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Abstract: Accurate forest above-ground biomass (AGB) estimation is important for dynamic mon-
itoring of forest resources and evaluation of forest carbon sequestration capacity. However, it is
difficult to depict the forest’s vertical structure and its heterogeneity using optical remote sensing
when estimating forest AGB, for the reason that electromagnetic waves cannot penetrate the canopy’s
surface to obtain low vegetation information, especially in subtropical and tropical forests with
complex layer structure and tree species composition. As an active remote sensing technology, an
airborne laser scanner (ALS) can penetrate the canopy surface to obtain three-dimensional structure
information related to AGB. This paper takes the Jiepai sub-forest farm and the Gaofeng state-owned
forest farm in southern China as the experimental area and explores the optimal features from the
ALS point cloud data and AGB inversion model in the subtropical forest with complex tree species
composition and structure. Firstly, considering tree canopy structure, terrain features, point cloud
structure and density features, 63 point cloud features were extracted. In view of the biomass dis-
tribution differences of different tree species, the random forest (RF) method was used to select the
optimal features of each tree species. Secondly, four modeling methods were used to establish the
AGB estimation models of each tree species and verify their accuracy. The results showed that the
features related to tree height had a great impact on forest AGB. The top features of Cunninghamia
Lanceolata (Chinese fir) and Eucalyptus are all related to height, Pinus (pine tree) is also related to
terrain features and other broadleaved trees are also related to point cloud density features. The
accuracy of the stepwise regression model is best with the AGB estimation accuracy of 0.19, 0.76,
0.71 and 0.40, respectively, for the Chinese fir, pine tree, eucalyptus and other broadleaved trees. In
conclusion, the proposed linear regression AGB estimation model of each tree species combining
different features derived from ALS point cloud data has high applicability, which can provide
effective support for more accurate forest AGB and carbon stock inventory and monitoring.

Keywords: above-ground biomass (AGB); airborne laser scanner (ALS); feature extraction; random
forest; estimation models

1. Introduction

Forests have the highest biological storage capacity and play a key role in the global
carbon cycle. As a natural and renewable resource, the forest also plays an irreplaceable role
in maintaining global ecological balance and biodiversity [1,2]. Forest biomass is not only
an important indicator of terrestrial ecosystem function evaluation, but also an important
parameter of forest carbon sink assessment [3]. Therefore, accurate assessment of the forest
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biomass is beneficial to quantify forest carbon storage, and can provide a key reference for
forest resource management. However, the lack of forest biomass information is one of
the uncertain factors of the global carbon budget [4]. China has a large area of plantations
which has high carbon sequestration potential. Real-time and accurate monitoring of the
forest biomass of China’s plantations will not only promote the assessment accuracy of
forest carbon storage, but it also has important significance for evaluating the sustainable
development potential of China’s plantations.

The traditional forest biomass survey is mainly based on the ground measurement.
Its low efficiency and high cost are not conducive to large-scale forest biomass estimation.
With the development of remote sensing technology, the limitations of traditional forest
biomass estimation, such as small scale, destructive to vegetation and discontinuity, have
been changed [5]. Using optical imaging, microwave remote sensing and LiDAR (Light
Detection and Ranging) to estimate forest AGB has gradually become the main technical
means for biomass research. The penetration of optical remote sensing to ground objects
is weak, and it can only reflect or absorb the electromagnetic radiation of the top layer
of the canopy. It is difficult to obtain the vertical structure parameters of vegetation and,
inevitably, the signal is easily saturated [6]. Microwave radar has penetrability, which can
obtain the three-dimensional structure information of the forest. However, it is easy to
be affected by topography and saturation of the back-scattering signal. It also has some
limitations for a large area of biomass estimation [7].

As an active remote technology, LiDAR can acquire data in a short period and has high
range resolution, angular resolution and strong anti-jamming ability. It has incomparable
advantages over optical remote sensing in obtaining forest vertical structure parameters
closely related to biomass [8,9]. The laser pulse emitted by LiDAR can penetrate the canopy
to obtain information on the terrain under the forest canopy [10], which can be used to
extract the tree height and canopy height, forest coverage, density and the situation of
trees with different ages. In addition, LiDAR has strong anti-interference ability and can
obtain biophysical and structural parameters of the trees according to pulse intensity
information or full waveform information. Many studies have shown that both small
footprint LiDAR data and waveform LiDAR data can achieve high accuracy in forest
biomass estimation [11–13].

