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Abstract: Obtaining accurate forest coverage of tree species is an important basis for the rational use
and protection of existing forest resources. However, most current studies have mainly focused on
broad tree classification, such as coniferous vs. broadleaf tree species, and a refined tree classification
with tree species information is urgently needed. Although airborne LiDAR data or unmanned
aerial vehicle (UAV) images can be used to acquire tree information even at the single tree level, this
method will encounter great difficulties when applied to a large area. Therefore, this study takes
the eastern regions of the Qilian Mountains as an example to explore the possibility of tree species
classification with satellite-derived images. We used Sentinel-2 images to classify the study area’s
major vegetation types, particularly four tree species, i.e., Sabina przewalskii (S.P.), Picea crassifolia
(P.C.), Betula spp. (Betula), and Populus spp. (Populus). In addition to the spectral features, we
also considered terrain and texture features in this classification. The results show that adding
texture features can significantly increase the separation between tree species. The final classification
result of all categories achieved an accuracy of 86.49% and a Kappa coefficient of 0.83. For trees,
the classification accuracy was 90.31%, and their producer’s accuracy (PA) and user’s (UA) were all
higher than 84.97%. We found that altitude, slope, and aspect all affected the spatial distribution of
these four tree species in our study area. This study confirms the potential of Sentinel-2 images for
the fine classification of tree species. Moreover, this can help monitor ecosystem biological diversity
and provide references for inventory estimation.

Keywords: Sentinel-2 image; random forest; tree species; vegetation classification

1. Introduction

Forests are essential for ecosystem services conservation and ecological protection
and work by adjusting local and regional climates, regulating surface heat, modifying
watershed-scale hydrological climate, and reducing carbon emissions [1–3]. Forest bio-
diversity is critical to maintaining forest ecosystems stability. However, it is increasingly
threatened by forest fires, forest fragmentation, climate change, and other factors [4]. Trees
are the most important components of the forest ecosystem, and tree species information
has become one of the critical parameters of interest to ecologists and forest managers [5].
Accurate tree species identification provides a direct means of monitoring forest biodiver-
sity and plays a vital role in ecological change assessment and other forest applications.

Traditional forest ecosystem surveys rely on field surveys to collect tree species in-
formation. However, they require heavy human, material, and financial resources and
are vulnerable to regional restrictions [6,7]. With the advancement of remote sensing
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technology, diverse remote sensing data have provided plenty of opportunities for refined
tree species identification. For example, Bont et al. [8] used airborne laser scanning data to
classify coniferous and broadleaf forests for forest stocks prediction. The study obtained
tree canopy heights based on LiDAR data and used them as weights for the wood volume
estimation model, which increased the model accuracy by 9%. Mäyrä et al. [9] carried out
a classification study to recognize Scots pine, Norway spruce, and Betula and European
aspen based on airborne hyperspectral and radar data in Finland’s Evo Forest area. They
built the normalized canopy height model based on LiDAR data, and realized the recogni-
tion and extraction of individual trees. In addition, other remote sensing data have also
been widely utilized in tree species classification research, such as point cloud data and
unmanned aerial vehicle (UAV) images [10]. The UAV data and LiDAR data work with a
high spatial resolution and can extract rich forest canopy texture information and identify
single trees. However, the above data are large in volume and difficult to reproduce in the
data acquisition environment, so they are suitable for tree species classification experiments
in small regions. It is difficult to use such data for regional tree species identification.

Compared with UAV data and airborne laser scanning data, satellite remote sensing
data are easier to acquire and process and can be repeatedly observed with a certain
period, making them more suitable for regional tree species classification studies. Due to
their high spatial resolution (10 m), rich spectral information (13 bands), and short revisit
period (2–5 days), Sentinel-2 satellite images have been used in tree species classification
experiments [11–13]. However, Sentinel-2 images are challenging to provide satisfactory
accuracy in tree species classification when they are not supported by detailed ground
survey data [14,15]. In addition to the spectral information, existing studies have found
that using topographic metrics and texture features can effectively increase the accuracy
of tree species identification in delicate tree species classification based on remote sensing
images [16,17]. Different tree species always have distinct growth environments. For
example, S.P. is sun-tolerant and grows at an altitude of 2600–4000 m, while P.C. is shade-
tolerant and widely distributed within an altitude of 1600–3800 m [18]. The separability of
tree species can be enhanced by adding topographic metrics in the classification. Moreover,
the texture characteristics computed from the images can reflect the differences in the tree
crown structure of different tree species, such as the roughness, size, and shape, and the
arrangement of the trees, which can further improve tree species classification. Matheus
et al. [16] used WorldView-3 images to classify tropical forest tree species. Their study
shows that the classification accuracy increased by over 10% by integrating texture features,
compared with only using spectral features.

