
Article

Molecular Characterization, Pathogenicity and Biological
Characterization of Colletotrichum Species Associated with
Anthracnose of Camellia yuhsienensis Hu in China

Xinggang Chen 1,2,3,4 , Lingyu Jiang 1,2,3,4, Anhua Bao 1,2,3,4, Changlin Liu 1,2,3,4, Junang Liu 1,2,3,4

and Guoying Zhou 1,2,3,4,*

����������
�������

Citation: Chen, X.; Jiang, L.; Bao, A.;

Liu, C.; Liu, J.; Zhou, G. Molecular

Characterization, Pathogenicity and

Biological Characterization of

Colletotrichum Species Associated

with Anthracnose of Camellia

yuhsienensis Hu in China. Forests 2021,

12, 1712. https://doi.org/

10.3390/f12121712

Academic Editor: Miloň Dvořák
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Abstract: Camellia yuhsienensis Hu, a species of tea oil tree with resistance to anthracnose, is widely
used to breed disease-resistant Camellia varieties. In 2019, anthracnose symptoms were observed on
Ca. yuhsienensis for the first time. However, the species and biological characteristics of Colletotrichum spp.
isolated from Ca. yuhsienensis (YX-Colletotrichum spp.) have not been elucidated. In this study, five
isolates (YX2-5-2, 2YX-3-1, 2YX-5-1, 2YX-8-1-1 and 2YX-8-1-2), which were consistent with the mor-
phological characteristics of Colletotrichum spp., were obtained from Ca. yuhsienensis. A phyloge-
netic analysis demonstrated that YX2-5-2, 2YX-3-1 and 2YX-8-1-2 belonged to first clade along with
Colletotrichum fructicola. 2YX-8-1-1 belonged to the second clade along with Colletotrichum siamense.
2YX-5-1 belonged to the third clade with Colletotrichum camelliae. Pathogenicity tests revealed that
the pathogenicity of YX-Colletotrichum spp. was stronger than that of Colletotrichum spp. isolated
from Camellia oleifera (GD-Colletotrichum spp.). Biological characteristics illustrated that the mycelial
growth of YX-Co. camelliae (2YX-5-1) was slower than that of GD-Co. camelliae when the temperature
exceeded 20 ◦C. In addition, in the presence of ions, the mycelial growth of YX-Co. fructicola (YX2-5-2)
and YX-Co. siamense (2YX-8-1-1) was also slower than that of GD-Co. fructicola and GD-Co. siamense.
Furthermore, the ability of YX-Colletotrichum spp. to utilize lactose and mannitol was weaker than that
of GD-Colletotrichum spp., while the ability to utilize NH4

+ was generally stronger than that of GD-
Colletotrichum spp. This is the first report of anthracnose of Ca. yuhsienensis induced by Co. fructicola,
Co. siamense and Co. camelliae in China. These results will provide theoretical guidance for the study
of the pathogenesis and control of anthracnose on Ca. yuhsienensis.

Keywords: tea oil tree; Camellia yuhsienensis Hu; Colletotrichum; anthracnose; morphology; pathogenicity

1. Introduction

The tea oil tree generally refers to the Camellia genus, which has rich seed oil content
that is produced and highly valuable [1]. The genus includes such species as Ca. oleifera,
Ca. yuhsienensis, Camellia vietnamensis and Ca. oleifera var. monosperma, among others [2,3].
Tea oil extracted from the seed of tea oil tree is rich in unsaturated fatty acids and vitamin
E and has unique nutritional value [4]. Thus, the tea oil tree is as famous as coconut, palm
and olive, and is also known as one of the four major woody oil plants in the world [5,6].
Moreover, the United Nations Food and Agriculture Organization (FAO) recommended tea
oil as a high-quality and healthy vegetable oil owing to its nutritional value and excellent
storage quality [7]. In 2020, the area in China planted with tea oil trees reached 45,333.3 km2;
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the output of tea oil reached 627,000 tons, and the output value of tea oil industry reached
18 billion U.S. dollars, indicating that tea oil is highly valuable [8].

Anthracnose of the tea oil tree is an important factor that limits the yield of tea oil [9,10].
Colletotrichum spp. primarily infects the leaves and fruits of the tea oil tree, leading to a 20%
to 40% fruit drop and up to 40% seed loss [11]. It can also lead to the death of branches
and even entire plants, causing substantial economic losses and seriously damaging the
safety of edible oil in China [12]. In addition, Colletotrichum spp. are also important
pathogens of a variety of plants, such as tea plants (Camellia sinensis) and apple trees
(Malus domestica), among others [13–15]. Colletotrichum spp. are also regarded as among
the top 10 plant pathogenic fungi in the field of molecular plant pathology because of their
strong pathogenicity and wide spread [16].