Airborne LiDAR (ALS) can obtain the vertical structure information of trees through
the canopy, so as to obtain information on tree height and laser point density, but it cannot
directly obtain the information on forest biomass. Most of the research modeling AGB
uses the correlation between the point cloud characteristics and measured biomass [14–18].
Kronseder et al. [13] used LiDAR point cloud data to estimate the AGB of two different
tropical rainforest tree species in Central Kalimantan, Indonesia, and established a forest
aboveground biomass model using a multiple stepwise regression method. The results
showed that the relative root mean square error of two different tree species was less than
42%, and the relative root mean square error of the total aboveground biomass was 33.85%.
He et al. [19] used low-density airborne LiDAR point cloud data to extract the characteristic
variables, such as percentile height and density of point cloud data, and estimated the
total AGB and its components’ biomass estimation models of Picea crassifolia forest in
Qilian Mountains using the multiple stepwise regression method. The results showed
that the estimation accuracy of AGB was high, the adjusted R2 was 0.727, the root mean
square error was 15.237 mg/ha and the relative root mean square error was 14.163%. The
estimation accuracy of leaf biomass was relatively low, and the adjusted R2 was 0.356.
Shao et al. [20] used LiDAR data to estimate the AGB of temperate broadleaved forest.
The results showed that the accuracy of the model was high, with R2 being 0.81. Jinbo
Lu et al. [21] used airborne and backpack LiDAR to estimate the aboveground biomass
of a Robinia pseudoacacia plantation in the Yellow River Delta of China, extracted the
point cloud height information and intensity information and constructed the aboveground
biomass model using multiple linear regression and random forest methods. The results
showed that the estimation accuracy of aboveground biomass of healthy forest, medium
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dieback forest and severe dieback forest were 0.72, 0.77 and 0.70, respectively, using
multiple linear regression. The accuracy of using random forest was 0.92, 0.95 and 0.91,
respectively. Salum RB et al. [22] used LiDAR point cloud data combined with a forest
map to study mangrove biomass in Guaras Island, Brazil, and the relationship between
tree height and aboveground biomass was established. The R2 was between 0.85 and 0.92,
which showed that the tree height obtained by LiDAR could replace the traditional method
to estimate forest aboveground biomass.

In conclusion, ALS data can obtain the information of forest vertical structure and can
directly obtain the information of vegetation height and canopy, which has incomparable
advantages in forest AGB estimation. At the same time, ALS data contain abundant
point cloud density and structure information, which makes it possible to explore much
more information. At present, most of the existing biomass studies on stand scale do not
distinguish tree species, study only a special tree species or only distinguish coniferous
forest and broad-leaved forest. This makes the estimation of AGB produce great errors in
the forest with a complex forest structure. Secondly, only canopy height and quantile tree
height parameters are extracted from ALS point cloud data, and few ecological parameters
are applied, such as leaf area index and porosity. These ecological parameters will also affect
the tree growth in the actual forest environment and indirectly affect the quality of AGB.
For the plantation stand with complex structure, the structural characteristics of different
tree species will lead to the difference of point cloud characteristics, which indicates that
the characteristic variables and estimation models of biomass may be different due to
different tree species, which is also the necessity of extracting characteristic variables and
modeling by distinguishing tree species.

Therefore, this study takes the typical plantation in southern China as the research
object, distinguishes tree species and completes the regional biomass mapping. By extract-
ing multiple features variables from the point cloud data, including height, density, terrain
and ecological parameters, more accurate biomass models for different tree species are
established, and AGB mapping with the sub-compartment unit is implemented, which
provide reference for forest scientific management and ecological assessment.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area is located in the Jiepai sub-forest farm of Gaofeng state-owned forest
farm in southern China (22◦56′41′ ′–23◦0′21′ ′ N, 108◦19′47′ ′–109◦23′16′ ′ E, Figure 1), cover-
ing 300 ha with 87% plantation forest. It is located in a subtropical humid monsoon climate
and hilly landform with an altitude of 100–500 m and a slope of 20◦–35◦. The annual
average temperature, precipitation and relative humidity are 21.6 ◦C, 1304.2 mm and 80%,
respectively. The proportion of non-forest land and forest land is 1:99, so the vegetation
coverage rate is very high and contains a very high biomass. The main tree species in the
plantation forest are Cunninghamia Lanceolata, Pinus, Eucalyptus and other broadleaved
trees (Castanopsis Hystrix, Lllicium Verum and Magnolia Denudata). This forest farm is a
typical representative of southern forests in China with complex forest composition and
structure. The saturation point of the biomass estimated by optical remote sensing is too
low. Therefore, it is very necessary to use airborne LiDAR to estimate the aboveground
biomass of different tree species.
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Figure 1. Location of the study area (a) is the location of Nanning City. (b) is the distribution of each tree species sample plot.

2.1.2. Field Data

The field data include the sub-compartment inventory data from 2014 and the sample
plot data collected from January to February in 2018. Before the sample plot survey,
Chinese GF-2 image was visually interpreted to determine the survey area and the sampling
plot’s location. Considering the terrain characteristics, tree species distribution and the
accessibility of ground investigation, different size sample plots were set up according to
the actual situation. The 20 × 20 m2 and 25 × 25 m2 sample plots were used for the study
of single tree classification and single tree parameter estimation. The 30 × 30 m2 sample
plots were used to estimate forest stand parameters, such as canopy density and forest
biomass. For 20 × 20 m2 and 25 × 25 m2 plots, each tree with a diameter at breast height
(DBH) greater than 5 cm was measured. Real-time kinematic (RTK) Zenith 15pro was used
to measure the location of the four corners and center of each plot. The total station STS-772
was used to measure the location of each tree in the plots. The laser altimeter was used to
measure the height of each tree. The DBH of each tree was measured with a DBH ruler,
and crown width of each tree from east to west and north to south was measured with a
tape. For the plots of 30 × 30 m2, RTK was used to measure the locations of the northwest
and southeast corners of the plots, and sample trees were randomly selected from different
DBH classes and the heights and DBH were measured, then the average tree height and
DBH of the plots were calculated. Detailed plot information of different tree species is
shown in Table 1. The distribution of sample plots is shown in Figure 1.