Due to their excellent performance and clear logic, machine learning algorithms are in-
creasingly used in tree species classifications. Commonly used machine learning algorithms
include support vector machine (SVM), Naïve Bayes (NB), Random Forest (RF) classifier,
etc. For example, Hu et al. [19] used SVM to classify multiple tree species, including
Norway maple and honey locust, with a classification accuracy of 89%. Axelsson et al. [5]
classified Betula spp., Picea abies, Pinus sylvestris, and Quercus robur based on Bayesian
inference and achieved 87% classification accuracy. Xu et al. [10] found that combining
multispectral, texture, and point cloud metrics is the best classification scheme based on
the three individual tree crown (ITC) delineation algorithm and RF classifier. Compared
with other machine learning algorithms, RF classifier is widely used in tree species classifi-
cation studies because of its good performance in processing high dimensional data and its
ability to output the contributions of different features [20]. In recent years, deep learning
algorithms have also frequently been used in related studies. Mäyrä et al. [9] compared
SVM and three-dimensional convolutional neural networks (3D-CNNs) and found that
3D-CNNs achieved a better performance when classifying LiDAR data. However, there
are some shortcomings in the use of deep learning, a considerable drawback and barrier in
the use of deep learning is the need for large datasets, and setting data annotation makes
the processing of data more complicated [21], which makes the use of deep learning have
some limitations.
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The Qilian Mountains are located in the northeast arid and semi-arid area of the
Qinghai-Tibet Plateau. Due to the impact of global climate change and human activities,
the vegetation and biodiversity in the Qilian Mountains are declining, and the function
of soil and water conservation continues to weaken [22]. These problems have seriously
affected the stability of the Qilian Mountain ecosystems and restricted the social and
economic sustainable development of its surrounding areas. Therefore, understanding the
spatial distribution of different tree species in this area is a key issue. This research takes the
eastern regions of the Qilian Mountains as an example to investigate the possibility of using
Sentinel-2 imagery and the random forest classifier for delicate tree species classification,
as well as to depict the spatial distribution characteristics of its main tree species, and aims
to provide guidance for local forest management and ecological assessment.

2. Study Area and Data
2.1. Study Area

The study area is located in the northeastern part of Qinghai Province, China. Consid-
ering the ground samples are mainly located in the eastern part of Qilian, the study area
is defined as the eastern Qilian Mountains (Figure 1). Its geographical extent is 101◦10′

E~102◦53′ E, 35◦48′ N~37◦25′ N. The total area is 18,182 km2. This area has high altitudes
and a frigid climate. The altitude ranges from 1674 m to 4720 m, with a relative elevation
difference of 3015 m. The climate in the study area is a typical alpine continental climate,
with an average annual temperature of 2.1 ◦C, annual precipitation of 366 mm, an altitude
of 1674 m–4720 m, and a relative elevation difference of 3015 m. As the temperature and
precipitation change with altitudes, local vegetation distribution presents an apparent
vertical zonality. From low to high altitudes, this region can be divided into a mountain
steppe zone, temperate shrub-steppe zone, mountain forest-steppe zone, subalpine shrub-
meadow zone, and alpine sub-icy, and sparse vegetation zone [23]. The existing main tree
species are Sabina przewalskii, Picea crassifolia, Betula spp., and Populus spp. [24].
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Figure 1. The geographical location of the study area and an illustration of nine samples in a sample
plot.