The species and biological characteristics of Colletotrichum spp. vary according to
the host. The different species and biological characteristics of Colletotrichum spp. cause
great obstacles to the targeted control of anthracnose. A previous study revealed that
the destructive pathogen that causes anthracnose of the tea oil tree (Ca. oleifera) is in the
Colletotrichum gloeosporioides species complex [17].Li (2016) [18] further isolated 406 strains
of Colletotrichum spp. from Ca. oleifera in 10 provinces of China, including Co. fructicola,
Co. siamense, Co. gloeosporioides, Co. camelliae and C. horii, with Co. fructicola the most widely
distributed. Fu (2019) [19] isolated 488 strains of Colletotrichum spp. from pear in seven
provinces of China. It was found that Co. fructicola was the most distributed in Asian pear
(Pyrus pyrifolia), and Co. siamense was the most distributed in European pear (P. communis),
indicating that the species and pathogenicity of Colletotrichum spp. vary on different species
of pear. Lu (2018) [20] isolated Co. camelliae and Co. fructicola from Ca. sinensis, and their
biological characteristics showed that they were substantially different. Consequently, the
identification of the species and biological characteristics of Colletotrichum spp. on the host
is the basis of targeted control of anthracnose.

Breeding and planting resistant plants is an important measure to control anthrac-
nose [21,22].

Camellia yuhsienensis Hu, a species of tea oil tree, was once widely cultivated in central
China because of its high quality, yield and strong resistance to anthracnose. [23–30].
Consequently, Ca. yuhsienensis, as a wild relative of Ca. oleifera, is widely used to breed
varieties of tea oil tree [23].

Unfortunately, anthracnose symptoms have been observed on the leaves of Ca. yuh-
sienensis for the first time. Therefore, anthracnose of Ca. yuhsienensis, as a new disease,
merits urgent study. The aim of the present study was to investigate the cause of anthrac-
nose associated with Ca. yuhsienensis. Following surveys, morphological studies and
DNA phylogenies were used to identify the disease causal agent. Moreover, pathogenic-
ity and biological characterization studies were performed to determine the virulence of
diverse fungal isolates in Ca. yuhsienensis and provide guidance for the targeted control
of Ca. yuhsienensis anthracnose. In summary, this study provides a theoretical basis for
further understanding the pathogenic mechanism of tea oil tree anthracnose and provides
theoretical guidance for the prevention and control of tea oil tree anthracnose.

2. Materials and Methods
2.1. Fungal Isolates and Plant Material

Colletotrichum spp. isolated from Ca. oleifera, Guangdong Province, China (GD-
Colletotrichum spp.) were all obtained from the Key Laboratory of National Forestry
and Grassland Administration for the Control of Diseases and Pests of South Plantation,
Changsha, China.

The infected leaves of Ca. yuhsienensis were collected from a Ca. yuhsienensis plantation
in Youxian, Hunan Province, China (113.3◦2′16′′ E, 26.7◦15′14′′ N).

Three-year-old specimens of Ca. yuhsienensis were used as the experimental material.
Trees were originally obtained from the Key Laboratory of Cultivation and Protection for
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Non-Wood Forest Trees of Ministry of Education, Changsha, Hunan Province, China, and
transplanted into a greenhouse (28 ◦C, 12 h light, 90% humidity).

2.2. Molecular Characterization

Colletotrichum spp. Were incubated on potato dextrose broth (PDB) at 28 ◦C for 5 days.
The genomic DNA of Colletotrichum spp. Was extracted from the mycelia using a Plant
Genomic DNA Extraction Kit DP305 (TIANGEN, Biotech, China). The DNA samples were
used as the templates for PCR amplification. The partial actin (ACT), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), chitin synthase (CHSI) and manganese-superoxide
dismutase (SOD2) genes were amplified by PCR [31,32]. The PCR products were sequenced
by Tsingke Biotechnology Co., Ltd., Changsha, China. A Maximum Likelihood (ML)
phylogenetic tree based on the combined ACT, CHSI, SOD2 and GAPDH sequences using
MEGA 5.05 (https://www.megasoftware.net, accessed on 4 November 2021; AZ, USA)
was established.