The AGB of Chinese fir and Eucalyptus was calculated using the relative growth
equation proposed by Wen Yuanguang et al. [23,24]. The AGB of pine tree used the relative
growth equation proposed by Du Hu et al. [25]. The AGB of other broadleaved trees used
the general formula of Chinese Broadleaved Trees in the handbook of main forest biomass
models of China written by Luo Yunjian et al. [26]. In this study, the sample data were
divided into training data and testing data. For tree species with more than 20 samples,
samples were divided to the ratio of 2:1 of training and testing samples, and the training
and testing samples were evenly distributed in the study area. Meanwhile, the number of
testing samples should not be less than 10. For the tree species with less than 20 samples,
the data were trained and tested by the leave-one method. The specific sample plots
information is shown in Table 1.
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Table 1. Sample plots information.

Plot
No. Species Plot Size

(m2)
Inventoried Trees (All
Trees/Sample Trees)

Forest
Type

Training/Testing
Dataset

Number
of Plots

Diameter at Breast
Height (DBH cm)

Tree Height
(m)

Stem Density
(n·ha−1) AGB (t·ha−1)

1–27 Chinese fir

20 × 20 All trees Middle
Training 2 17.9 ± 11.9 13 ± 6.5 1200 ± 0 92.8 ± 5.5
Testing 4 22.8 ± 18.1 15.6 ± 10 900 ± 300 87.8 ± 2.7

25 × 25 All trees Middle
Training 6 28.1 ± 20.8 19.5 ± 12.6 624 ± 160 83.8 ± 24
Testing 4 22.1 ± 8.7 16.6 ± 4.8 656 ± 96 82.7 ± 2.8

30 × 30 Sample trees Middle
Training 9 15.5 ± 4.4 13.6 ± 2.6 2272 ± 1461 82.7 ± 22.2
Testing 2 14.6 ± 1 13.4 ± 1.5 1744 ± 389 88.5 ± 2.5

28–42 Pine tree 30 × 30 Sample trees
Middle Training/

testing 6 22 ± 3.9 16.8 ± 1.5 1211 ± 667 139.7 ± 36.1

Young Training/
testing 9 15.2 ± 2.5 9.4 ± 3.3 1333 ± 345 126.4 ± 73.2

43–77 Eucalyptus

20 × 20 All trees
Middle

Training 1 17.4 ± 8.4 21.3 ± 4.4 1300 185.7
Testing 2 23.1 ± 9.4 24.5 ± 10 937 ± 163 301 ± 37.8

Young Training 8 10.3 ± 7.3 14.2 ± 8.6 1887 ± 838 67.3 ± 54.2
Testing 7 12.3 ± 7.1 11.3 ± 10 1537 ± 188 58 ± 33.5

25 × 25 All trees
Middle Training 7 17 ± 11.5 20.8 ± 11.8 1232 ± 656 204.2 ± 91
Young Training 3 12.1 ± 7.7 13.1 ± 6.3 1608 ± 616 89.5 ± 34

30 × 30 Sample trees Young Training 4 10.4 ± 0.8 15.2 ± 1.9 1855 ± 423 85.1 ± 32.8
Testing 3 10.1 ± 2.4 14.5 ± 2.7 2177 ± 467 82.8 ± 33.3

78–98
Other

broadleaved
trees

25 × 25 All trees Middle
Training 3 18.7 ± 14.4 13.1 ± 9 1192 ± 312 209.6 ± 81.2
Testing 3 28.5 ± 21.5 15.8 ± 9.8 944 ± 240 227.7 ± 21.3

30 × 30 Sample trees Middle
Training 8 14.5 ± 5.3 13.9 ± 5.6 1233 ± 478 164.5 ± 112.4
Testing 7 18.1 ± 5 14.7 ± 4.1 1372 ± 806 172.3 ± 31.8

Note: m ± n, m is the median of the tree parameters for each tree species, n is the maximum value by which this parameter fluctuates up or down.
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2.1.3. ALS Data

The ALS scanning of the study area was performed in February 2018, with RIEGL
LMS-Q680i laser scanning system carried by manned aircraft of fixed wings. The data
format is LAS format, and the average cloud density of plantation is 3.35 points/m2. The
detailed scanning parameters of ALS are shown in Table 2.

Table 2. Laser scanning system parameters.

Parameters Value

Wavelength (nm) 1550
Divergence angle (mrad) 0.5

Step length (cm) 45
Pulse repetition rate (KHz) 360

Scanning rate (Hz) 112
Width (m) 1040

Flight altitude (m) 900
Flight speed (m/s) 55

Side overlap 65%
Average point spacing (m) 0.45 × 0.45

2.1.4. ALS Data Processing

The original ALS point cloud data are composed of hundreds of Las format files and
the data range is large, so corresponding splicing and clipping processes are needed. Sec-
ondly, due to the reflection of objects and the absorption of laser in LiDAR data acquisition,
some ground points have no obvious echo signal, such that the ranging value cannot be
obtained. In addition, due to the birds, wires and local terrain, abnormal distance values
will also be generated in the data. Those points whose ranging values are far greater than
the flight altitude or points with extremely small ranging values are called the outlier
points or noise points [27,28]. This paper uses the height threshold method to remove
the noise points [29]. Meanwhile, ground point and non-ground point are distinguished
by the height setting. The specific parameters of using height threshold for denoising
and classification filtering are shown in Table 3. Then, based on the ground points and
non-ground points, the point cloud height normalization processing is carried out to elimi-
nate the influence of terrain undulation on the elevation of surface features, and the real
height information of surface features can be obtained. The triangulated irregular network
(TIN) algorithm [30–32] is used to interpolate the ground points into a digital elevation
model (DEM) [33]. Kriging algorithm [34] is used to interpolate non-ground points into a
digital surface model (DSM). Finally, the difference between DSM and DEM is processed
to generate the canopy height model (CHM), so as to complete the point cloud height
normalization (Figure 2).