It is also one of the critical water conservation areas along the Hexi Corridor and one of
the vital water supply areas for the Yellow River and Qinghai Lake. The Qilian Mountains
have an important strategic position in constructing China’s ecological civilization and have
formed a unique ecological barrier in the northwest region [25]. As it is in the transition
zone from a temperate continental climate to a plateau mountain climate, the special
geographical location and climate type determine the fragile ecological environment of
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the Qilian Mountains [22,24]. Therefore, accurate and refined vegetation information is
essential for protecting the ecological environment of the Qilian Mountains.

2.2. Data Source and Preprocessing

Three data types are used in this research to accurately identify different vegetation
types in the study area, namely, Sentinel-2 images, Digital Elevation Model (DEM) data,
and field data. Sentinel-2 provides images with satisfactory spatial resolution, revisit
cycle, and abundant spectral bands among all free-accessed satellite data [26,27]. It has
been widely used in many fields, such as vegetation type identification, forest resource
monitoring, food safety assurance, and environmental monitoring. In particular, the three
red-edge bands and two near-infrared bands designed by Sentinel-2 provide a possible
solution for identifying forest tree species. The spectral parameters used in the research are
shown in Table 1. In total, eight scenes of Sentinel-2 imagery (L1C level) cover with the
study area with less cloud cover in 2020 were acquired from the Copernicus Open Access
Center [28]. Six images were acquired on 20 August, and the other two were on 25 August
and 4 September, respectively. All of the images were atmospherically and topographically
corrected with the Sen2Cor plug-in provided by the European Space Agency [29]. Then,
image bands with a resolution of 20 m were resampled to 10 m by using the Sentinel
Application Platform (SNAP). After that, all 10 m Sentinel-2 bands of each scene were
layer-stacked to produce a ready-to-use image.

Table 1. The parameters of the Sentinel-2 spectral bands used in this study.

Spectral
Bands

Central
Wavelength

(nm)

Bandwidth
(nm)

Spatial
Resolution

(m)

Blue 490 98 10
Green 560 45 10
Red 665 38 10

Vegetation Red Edge 1 705 19 20
Vegetation Red Edge 2 740 18 20
Vegetation Red Edge 3 775 28 20

Near InfraRed 842 145 10
Narrow Near InfraRed 865 33 20
Short Wave InfraRed 1610 143 20
Short Wave InfraRed 2190 242 20

As topography significantly affects the distribution of forest tree species in mountain
ecosystems, considering the topographic metrics in classification can effectively improve
classification accuracy [17]. Therefore, we downloaded the Advanced Land Observing
Satellite digital elevation model (ALOS DEM) data from the National Aeronautics and
Space Administration [30]. The data have a spatial resolution of 12.5 m, which contains
richer terrain details than the 30 m DEM. Then, we calculated the slope and aspect based
on the DEM data. Finally, the DEM data, slope data, and aspect data were resampled to
10 m.

The ground samples were provided by the Northwest Survey, Planning, and Design
Institute of National Forestry and Grassland Administration of China. The ground samples
were collected through the Qinghai Provincial Forest Resources Survey in 2018. There were
a total of 149 ground sample plots within the study area, and each sample plot recorded
information about tree species, breast-height diameter, canopy closure, average height,
etc. As one survey sample plot is a rectangle that covers 800 m2, it is close to the coverage
area of 3 × 3 Sentinel-2 pixels (900 m2). Therefore, nine pixels covered by the sample plot
are all collected as candidate samples for the same tree species. Then, we verified the
reliability of these extended samples based on the Google Earth image in 2020, and deleted
the unqualified samples. Through this method, we obtained samples for S.P., P.C., Betula,
and Populus. In addition, we also visually interpreted samples of other vegetation types
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(cropland, sloping cropland, and grasslands) in the study area based on the Google Earth
images in 2020. Finally, 1721 samples were obtained for classification (Figure 1), of which
2/3 were used as training samples, and the rest were used as test samples to verify the
classification accuracy.

