ion concentrations were observed in throughfall than those in precipitations in each
season, except in the spring, when NH4

+ concentration in throughfall decreased by 3%
from precipitation. Highest concentrations of SO4

2−, NO3
−, and NH4

+ in precipitation
and throughfall were mostly observed in the autumn or winter, when the water fluxes
were smallest (Figures 1 and A1). The ratio between NH4

+ and NO3
− concentrations

decreased from bulk precipitation (1.86–2.49) to throughfall (1.37–2.48), except in the
summer. The seasonal variation of N concentration in precipitation was similar to the
observation at this site during 2014 and 2015 [22,25]. From throughfall to soil water within
depth of 15 cm, SO4

2− and NO3
− concentrations increased gradually (Figure 1). From

15 cm to 30 cm, however, the concentrations decreased, except in the autumn. Generally,
the concentrations of SO4

2−, NH4
+, and NO3

− in the precipitation, throughfall, and soil
water were negatively correlated with the corresponding water fluxes (p < 0.1). For NH4

+,
the concentration decreased sharply from throughfall to soil waters. The ratio between
NH4

+ and NO3
− concentrations ranged from 0.06 to 0.55 in these three layers of soil.

The annual fluxes of SO4
2− and DIN via precipitation in 2018 were 10.8 ± 0.6 kg S/ha/yr

and 10.8 ± 0.22 kg N/ha/yr, respectively. The highest SO4
2− flux in throughfall occurred

in the spring, while the maximum throughfall deposition of DIN occurred in the summer
(Figure 1). Dry deposition of S and oxidized N peaked in the spring, while the highest
dry deposition of reduced N appeared in the summer. Meanwhile, significant canopy
interception of NH4

+ occurred in the spring (in 2017) and summer (in 2018), accounting for
19% and 7% of the wet deposition, respectively (Figure 1). For NO3

−, the significant canopy
interception appeared in the autumn of 2017, accounting for 11% of the wet deposition
(Figure A2). The observed interception rate of NO3

− in the autumn was comparable to
that previously reported for Pinus massoniana-predominated forests in this region in the
winter [36]. Wet surface of the forest canopy and vegetation demands of N could facilitate
canopy interceptions of nutrients [35,36]. In other seasons, dry deposition of N might
override the canopy N interception, leading to increased concentrations and depositions
from precipitation to throughfall.

The annual leaching of SO4
2− and DIN (majorly NO3

− in soil waters) from the root
zone reached 24.3 ± 0.94 kg S/ha/yr and 12.6 ± 0.092 kg N/ha/yr, respectively. In each
season, the NH4

+ flux decreased sharply from throughfall to the S5 layer, and further
decreased gradually along the soil profile. Although the DIN flux in the S30 layer was
smaller than the throughfall deposition, the S5 and S15 layers had relatively larger fluxes
than the throughfall deposition. The SO4

2− flux from the root zone was larger than the
throughfall deposition, except in the autumn. Notably, SO4

2− and DIN leaching in the S30
layer were always smaller than the leaching in the upper layer. Moreover, the leaching of
SO4

2− from the soil significantly increased at 5–15 cm depth in the spring and summer, on
the contrary to the autumn and winter (Figure 1).
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pogenic emissions. This was possibly due to significantly less precipitation in 2017 (1467 
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with results in 2014 [25], with exactly the same sampling protocol and places, the through-
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Figure 1. Seasonal water fluxes (a), SO4
2− concentrations (a), SO4

2− fluxes (b), DIN concentrations (c), and DIN fluxes (d)
of wet deposition (WD), throughfall deposition (TF), and soil water in the top layer (S5, 5 cm depth), 15 cm (S15), and below
the root zone (S30, 30 cm depth) in 2018. Bars filled with vertical lines and bias are SO4

2− and NH4
+, respectively, and bars

without filling are NO3
−. Error bars are standard errors.

3.2. Decreasing Trend of Atmospheric DIN and S Depositions

From 2014–2015 to 2017–2018, the annual mean concentrations of SO4
2− and DIN in

precipitation decreased by 48% and 30%, respectively. Meanwhile, the wet deposition of
SO4

2− and DIN decreased by 63% and 55%, respectively (Figure 2). The wet depositions
of SO4

2− and DIN were relatively higher in 2018 than those in 2017, even with smaller
anthropogenic emissions. This was possibly due to significantly less precipitation in 2017
(1467 mm, 978 mm, and 1133 mm precipitation in 2014, 2017, and 2018, respectively).
Compared with results in 2014 [25], with exactly the same sampling protocol and places,
the throughfall deposition of SO4