Table 3. Height threshold parameters of classification and filtering.

Category Search
Radius (m)

Height
Difference (m)

Minimum
Height (m)

Maximum
Height (m)

Maximum Terrain
Slope Angle (◦)

Iteration
Angle (◦)

Iteration
Distance (m)

High point 3 >5
Low point 3 <0.5

Ground point 88 8 1.5
Surface

vegetation
point

0 0.3

Forest point 0.3 50
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Figure 2. Elevation normalization of point cloud (a) is the elevation raster map. (b) is the side view
of point cloud data after elevation normalization. (c) is the enlarged result of (b).

2.2. Methods
2.2.1. Feature Variables Extraction

According to the structure features of point cloud data, considering the ecological
index and spatial structure index, the four categories of feature parameters were derived
from point cloud data. For the tree canopy feature, four feature parameters were extracted,
such as canopy density and leaf area index. For the terrain features, four feature variables,
such as slope and aspect, were extracted. For the point cloud structure features, 45 feature
parameters including height percentile, height maximum and height minimum, etc., were
extracted. Additionally, ten point cloud density feature parameters at different heights
were extracted. In total, 63 feature parameters of point cloud were extracted (Tables 4–7).

Table 4. Tree canopy features.

Feature Number Feature Meaning Abbreviation

1 Canopy density [35] The ratio of vegetation points to total points in a unit grid C.density
2 Spacing rate [36] The ratio of ground points to total points in a unit grid Gap
3 Leaf area index [36] Half of the leaf surface in a unit grid LAI
4 Canopy fluctuation rate [35] mean−min

max−min H.clr

Table 5. Terrain features.

Feature Number Feature Meaning Abbreviation

5 Roughness The ratio of the surface area to its projected area on a
horizontal plane RS

6 Slope The steepness of terrain surface based on the DEM Slope

7 Aspect The projection direction of slope normal line on a
horizontal plane based on the DEM Aspect

8 Mountain shadow The brightness of each pixel based on the DEM Shadow
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Table 6. Features describing the point cloud vertical distribution using heights.

Feature Number Feature Meaning Abbreviation

9 Mean absolute deviation ∑n
i =1(|Zi−mean|)

n
H.mean.AD

10 Median absolute deviation Median of ∑n
i =1(|Zi −mean|) H.AD.median

11–25 Cumulative Height Percentile The height sum of X% points in a unit grid Hc1-Hc99

26 Inter-quartile Range of
Cumulative Height Difference of Hc75 and Hc25 Hc.S

27–41 Height Percentile The height of X% points in a unit grid H1-H99
42 Inter-quartile Range Difference of H75 and H25 H.S
43 Kurtosis Kurtosis of all point height in a unit grid H.K
44 Variation Coefficient std

mean H.cv

45 Mean Quadratic Power 2
√

∑n
i =1 Z2

i
n

H.sq.mean

46 Mean Cubic Power 3
√

∑n
i =1 Z3

i
n

H.c.mean

47 Maximum Max height of all points in a unit grid Hmax
48 Minimum Min height of all points in a unit grid Hmin
49 Mean Mean height of all points in a unit grid Hmean
50 Median Median height of all points in a unit grid Hmedian
51 Skewness ∑n

i =1(Zi−mean)2

n
H.skewness

52 Standard Deviation Std height of all points in a unit grid H.std
53 Variance Var height of all points in a unit grid H.variance

Table 7. Point cloud density features.

Feature Number Feature Meaning Abbreviation

54–63 Point density in each
horizontal layer

The point cloud was sliced to ten horizontal layers
with the same heights. D1 to D10 corresponded to

the point density from the lowest layer to the highest
(D1 is the lowest layer)

D1–D10

2.2.2. Feature Variables Selection

The four extracted groups of features may be highly related or redundant, and a
large number of feature variables increases the complexity of the model, which will lead
to overfitting when the number of the sample plot is small. The Random Forest (RF)
algorithm is a popular feature selection method which can realize data reduction and
optimization [37,38]. The decline of target prediction accuracy after removing variables
is indicated by %IncMSE, which is the growth of root mean square error rate. When the
value is larger, the contribution of the variable is greater (Equation (1)). In this study, R
software was used to realize RF feature selection.

%IncMSE =
1

Ntree∑
(
errOOB− errOOB′

)
(1)

where: Ntree is the number of RF decision trees (set to 1000), OOB (Out of Bag) is a randomly
selected sample set, errOOB is the error of OOB when the sample set is not changed, and
errOOB′ is the error of OOB when the sample set is changed.