3. Methods
3.1. Calculation of Vegetation Indices

Many studies in vegetation classification have proved that vegetation indices can
effectively enhance the spectral information of remote sensing data [31,32]. The rich spectral
bands of Sentinel-2 images facilitate calculating various vegetation indices. In this study,
we calculated four vegetation indices, the Normalized Difference Vegetation Index (NDVI),
the Red Edge Normalized Difference Vegetation Index (NDVI705), the Enhanced Vegetation
Index (EVI), and the Land Surface Water Index (LSWI). Among them, NDVI is the best
indicator reflecting the growth status of vegetation [33,34], and NDVI705 is a normalized
vegetation index based on the red edge band. Compared with NDVI, NDVI705 is more
sensitive to small changes in the leaf canopy [35]. EVI reacts more strongly to vegetation
growth in lush areas and can effectively reduce the impact of water vapor [34]. LSWI is
more sensitive to leaf moisture and can eliminate water interference while identifying
vegetation [36]. Therefore, we calculated the above four vegetation indices to improve
the identification ability of the mountain tree species in the eastern region of the Qilian
Mountains. The calculation formulas are shown as follows:

NDVI =
Bnir − Bred
Bnir + Bred

(1)

NDVI705 =
B705 − Bred
B705 + Bred

(2)

EVI = 2.5× Bnir − Bred
Bnir + 6× Bred − 7.5× Bblue + 1

(3)

LSWI =
Bnir − Bswir
Bnir + Bswir

(4)

Bblue is the blue band, Bred is the red band, B705 is the red edge band with a centre wave-
length of 0.705 nm, Bnir is the near-infrared band, and Bswir is the shortwave infrared band,
corresponding to the B2, B4, B5, B8, and B11 bands of the Sentinel-2 image, respectively
(Table 1).

3.2. Extraction of Texture Features

The grey level co-occurrence matrix (GLCM) is commonly used in remote sensing
image classification to analyze and extract texture features. GLCM counts the grey levels
of different pixels on the image [37,38] and gets a series of statistics. Haralick has proposed
14 statistics based on the grey level co-occurrence matrix [38], such as contrast, entropy,
correlation, uniformity, and variance. Among them, contrast reflects the clarity and texture
characteristics of the image. The entropy value represents the complexity of the image grey
distribution. The larger the entropy value, the more complex the image. The correlation
reflects the similarity of the image grey level in the row or column direction. The size
reflects the correlation of the local image. The larger the value, the more significant the
correlation.

Before obtaining GLCM statistics, we need to perform principal component analysis
(PCA) first to derive the first principal component (PC1). PC1 explains 90.52% of the vari-
ance, which means most of the information concentrated in PC1 [39]. Then, we calculated
the mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and
correlation based on PC1.
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3.3. Extraction of Vegetated Area

As this research aims to classify different vegetation types, it is better to mask out the
non-vegetated areas [5]. NDVI is the most widely used vegetation index, and determining
an appropriate NDVI threshold to classify non-vegetation and vegetation requires many
tests for different study areas. Therefore, we conducted a threshold test by setting NDVI
threshold changes from 0.18 to 0.40 with an increasement of 0.02 every time. The masked
results were visually interpreted based on Google Earth images. When the NDVI threshold
is smaller than 0.30, there are still many non-vegetated areas, and when the threshold
is greater than 0.30, over-masking will occur (Figure 2). We find that when the NDVI
threshold is set as 0.30, the derived vegetated area is mostly in agreement with the Google
Earth images. Therefore, the non-vegetated area of the entire study area is masked based
on the optimal NDVI threshold of 0.3. Finally, the vegetation area in the study area is
14,364 km2, accounting for 79% of the study area.
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3.4. Random Forest Classifier

The RF classifier contains multiple decision trees, and the classification result is
determined by the majority voting of all of the trees [20]. This integrated classifier will have
better accuracy in data regression and classification problems, while making the algorithm
more stable and robust [40]. In addition, RF can handle the multi-dimensional data used in
tree species identification, and is not prone to overfitting. Compared with the maximum
likelihood classification (MLC) algorithms [41], the random forest algorithm has a better
performance in the analysis of the high dimensional data. Meanwhile, as an object-oriented
classification method, RF is more tolerant and flexible for input features than the SVM
algorithm [42]. The RF classifier achieves better performance in many applications, and
is widely used in economic [43,44] and social [45] studies and in other research fields.
Moreover, this classifier is very popular within the remote sensing community, such as
forestry [17], agriculture [46], and land resources [47] departments.