2−, NO3
−, and NH4

+ in 2017–2018 decreased by 59%,
69%, and 31%, respectively. In addition, during 2017–2018, total emissions of SO2, NOx,
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and NH3 in Jiangxi Province decreased by 53%, 11%, and 17%, respectively, from 2014–2015
(Figure 2). The declining trend of S deposition was accordant with other field investigations
across forests in China [4,8], following the rigorous air pollution control and adjustment of
energy production structures in China [8–10]. In the case of N, wet deposition of NO3

−

responded quickly to the regional emission reduction, while wet deposition of NH4
+ re-

mained relatively stable, fluctuating in a range of 6.25–7.38 kg N/ha /yr, possibly due to
nearby agricultural fields. Similar temporal patterns of NO3

− and NH4
+ in precipitations

at this site have also been observed at other background sites (forest, coastal, and grass-
land [38]) across China, where significantly decreased NO3

− deposition and relatively
stable NH4

+ deposition [10] were monitored from 2011 to 2018. Furthermore, SO2, NOx,
and NH3 emissions have been anticipated to continue decreasing across China [39], imply-
ing further declines of S and N deposition nationwide. Nevertheless, NH4

+ deposition via
precipitations at this site could possibly remain stable due to uncontrolled NH3 emissions
from nearby agricultural activities. Furthermore, S and N depositions in 2017–2018 in
this forest were both at lower levels of corresponding depositions across forests in South
China [10,31–33], but these were higher than those recently observed in most temperate and
boreal forests across Europe—0.576–13.6 kg S/ha/yr and 1.27–19.2 kg N/ha/yr [1,3,40]—
and in North America—2.00–23.0 kg S/ha/yr and 1.15–11.0 kg N/ha/yr [15,18,20,41]. The
relatively high levels of S and N deposition in this and other forests in South China em-
phasized the impacts of widespread anthropogenic emissions of SO2 and reactive nitrogen
across subtropical zones [10].
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Figure 2. Yearly depositions of SO4
2− (a), DIN (b), NO3

− (c), and NH4
+ (d) via wet deposition (WD), throughfall

deposition (TF), and dry deposition (DD) to forests at Qianyanzhou station. Data in 2000, 2014, and 2015 are attained from
Refs. [22,25,42], respectively, with the same sampling method. The error bars and shadowed area are standard errors and
total emissions of related air pollutants in Jiangxi Province [43,44], respectively.

Additionally, the regionally declined anthropogenic emissions seemed to have little
influence on the dry deposition of SO2 (or H2SO4 in the fog [21]) and NOx (or nitric acid
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and particulate nitrate [10]) at this site. Contrastively, dry deposition of NH3 (or particulate
ammonium [10]) largely decreased. The regional distribution of industrial plants and
various canopy interception (Section 3.1) of solutes could induce the different responses of
dry deposition of S, oxidized N, and reduced N to regional emission reductions. According
to previous monitoring and estimation nationwide in China [10,11], contributions of N dry
deposition are generally increasing since 2011. At this forested site, the importance of S
and N dry depositions increased in recent years, following decreases in corresponding wet
depositions. Moreover, during 2014–2015, the oxidized N deposition overrode the reduced
N deposition, which shifted to the contrary in 2017–2018. Agricultural activities nearby
might become the main sources of N deposition at this site in the future.

3.3. Net N Retention and Excess S Export in Soil under Declining Depositions

Excess N export was observed in the upper soil (0–15 cm depth), while net N retention
was observed in the deeper soil (15–30 cm). The N leaching from the root zone accounted
for 75% of the total deposition (Figure 2 and Table 1). According to previous investigations
in South China, N saturation threshold in acidic subtropical forest soils was estimated
as 26 kg N/ha/yr [33]. In 2014–2015, total DIN deposition at this site was larger than
28 kg N/ha/yr, and the leaching constituted 23% of throughfall deposition ~40 cm below
soil [22]. Even though the DIN deposition at this site in 2017–2018 was smaller than the
saturation threshold [33], significant DIN leaching still occurred and accounted for a larger
proportion of the throughfall input than that during 2014–2015. A higher ratio of N leaching
to N deposition has also been monitored in a subtropical forest in Southwest China [13]
and some temperate forests [14,45] under declined deposition. Considering the enhanced
N leaching under declined deposition, this site was likely undergoing a “transition” state
and required longer time to approach a “new” steady sate [2].

Table 1. Retention and excess S and N output 1 and H+ production along the soil profile in 2018.