2.2.3. Regression Modeling of AGB

In this study, stepwise regression, ridge regression, principal component regression
and nonlinear regression are used for AGB model establishing. Stepwise regression (SR)
considers the variance contribution value of all variables when introducing variables and
sorts them into a regression equation according to their importance. The final equation
does not contain unnecessary independent variables [39,40]. Ridge regression belongs to
a kind of biased estimation, which is a supplement to the improved least square method.
It is considered to be a better method to deal with collinearity problems [41–44]. Princi-
pal component regression (PCR) is another biased estimated method to deal with severe
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collinearity [45–47]. The number of principal component factors in a PCR input model
depends on the contribution rate and cumulative contribution rate of each principal compo-
nent to dependent variables. The multiple linear regression model is established using the
principal components whose cumulative contribution rate reaches 80% [48,49]. Nonlinear
regression refers to the form where the dependent variables and independent variable of
the model are not a one-step function, but are represented graphically as curves of various
forms. In this study, the nonlinear equation set is shown in Equations (2)–(5) for different
tree species:

Chinese fir Y = b0 + b1x1
2 + b2x2

2 + b3x3
2 + b4x4

2 + b5x1x2 + b6x1x3 + b7x1x4 + b8x2x3 + b9x2x4+
b10x3x4 + b11x1x2x3 + b12x1x2x4 + b13x1x3x4 + b14x2x3x4 + b15x1x2x3x4

(2)

Pine tree Y = b0 + b1x1
2 + b2x2

2 + b3x3
2 + b4x4

2 + b5x1x2 + b6x1x3 + b7x1x4 + b8x2x3 + b9x2x4+
b10x3x4 + b11x1x2x3 + b12x1x2x4 + b13x1x3x4 + b14x2x3x4 + b15x1x2x3x4

(3)

Eucalyptus Y = b0 + b1X1
b2 + . . . + b12X6

b13 (4)

Other broadleaved trees Y = b0 + b1x1
2 + b2x2

2 + b3x3
2 + b4x1x2 + b5x1x3 + b6x2x3 + b7x1x2x3 (5)

In the above formula, bi is constant, and xi is the ith independent variable.

2.2.4. Accuracy Evaluation

The coefficient of determination R2, accuracy A, root mean square error(RMSE) and
mean absolute error (MAE) are used in the accuracy evaluation of this study. The training
accuracy is expressed by coefficient of determination R2 using training data. The test
accuracy is expressed by R2, A, RMSE and MAE using testing data. The specific formula is
shown in Equations (6)–(9):

R2 = 1− mean(Xmodel, i− Xobs, i)2

mean(mean(Xobs, i)− Xobs, i)2 (6)

where: R2 is the coefficient of determination, Xobs,i is the measured value, Xmodel,i is the
estimated value, and mean is the average value.

A = 1− |Xobs, i− Xmodel, i|
Xobs, i

(7)

RMSE =
(

mean(Xmodel, i− Xobs, i)2
)0.5

(8)

MAE =
1
N

N

∑
i=1

|Xmodel, i− Xobs, i| (9)

where: RMSE is the root mean square error, MAE is the mean absolute error, and N is the
number of samples.

3. Results
3.1. Feature Selection

According to the number of training samples and the principle of moderate proportion,
the proportion of training samples and independent variables is set as 4:1. Among the
63 feature variables extracted from the point cloud data, the top four feature variables
of importance ranking were selected for modeling for Chinese fir, while the top four,
top six and top three feature variables of importance ranking were selected for pine tree,
eucalyptus and other broadleaved trees. The importance ranking maps of feature variables
for each tree species are shown in Figure 3.
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Figure 3. Map of feature importance ranking.

From Figure 3, the top four feature variables of Chinese fir are H.S, H.variance, H.K
and H.mean.AD. The top four feature variables of pine tree are H.K, H.AD.median, Slope
and RS. The top six feature variables of eucalyptus are H60, H50, Hmedian, Hc40, Hc20
and Hc50. The top three feature variables of other broadleaved trees are H1, D9 and
H.AD.median. The selected top features of the four tree species are mostly related to the
height, which is the key factor to determine AGB. In addition to the correlation with height
features, the AGB of pine trees also has a correlation with slope and roughness, which
could be explained from the sample plot situations of the pine tree. Among 15 sample
plots, 9 plots are young forest and 6 plots are middle age forests, and the terrain is complex
with a large slope. Therefore, the estimation results of the pine tree’s AGB can be affected
by the terrain. The important features of other broadleaved trees include a point cloud
density feature which is consistent with various species’ composition and the tree crown
structure characteristics.

3.2. Correlation Analysis

The correlation coefficient matrix was constructed to analyze the correlation between
AGB and the importance features. The heat map can directly display the correlation
between each variable and AGB. Different colors are used to distinguish the positive and
negative of the correlation. The depth of the color reflects the strength of the correlation.
The results are shown in Figure 4.

Figure 4 shows that H.S, H.variance and H.mean.AD are moderately correlated with
AGB (0.40 < |r| < 0.70) among the top four features of Chinese fir. H.K and AGB are
minimally correlated (0.20 < |r| < 0.40). Slope and RS have relatively low correlation with
AGB (|r| < 0.20) for pine trees, and H.K has a high correlation with AGB (0.70 < |r| < 1.00),
while other features are less correlated with the AGB of pine trees. The AGB of eucalyptus
is significantly correlated with the six features (p < 0.01). Among the three importance
features of other broadleaved trees, H.AD.median has a very low correlation with AGB,
H1 has a low correlation with AGB and D9 has a moderate correlation with AGB. From the
feature correlation of each tree species, it can be seen that the height features of Chinese fir,
pine tree and eucalyptus are all moderately and highly correlated with AGB, except that
the height features of other broadleaved trees are minimally correlated with AGB. This
is because the canopy biomass of other broadleaved trees occupies the main body of the
aboveground biomass, while the trunk biomass of the Chinese fir, pine tree and eucalyptus
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accounts for a larger proportion, which also highlights the impact of height information on
the AGB of different species [50,51].