Therefore, we chose the random forest classifier to classify the tree species in the
eastern regions of the Qilian Mountains. We designed three classification schemes to
analyze the effects of spectral features, topographic metrics, and texture features on the
separability of different tree species and chose the best separability scheme for tree species
classification:

(1) Scheme 1: Use only spectral features (10 spectral bands plus four vegetation indices,
totally 14 features).

(2) Scheme 2: Spectral features + topographic metrics (17 features).
(3) Scheme 3: Spectral features + topographic metrics + texture features (25 features).
The RF classifier in the research was based on the “randomForest” plug-in in ENVI

5.3. After repeated testing, the parameter ntree (number of trees) was set to be 800, and the
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feature digit (mtry) used on each node iwas the square root of the total number of input
features [20,48].

To assess the accuracy of the tree species classification using Sentinel-2 images, we
calculated the overall accuracy (OA), Kappa coefficient, producer’s accuracy (PA), and
user’s accuracy (UA) based on the ground testing samples confusion matrix [49].

4. Results
4.1. Separability Analysis of Different Schemes

In order to illustrate the separability of different vegetation types under different
classification schemes, we calculated the pairwise separability between the various classes
based on Jeffries−Matusita (JM) distance [50]. JM distance value ranges from 0 to 2, and a
higher JM value indicates stronger separability of two classes. In this study, the JM distance
is divided into four levels: strong separation (1.9–2.0), good separation (1.8–1.9), weak
separation (1.7–1.8), and poor separation (<1.7). A JM distance between each two different
classes greater than 1.8 is required for a satisfactory classification. Figure 3a–c represents
the separability under the three classification schemes, respectively. Under Scheme 1, trees
and non-trees can be well separated. However, the distinction between closer vegetation
classes is poor, such as P.C. vs. Populus and cropland vs. sloping cropland.
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C1 to C7 represent Sabina przewalskii, Betula, Picea crassifolia, Populus, grassland, cropland and sloping
cropland, respectively.

Under Scheme 2, the overall separability has significantly increased. The separability
of cropland, sloping cropland, and grassland increased, but it is still difficult to classify.
Figure 3c shows all JM distances are greater than 1.9, except for S.P. vs. P.C. and S.P. vs.
Populus, which means combining topographic metrics and texture features can effectively
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increase the separation between similar vegetation categories. In particular, the texture
features can well classify different tree species, such as Betula and P.C., P.C. and Populus,
and cropland and sloping cropland. This strongly shows that the texture features of
Sentinel-2 images can enhance the separability of tree species.

4.2. Classification Accuracy

Considering the separability of different types in the three schemes, the final classifi-
cation result is based on Scheme 3. The accuracy assessment results show that the overall
accuracy is 86.49%, with the Kappa coefficient of 0.83 (Figure 4a). Compared with non-
trees, the trees showed a better recognition potential with higher PA and UA, indicating a
satisfying performance of Sentinel-2 in recognition of tree species. However, the results also
demonstrate that the classification of non-trees was relatively poor, especially in sloping
cropland with a UA of 54.17%. The complex distribution of farmland, roads, and water
systems in the study area resulted in many misclassifications of vegetation types, especially
in river valleys and flat regions.

Forests 2021, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Classification accuracies of Scheme 3. (a) PAs and UAs of different vegetation types, (b) misclassifications be-
tween different vegetation types. 

Based on the chord diagram, more detailed misclassifications between different 
vegetation types are analyzed (Figure 4b). Each arc represents the correctly classified 
samples of one vegetation class, and the links between different classes represent mis-
classifications. The width of each link indicates the number of misclassified samples. The 
wider the link, the more the misclassified samples. Taking Betula as an example, the 
purple link on the left indicates the wrong classification of other classes into Betula, while 
the blue link on the right means the misclassification of Betula into other classes. There 
are few misclassifications between the four trees, while the non-trees are more seriously 
misclassified, such as grassland vs. farmland and grassland vs. sloping farmland. Be-
cause of the growth of weeds in the field, there is an apparent spectral similarity between 
cropland, grassland and sloping cropland, making it difficult to classify non-trees. 