Season Layer of Soil 2 Soil Water Flux (mm) Excess S Output (kg S/ha) Excess N Output (kg N/ha) H+
prod, N (kmol/ha)

Spring
0–5 cm 308 1.87 ± 0.85 2.19 ± 0.41 3.60 ± 0.41
5–15 cm 178 2.12 ± 2.36 −0.40 ± 0.71 0.02 ± 0.71

15–30 cm 190 −0.46 ± 2.22 −1.37 ± 0.65 −0.86 ± 0.65

Summer
0–5 cm 316 3.62 ± 0.67 1.23 ± 0.66 6.08 ± 0.66
5–15 cm 255 3.40 ± 1.65 2.52 ± 1.15 2.58 ± 1.15

15–30 cm 240 −2.77 ± 1.51 −2.59 ± 1.00 −2.83 ± 1.00

Autumn
0–5 cm 130 1.06 ± 0.91 0.08 ± 0.56 2.87 ± 0.56
5–15 cm 115 −0.52 ± 1.38 0.68 ± 1.00 1.12 ± 1.00

15–30 cm 58 −1.23 ± 1.07 −1.7 ± 0.94 −1.85 ± 0.94

Winter
0–5 cm 202 4.32 ± 0.71 1.18 ± 0.49 3.71 ± 0.49
5–15 cm 149 −1.16 ± 1.5 −0.62 ± 0.85 0.12 ± 0.85

15–30 cm 138 −1.93 ± 1.34 −2.63 ± 0.78 −2.11 ± 0.78

Annual
0–5 cm 957 10.87 ± 1.58 4.68 ± 1.08 16.26 ± 1.08
5–15 cm 697 3.83 ± 3.53 2.18 ± 1.88 3.85 ± 1.88

15–30 cm 626 −6.37 ± 3.18 −8.29 ± 1.71 −7.65 ± 1.71
1 Calculated as difference between leaching flux in the layer and the upper layer or the throughfall input for topsoil (0–5 cm). For N, both
NO3

− and NH4
+ were included. Positive values indicated excess export, otherwise nutrient retention or gaseous loss in the soil. 2 Excess

export at S5, S15, and S30 were considered as from the topsoil, root zone, and deeper soil (below the root zone), respectively.

The net N retention and leaching are affected by many factors, as NO3
− and NH4

+

could experience complexed transformation processes apart from deposition and leaching
in soil [46–48]. Since roots of Pinus massoniana prefer NO3

− rather than NH4
+ [13,33], NH4

+

immobilization by microbes and autotrophic nitrification are considered as major pathways
of NH4

+ consumption. Meanwhile, NH4
+ in soil could be produced from mineralization

and dissimilatory reduction of nitrate to ammonium (DNRA) [13,48]. According to the 15N
tracing experiment of forest soil in this region, the potential of autotrophic nitrification and
DNRA was low, possibly due to the low soil pH [48], which has also been observed in other
subtropical forests [13,49,50]. Hence, the largely declined NH4

+ fluxes in soil water were
more likely due to the predominance of NH4

+ immobilization, which then accumulated in
the organic matters. In the case of NO3

−, nitrification (including autotrophic nitrification
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and heterotrophic nitrification) is considered as another important source of NO3
− in soil,

aside from atmospheric deposition. Meanwhile, vegetation uptake, immobilization, denitri-
fication, and DNRA are major pathways for NO3

− consumption [48]. As described above,
the distinctly increased NO3

− fluxes in soil water from throughfall deposition implied
the dominance of heterotrophic nitrification and mineralization processes over the NO3

−

consumption. Additionally, mineralization of litterfall could also increase NO3
− leaching

in the organic layer, suggested by the rapid internal N cycle in subtropical forests [8].
Moreover, heterotrophic nitrification and N mineralization rate in subtropical forest soils
possibly had a delayed recovery to the declined deposition [13], which eventually led to
the increased ratio of N leaching to N deposition. In addition, NO3

− flux at S30 signifi-
cantly declined, compared with that at S15. Since the roots were concentrated at 0–20 cm
depth [30], the vegetation uptake was unlikely to have induced the declined leaching. In
contrast, denitrification process in soil could possibly take an important role in N mass
balance [22]. The increasing humidity of soil and relatively stable soil temperature until
50 cm depth at this site [51] all benefitted the denitrification process in deeper soil.

In the case of SO4
2−, excess S tended to be exported from soil (Table 1), which has

been widely reported across forests in Europe [1,2] and North America [18,20] during the
recovery from historically high S deposition. Mineralization of organic S, desorption of
previous adsorbed SO4

2− and bedrock weathering could all possibly contribute to the
significant S export [1,2,18,20,52,53]. As the red earth at this site is highly weathered [17,54],
weathering in the surface soil could be minor. Concomitant with high S deposition across
South China [6,8,32], plenty S was stored in soil in forms of adsorbed SO4

2−, organic S,
and/or reduced S [55], ranging 10.4–50.0 kg S/ha/yr [21,56]. The adsorption–desorption
of SO4