Figure 4. Features correlation of each tree species.

3.3. AGB Estimation Models

The aboveground biomass model of each tree species was constructed by using the
selected important variables based on the four regression methods. The model formula
and accuracy are shown in Table 8.

Table 8 shows that, except for eucalyptus, the training accuracy of the nonlinear
model of other species is higher than that of the linear model. The training accuracy of
nonlinear model of eucalyptus is 0.56, of other broadleaved trees is 0.79, and of Chinese
fir and pine trees is higher than 0.9. The results showed that the nonlinear model is better
for AGB estimation of coniferous forest. Among the three linear models, the training
accuracy of the stepwise regression model is the highest with the training accuracy of 0.72
for eucalyptus, which is higher than the other two linear models. The ridge regression
model of other broadleaved trees has the highest training accuracy (0.52), followed by the
stepwise regression model. The training accuracy of the three linear models of Chinese fir
is basically the same. The training accuracy of the stepwise regression model of pine trees
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is 0.72, which is better than the other two linear models. To sum up, the training accuracy
of the nonlinear model is relatively high, followed by the stepwise regression model [52].

Table 8. Different regression models and training accuracy.

Tree Species Method Model Training Accuracy R2

Chinese fir

SR Y = 108.5 − 4.7 × H.mean.AD 0.23

Ridge Y = 101.9 − 0.7 × H.S − 0.1 × H.variance − 0.01 × H.K − 1.3 ×
H.mean.AD 0.25

PCR Y = 109.5 − 0.8 × H.S − 0.2 × H.variance − 0.6 × H.K − 1.8 ×
H.mean.AD 0.24

Non

Y = 1048.5 + 5.4 × H.S2 − 3.0 × H.variance2 + 5.5 × H.K2 − 284.5 ×
H.mean.AD2 + 24.9 × H.S × H.variance − 92.4 × H.S × H.K − 170.6
× H.S × H.mean.AD + 51.6 × H.variance × H.K + 62.5 × H.variance
× H.mean.AD − 262.2 × H.K × H.mean.AD − 19.9 × H.S ×

H.variance × H.K − 1.5 × H.S × H.variance × H.mean.AD + 137.1 ×
H.S × H.K × H.mean.AD − 5.8 × H.variance × H.K × H.mean.AD +

1.1 × H.S × H.variance × H.K × H.mean.AD

0.9

Pine tree

SR Y = 120.7 − 9.5 × H.K + 6.6 × H.AD.median + 4.7 × Slope − 32.5 × RS 0.72
Ridge Y = 135.0 − 8.4 × H.K + 6.2 × H.AD.median + 1.3 × Slope − 7.5 × RS 0.69
PCR Y = 116.1 − 6.7 × H.K + 12.2 × H.AD.median + 0.2 × Slope + 1.5 × RS 0.58

Non

Y = − 12790 − 20.7 × H.K2 − 420.9 × H.AD.median2 + 78.8 × Slope2 +
3019.7 × RS2 + 3502.1 × H.K × H.AD.median − 240.0 × H.K × Slope +

4364.5 × H.K × RS − 487.3 × H.AD.median × Slope + 9880.1 ×
H.AD.median × RS − 929.8 × Slope × RS + 80.4 × H.K ×

H.AD.median × Slope − 4487.1 × H.K × H.AD.median × RS − 76.6 ×
H.K × Slope × RS − 169.6 × H.AD.median × Slope × RS + 93.1 ×

H.K × H.AD.median × Slope × RS

0.98

Eucalyptus

SR Y = − 28.6 + 3.6 × H50 + 5.0 × Hc40 0.72

Ridge Y = − 26.6 + 0.4 × H60 + 1.4 × H50 + 1.4 × Hmedian + 1.7 × Hc40 +
2.3 × Hc20 + 1.3 × Hc50 0.72

PCR Y = − 27.2 + 1.2 × H60 + 1.2 × H50 + 1.2 × Hmedian + 1.6 × Hc40 +
1.7 × Hc20 + 1.6 × Hc50 0.71

Non Y = 2914 − 178.3 × H60 −0.02 − 3066.9 × Hc50 −0.05 0.56

Other
broadleaved

trees

SR Y = 114.6 − 11.4 × H1 + 302.3 × D9 0.48
Ridge Y = 96.7 − 8.4 × H1 + 264.9 × D9 + 7.7 × H.AD.median 0.52
PCR Y = 201.2 − 5.3 × H1 + 28.9 × D9 − 14.1 × H.AD.median 0.12

Non
Y = 142.4 + 16.7 × H12 + 583.8 × D92 + 1.6 × H.AD.median2 − 1989.8

× H1 × D9 − 99.9 × H1 × H.AD.median − 18.5 × D9 ×
H.AD.median + 1227.6 × H1 × D9 × H.AD.median

0.79

Note: SR is the stepwise regression. Ridge is the ridge regression. PCR is the principal component regression. Non is the nonlinear regression.