4.3. Spatial Distribution Patterns of Different Vegetation Types 
The spatial distribution of different vegetation types is presented in Figure 5. It 

shows that trees mostly grow at mid-altitude or high-altitude areas, covering 8286 km2, 
and accounting for 57.7% of the vegetated area of this region. Cropland and sloping 
cropland are located near residential places, with a gentle slope, suitable temperature 
and precipitation, which favors production. Grassland is the buffer zone between trees 
and cultivated land, with an area of 2740 km2. 
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Based on the chord diagram, more detailed misclassifications between different vege-
tation types are analyzed (Figure 4b). Each arc represents the correctly classified samples
of one vegetation class, and the links between different classes represent misclassifications.
The width of each link indicates the number of misclassified samples. The wider the link,
the more the misclassified samples. Taking Betula as an example, the purple link on the
left indicates the wrong classification of other classes into Betula, while the blue link on
the right means the misclassification of Betula into other classes. There are few misclassifi-
cations between the four trees, while the non-trees are more seriously misclassified, such
as grassland vs. farmland and grassland vs. sloping farmland. Because of the growth of
weeds in the field, there is an apparent spectral similarity between cropland, grassland and
sloping cropland, making it difficult to classify non-trees.

4.3. Spatial Distribution Patterns of Different Vegetation Types

The spatial distribution of different vegetation types is presented in Figure 5. It
shows that trees mostly grow at mid-altitude or high-altitude areas, covering 8286 km2,
and accounting for 57.7% of the vegetated area of this region. Cropland and sloping
cropland are located near residential places, with a gentle slope, suitable temperature and
precipitation, which favors production. Grassland is the buffer zone between trees and
cultivated land, with an area of 2740 km2.
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Figure 5. The spatial distribution patterns (a) and acreages (b) of different vegetation types.

The area of Betula is 3447.6 km2, accounting for 41.6% of the total, which is the
dominant tree species among the four tree species. The acreages of P.C. and Populus are
1575.6 km2 and 1851.7 km2, respectively. The area of S.P. is 1229.2 km2, which is the least.
The Betula is mainly Betula platyphylla in the study area, an important temperate forest
component. As a pioneer tree species in the forest, Betula platyphylla indicates that the forest
is in the transitional stage of community succession. The large area of Betula represents
that the forest ecosystem of the Qilian Mountains is unstable and fragile.

4.4. Geographical Distribution Characteristics of Different Tree Species

The separability schemes show that adding topographic metrics can increase the
separability between different tree species. Moreover, the classification result presents a
prominent distribution characteristic of “Populus−Betula−P.C.−S.P.”, extending from the
river valley to the ridge. Therefore, we try to explore the relationship between topographic
metrics and tree species distribution in altitude and slope. We count the area of trees
with a 500 m interval, and Figure 6a shows that the four tree species mainly grow in the
range of 2500–3500 m. In general, the acreage of the four tree species increases first and
then decreases with attitude. Populus tend to grow between 2500 and 3000 m, and also
above 4000 m. The growing regions of Betula and P.C. are similar, mainly distributed
in 2500–3500 m, but Betula mainly grows at an altitude above 4000 m. S.P. is mostly
distributed within altitudes between 2000 and 3500 m, and its area increases as the altitude
increases.
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Concerning the slope, the area of trees is counted at every 5◦ interval, and the result is
shown in Figure 6b. The area of S.P. and P.C. keep increasing with the slope, and the acreage
of Betula and Populus increase first and then decrease between 5◦ and 30◦. The four tree
species have specific tendencies to sunlight. Therefore, we analyzed the distribution of
tree species on the different aspects (Figure 6c). This shows that P.C. and Populus mostly
grow on shady and semi-sunny slopes, while S.P. and Betula are evenly distributed in
every aspect.

Although the distribution of different tree species in altitude, slope, and aspect over-
laps, combining three topographic metrics can effectively increase the separability of tree
species, which is consistent with some previous studies [17,46,51].