2− follows the Freundlich equation, and absorbed SO4
2− on soil minerals could be

released to soil solution again [57] under conditions of decreasing SO4
2− concentrations

in soil solution and increasing soil pH. Additionally, in the topsoil and humous layer, the
organic S predominated among adsorbed SO4

2− and other S species [54,56,58–60], and
might participate in secondary production of SO4

2− [58,61,62]. The excess SO4
2− export in

this forest possibly resulted from legacy effects of historic S deposition, e.g., desorption
of previously adsorbed SO4

2− [8] and mineralization of accumulated organic S [52,58].
In a subtropical forest in Southwest China, the SO4

2− leaching decreased concomitantly
with the SO4

2− deposition (180 kg S/ha/yr) but S remained to be accumulated in soil [8].
Contrastively, this site received much smaller S deposition, and excess SO4

2− was exported
from the soil. The different status of S export between the two subtropical sites might
result from different capacity of SO4

2− adsorption in soils [63] and SO4
2− concentrations

in the throughfall [57]. Along the soil profile, excess export of S mainly appeared at S5 and
S15, while significant retention process occurred at S30 (Table 1). The immobilization of
SO4

2− by microbes, SO4
2− re-adsorption, and SO4

2− reduction could induce S retention or
removal [52,53,64] in the deeper soil. Determination of relative importance of these bio-
geochemistry processes requires further investigation. Moreover, regarding the declining
trend of S emissions and deposition across South China [9,32], inherent sources of SO4

2−

from soils might become more and more important for subtropical forests [3,18].
Notably, the excess exports of N and S were larger in the spring and summer, when the

water fluxes were abundant. The positive correlation between excess export of S (or N) and
the water flux (Table 1, p < 0.05) was commonly observed in various forests [1,2,17,18] and
meadow ecosystems [3]. Increased rainfall intensity could enhance the mineralization pro-
cess together with SO4

2− desorption [3,18], leading to increased N and S leaching. During
the recovery from acidification in a forested catchment in Japan, the forest soil was prone to
retain SO4

2− under elevated air temperature and rainfall intensity due to prolonged growth
season [3]. In this study, vegetation uptake and immobilization seemed to play a minor
role in controlling SO4

2− budget in surface soil, but the climate conditions, e.g., rainfall
intensity, tended to predominate in regulating SO4

2− leaching and retention. Additionally,
the excess S leaching due to previously adsorbed S and/or accumulated organic S from
soil is often accompanied with enhanced leaching of Al3+ and base cations, which delays
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the recovery of forest soil and surface water from acidification [18]. Furthermore, during
the transformation between NH4

+ and NO3
−, protons could be generated, preventing

the increase in soil water pH [17]. Significant acidification occurred at the topsoil and
root zones (when intensive precipitations appeared), with 38% of generated H+ being
neutralized below the root zone (Table 1). Predictably, the significant leaching of DIN and
SO4

2− could possibly continue for a long time in subtropical forests even under decreasing
depositions in the future, resulting in persistent risks in acidification and eutrophication of
terrestrial and aquatic ecosystems.

4. Conclusions

In this study, the wet and throughfall deposition and the solute fluxes along the soil
profile were consecutively monitored in a mildly polluted subtropical forest in Southeast
China in 2017–2018. From 2014–2015 to 2017–2018, the total deposition of SO4

2−, NO3
−,

and NH4
+ decreased by 59%, 69%, and 31%, respectively, while the dry deposition of S and

oxidized N remained relatively stable at this site. In addition, the NH4
+ deposition was

shifted to dominate DIN deposition in 2017–2018. Deposition of S and NO3
− could possi-

bly continue decreasing while NH4
+ deposition tended to remain stable at this site. Even

though DIN deposition at this site decreased below the N saturation threshold, approxi-
mately 75% of deposited DIN still leached from the root zone. The significant leaching of
DIN under declined atmospheric deposition possibly resulted from the delayed responses
of mineralization and nitrification rates in subtropical forest soils to declined N deposition.
Net S export from soil was observed at this site, amounting to 8.32 ± 0.48 kg S/ha/yr,
which might result from the legacy effects of historically high S deposition. This site was
likely undergoing a “transition” state and required longer time to approach a “new” steady
sate. The continuous leaching of N and S could possibly delay the recovery of soil and
surface water from acidification. Furthermore, the rainfall intensity remarkably regulated
leaching and retention of SO4

2− and DIN at this site. The climate changes, e.g., higher
temperature and more intensified rainfalls, could influence the S and N cycles in forest
ecosystems. Hence, even though declined N and S depositions have been anticipated across
China, the impacts of climate change, excess S export, and continuous DIN leaching to the
forest ecosystem health and acidification recovery require further long-term monitoring in
subtropical forests.
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