3.4. Accuracy Evaluation

In order to preliminarily judge the distribution situation of the estimated and mea-
sured values corresponding to the testing data, the accuracy information A of different
models of each tree species was calculated (Figure 5, Table 9).

As can be seen from Figure 5, except for eucalyptus, the distance between the upper
quartile and the lower quartile of the accuracy A of the three linear models is smaller
than that of the nonlinear model. The median value of accuracy A of the nonlinear model
is 0.6 for Chinese fir. Meanwhile, there is no significant difference between the upper
and lower quartiles of the accuracy A of the four models for pine trees, but the accuracy
difference of the nonlinear model is still greater than that of the linear model. In addition,
the maximum value of the four models has great differences for other broadleaved trees.
From the preliminary accuracy results, it can be seen that the accuracy A of the three linear
models is relatively concentrated, the median value is basically stable and the nonlinear
model is unstable [4].
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Figure 5. Box diagram of four models’ accuracy A for each tree species.

Table 9. Accuracy A comparison of four models for each tree species.

Tree Species Method Maximum Minimum Average Proportion Above 0.8

Chinese fir

SR 0.997 0.895 0.961 1
Ridge 0.997 0.900 0.952 1
PCR 0.997 0.880 0.953 1
Non 0.834 0.128 0.567 0.1

Pine tree

SR 0.991 0.286 0.842 0.73
Ridge 0.998 0.144 0.835 0.8
PCR 0.995 0.303 0.845 0.73
Non 0.801 −39.343 −2.886 0.07

Eucalyptus

SR 0.998 −0.289 0.780 0.67
Ridge 0.981 −0.267 0.771 0.67
PCR 1.267 −0.273 0.876 0.75
Non 0.967 −5.085 0.163 0.17

Other
broadleaved

trees

SR 0.962 0.553 0.839 0.8
Ridge 0.980 0.580 0.823 0.8
PCR 0.985 0.542 0.846 0.8
Non 0.996 0.603 0.859 0.8

Table 9 shows the numerical statistical results of accuracy A of four models for each
tree species. From the proportion above 0.8, the result shows that there is a great difference
between the nonlinear model and linear model. The proportion above 0.8 of the accuracy
A of nonlinear model for Chinese fir, pine tree and eucalyptus is less than 0.2 for all, the
proportion above 0.8 for other broadleaved trees is 0.8. The proportion above 0.8 of the
three linear models has little difference. To sum up, the accuracy A of the nonlinear model
is low compared with the other models, and the testing error of the model is large [4].
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3.5. Testing Accuracy

In order to determine the optimal models of each tree species, the testing accuracy
is analyzed based on measured and estimated values of testing data, and the results are
shown in Table 10.

Table 10. Testing accuracy.

Tree Species Method Testing Accuracy R2 RMSE (t/hm2) MAE (t/hm2)

Chinese fir SR 0.19 4.25 3.40
Ridge 0.07 4.78 4.11
PCR 0.11 5.02 4.10
Non 0.09 42.71 37.44

Pine tree SR 0.76 21.18 17.28
Ridge 0.73 23.19 18.56
PCR 0.64 25.69 17.90
Non 0.13 1118.00 303.96

Eucalyptus SR 0.71 50.75 25.48
Ridge 0.68 53.33 27.84
PCR 0.69 52.41 27.83
Non 0.11 168.79 79.94

Other broadleaved trees SR 0.40 46.28 33.80
Ridge 0.51 46.78 36.05
PCR 0.01 47.24 33.27
Non 0.32 44.85 31.62

Table 10 shows that the testing accuracy of the nonlinear model is generally low, with
about 0.1 for Chinese fir, pine tree and eucalyptus, except for other broadleaved trees at 0.32.
In the linear models, the testing accuracy of the stepwise regression model is higher, and
the testing accuracies of Chinese fir, pine tree, eucalyptus and other broadleaved trees are
0.19, 0.76, 0.71 and 0.40, respectively. The RMSEs are 4.25 t/hm2, 21.18 t/hm2, 50.75 t/hm2

and 46.28 t/hm2, respectively. According to the testing accuracy, RMSE and MAE of the
four models, the nonlinear model is unstable and has the problem of over-fitting. The
stepwise regression model is relatively stable and has the highest testing accuracy [52].

3.6. Forest Above-Ground Biomass Mapping

The AGB estimation results of each tree species showed that the stepwise regres-
sion model has the relatively highest testing accuracy. Therefore, according to the sub-
compartment data of the forest resources inventory in 2014 in Guangxi Province, the
distribution area of each tree species was extracted, and the corresponding point cloud
feature variables in each stand area were calculated. The stepwise regression model is used
to estimate the AGB of each tree species. The thematic map of AGB in study area is shown
as Figure 6.

It can be seen from Figure 6 that Chinese fir is mainly distributed in the southern and
central of the study area, and the AGB is mainly concentrated in the range of 80~98 t/hm2.
The distribution range of pine tree is small, mainly in the northwest and southeast of the
study area, and the AGB is mainly concentrated in the range of 120–160 t/hm2. Eucalyptus
is mainly distributed in the eastern and western of the study area, and the AGB is mainly
concentrated in the range of 50–120 t/hm2. The other broadleaved trees are distributed
evenly in the middle and among the four sides of the study area, and the AGB is mainly
concentrated in the range of 130–190 t/hm2. This result proves that under the same or
similar geographical environment, climate and forest age, the aboveground biomass of
other broadleaved trees is higher, which plays a very important role in carbon sequestration.
In the future, in the afforestation planning of artificial forest, we can increase the proportion
of broadleaved trees or the proportion of pine trees in coniferous forest to improve the
ecological environment’s construction and carbon sequestration capacity [51].
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Figure 6. Forest above-ground biomass distribution in the study area.