5. Discussion

Remote sensing-assisted tree species classification is driven by various forest man-
agement and ecological protection departments [31,52]. In the past 40 years, studies on
tree species classification have been increasing, especially based on airborne multispectral
sensors [8,9]. However, many researches focus on identifying broad tree species, such as
coniferous and broadleaf forests, and there is less researches regarding more detailed tree
species classification, especially using satellite images. Therefore, this research explored
the possibility of using Sentinel-2 multispectral images to classify four arbor tree species
(S.P., Betula, P.C., and Populus) in the eastern region of the Qilian Mountains in China.

Although this study confirms the great potential of Sentinel-2 images in the refined
tree species classification, there are still two limitations. First, although vegetation indices
and texture features are the primary basis for identifying tree species, ground tree species
information is equally important. The relatively high accuracy of tree species classification
in this study is possibly resulted from the way we collected tree species samples. The tree
species samples used in this article are mainly derived from the ground survey samples
of the Qinghai Province Forest Resources Survey in 2018, accounting for 78% of all of the
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sample data. Each ground survey sample generated nearly nine classification samples, and
these nine samples are concentrated in the same space, and their spectral characteristics and
topographic metrics are highly similar. Due to the limitation of experimental conditions, we
can not collect an ideal sample set. Alternatively, UAV images and airborne laser scanning
data can provide training samples with a more reasonable spatial distribution, which will
improve the collection of training and validation samples and eventually promote tree
species classification with satellite images [53,54].

Second, texture feature is important in differentiating tree species. However, the
texture information is calculated from Sentinel-2 images with a 10 m spatial resolution in
this study, which is insufficient. Remote sensing images with a sufficiently high spatial
resolution can provide rich texture information, and texture details such as canopy shape,
size, and roughness, can help in accurate tree species identification. Thus, a possible way to
acquire more detailed texture information is to integrate high-resolution satellite imagery,
such as GaoFen-2 Pan-Multispectral (GF-2 PMS) images, in classification. Moreover, the
feature geometry and surface features provided by spaceborne LiDAR can compensate for
the deficiencies of optical remote sensing images [48,53]. Nowadays, spaceborne LiDAR
data are proliferating [54], and it is easier to obtain data at any time and area. Assimilating
information from both optical images and LiDAR data in tree species classification may be
another way to boost tree species classification. Therefore, remote sensing images with a
high spatial resolution and LiDAR data for the accurate classification of tree species is a
practical and feasible approach.

6. Conclusions

Accurate tree species information is essential for ecological assessment and other forest
applications, especially for the ecologically fragile Qilian Mountains. Therefore, based on
the Sentinel-2 image with a spatial resolution of 10 m and the random forest algorithm, our
research achieved high-precision and refined recognition of the existing main tree species
(S.P., Birch, P.C., and Populus) in the eastern region of the Qilian Mountains.

(1) The overall accuracy of tree species classification is 86.49%, and the Kappa coeffi-
cient is 0.83. Compared with non-tree forests (grassland, cropland, and sloping cropland),
the recognition of the trees is better, and their PA and UA are higher than 84.97%. How-
ever, there are certain misclassifications and omissions, especially between grassland and
cropland, grassland, and sloping cropland.

(2) Altitude, slope and aspect all affect the spatial distribution of the tree species.
Except for Populus, other tree species generally show a “first increase-then decrease” trend
as the altitude increases. At the same time, various tree species also show significant
differences in slope and aspect. Although the distribution of different tree species in alti-
tude, slope, and aspect overlaps, combining the three topographic metrics can distinguish
different tree species.

(3) After comparing separability, adding texture features makes the separability be-
tween vegetation categories greater than 1.9, and the separability is good. Only the
separability between S.P. and P.C., S.P., and Populus is greater than 1.8, and the separation
is qualified. Texture features effectively increase the separability of tree species.

In general, Sentinel-2 images have great potential in the delicate monitoring and
identification of tree species. Classification and monitoring of tree species in ecologically
fragile areas can assist in regional ecological assessment and forest protection and provide
meaningful guidance for realizing automatic forest inventory and government decision-
making.
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