In order to more quantitatively represent the aboveground biomass of each tree species
in the study area, the obtained aboveground biomass values at the sub-compartment scale
are counted, as shown in Table 11.

Table 11. Statistics table of forest AGB in the study area.

Tree Species The Number of
Sub-Compartment

The Area of
Sub-Compartment (ha)

AGB of Sub-Compartment
(t·ha−1)

Chinese fir 80 8.495 ± 8.475 89.24 ± 14.89
Pine tree 63 7.835 ± 7.655 146.11 ± 54.83

Eucalyptus 391 8.595 ± 8.575 81.17 ± 68.82
Other broadleaved trees 234 6.795 ± 6.745 149.795 ± 125.925

Note: m ± n, m is the median of the sub-compartment parameters for each tree species, n is the maximum value by which this parameter
fluctuates up or down.

It can be seen from Table 11 that the number of sub-compartments of eucalyptus and
other broadleaved trees is large and the number of sub-compartments of Chinese fir and
pine tree is small in the study area, which is in line with the actual distribution law of
tree species. The maximum area of sub-compartment is no more than 17.17 ha and the
minimum is 0.02 ha from the statistical results, which are related to the actual planting area
of tree species. From the statistical results of AGB of thesub-compartment, the AGB of other
broadleaved tree fluctuates greatly, which is related to the structure of tree species [13].
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4. Discussion

In this study, the sensitive and optimal feature variables of aboveground biomass of
different species were analyzed using airborne LiDAR point cloud data for a plantation with
complex structure in South China, and the estimation model of biomass was constructed.
The main research focuses are as follows:

(a) There are differences in the optimal feature variables of different tree species. Com-
pared with most previous studies, most of the point cloud feature variables related to
aboveground biomass are height features [19,21]. In this study, the optimal features of
pine trees include terrain features, and for other broadleaved trees they include point
cloud density features. It also shows that the optimal features of different tree species
are different, and the height feature alone cannot depict the aboveground biomass
content of all tree species. Under complex terrain conditions, terrain variables should
be added, and for broadleaved trees, point cloud density features must be considered
as modeling variables.

(b) It is a great advantage to distinguish tree species for estimating regional forest above-
ground biomass. Compared with the forest AGB estimation in the same area, Zhang
LQ [53] used Landsat TM data to estimate the forest AGB in the Gaofeng forest farm
and constructed a multivariate linear equation. The accuracy was only 0.571. Com-
pared with the forest AGB estimation using LiDAR point cloud data, Fu t et al. [54]
used airborne LiDAR data to estimate forest AGB in Central Yunnan Province and
distinguished three forest types, including coniferous forest, broadleaved forest and
mixed forest. The results showed that the AGB estimation accuracy of coniferous for-
est was 0.68, and that of broadleaved forests was 0.43. From the above comparisons, it
can be concluded that it is necessary to distinguish tree species for estimating regional
forest AGB.

(c) The accuracy of tree species classification and distribution will affect the accuracy
of regional forest AGB distribution. The regional data used in this study are the
sub-compartment data of forest resources inventory, and the statistical unit is the
sub-compartment. The information of tree species in the sub-compartment pertains
to the dominant tree species, not the exact distribution of each tree species. Therefore,
how to improve the accuracy of tree species classification and map to fine patches
rather than the sub-compartment is the main direction of follow-up research.

(d) In this study, only forest AGB in a specific area was estimated by tree species. Whether
these models can be applied in other regions of same tree species has not been
compared and analyzed, which will be the focus of further research.

5. Conclusions

Based on LiDAR point cloud data, the features of point cloud data were extracted from
different aspects and the optimal feature combination of each tree species was obtained
through feature screening. The applicability of different forest AGB models for each tree
species was discussed, and the regional AGB mapping was completed. The results are
as follows:

(a) 63 features of point cloud data were extracted, including tree canopy feature, terrain
features, point cloud vertical distribution and point cloud density features. The
top features are mostly related to the height. Since pine trees are affected by the
actual sample plot environment, the tree structure is also related to the terrain factors.
Other broadleaved trees have different tree species composition, so the tree shape
is also related to the point cloud density features. It can be concluded that the AGB
determinants of different tree species are different, which are affected by various
external conditions such as environment, tree species composition and forest age.

(b) Considering the training accuracy, testing accuracy and complexity of stepwise re-
gression, ridge regression, principal component regression and nonlinear regression
models, the accuracy of the stepwise regression model was higher than that of non-
linear model, and the model was the simplest. Therefore, the stepwise regression
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method could be used to estimate forest AGB. The estimation accuracy of pine tree
and eucalyptus AGB was more than 0.7, while Chinese fir and other broadleaved tree
AGB was low, and that of Chinese fir was only 0.19. In conclusion, the AGB models
of pine tree and eucalyptus can be used in practice, and the AGB models of Chinese
fir and other broadleaved trees need to be optimized and verified.
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