2.3. Morphological Characterization

Colletotrichum spp. Were cultured on potato dextrose agar (PDA) at 5-day post-
inoculation (dpi). A 5 mm mycelial plug was transferred from the edge of actively growing
cultures to fresh PDA plates. Morphological characters, including the shape and color of
the colony and mycelia, were visually observed at 5 dpi [33]. Microscopic characters were
examined by microscopy (Eclipse Ni-U; Nikon, Tokyo, Japan) at 10 dpi.

2.4. Koch’s Postulates Verification

Attached Ca. yuhsienensis leaves were washed with deionized water and then ster-
ilized with 1% sodium hypochlorite for 3 min. Nonwounded tests were conducted by
inoculating leaves with a YX2-5-2 conidial suspension (1× 106 conidia/mL) that were used
as the treated samples, and leaves inoculated with sterile water were used as the controls.
Wounding tests were conducted by scratching the leaves with sterilized needles and then
inoculating them with a YX2-5-2 conidial suspension (1 × 106 conidia/mL). Leaves inocu-
lated with sterile water were used as the controls. Finally, anthracnose symptoms were
photographed after 5 dpi. Both tests were repeated three times.

2.5. Pathogenicity Tests

Nonwounded and unattached Ca. yuhsienensis or Ca. oleifera leaves were washed with
deionized water and then sterilized with 1% sodium hypochlorite for 3 min. Pathogenicity
tests were conducted by scratching the leaves with sterilized needles and then inoculating
them with a conidial suspension (1 × 106 conidia/mL). Leaves inoculated with sterile water
were used as the controls. The inoculated samples were placed in 12 cm plastic Petri dishes
and cultured in an incubator for 2 (For Ca. oleifera) or 4 (For Ca. yuhsienensis) days at 28 ◦C.
Finally, the diameter of the lesions was measured. Each isolate was measured in triplicate.

2.6. Effect of Temperature and pH on Mycelial Growth

Mycelial plugs (5 mm) from PDA were placed in the center of PDA plates and cultured
in incubators set at different temperatures (10, 15, 20, 25, 28, 30, and 35 ◦C) for 5 days.
Moreover, 5 mm mycelial plugs from PDA were placed in the center of PDA plates adjusted
to a range of pH values from 3.0 to 10.0 for 5 days in an incubator at 28 ◦C. Na2HPO4–citric
acid buffer was used to prepare PDA with pH values of 3.0–8.0, while Na2CO3-NaHCO3
buffer was used to prepare PDA at pH values 9.0 and 10.0. Finally, the colony diameter
was measured. Each isolate was measured in triplicate.

2.7. Effect of Carbon and Nitrogen Sources on Mycelial Growth

Czapek-Dox Agar (3 g/L NaNO3, 1 g/L K2HPO4, 0.5 g/L MgSO4·7H2O, 0.5 g/L
KCl, 0.01 g/L FeSO4, and 30 g/L sucrose) was used as the basic medium. To analyze
the carbon sources, sucrose in the basic medium was replaced by the same quantity of

https://www.megasoftware.net
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glucose, mannitol, lactose, or soluble starch. To analyze the nitrogen source, sodium nitrate
(NaNO3) in the basic medium was replaced by the same quantity of casein tryptone, urea,
ammonium chloride (NH4Cl), or ammonium nitrate (NH4NO3). Mycelial plugs (5 mm)
from PDA were transferred onto the media containing different carbon or nitrogen sources.
The cultures were incubated at 28 ◦C for 5 days. The colony diameter was measured, and
each experiment was conducted in triplicate.

3. Results and Discussion
3.1. Symptom Characteristics

In April 2019, typical anthracnose symptoms were first observed on Ca. yuhsienensis
in a plantation in Youxian, Hunan Province, China (113.3◦2′16′′ E, 26.7◦15′14′′ N). Most of
the diseased leaves had wounds, such as those caused by insect bites [34–36]. Therefore,
Colletotrichum spp. are more likely to infect leaves through these wounds. It is common for
resistant plants to be infected through wounds. For instance, Silva (2021) [37] found that
on the relatively resistant host Capsicum chinense PBC932, pathogenicity was dependent on
both the inoculation method (with or without wounding) and the stage of maturity of the
fruit. It was difficult to infect PBC932 with Colletotrichum spp. without injury but relatively
easy to infect PBC932 with injury.

However, five unwounded Ca. yuhsienensis leaves also showed symptoms of anthrac-
nose (Figure 1B). The isolate YX2-5-2 was reinoculated on Ca. yuhsienensis, and the same
symptoms occurred, confirming Koch’s postulates (Figure 1C,D). All of the diseased leaves
had irregular grayish brown spots with dark brown edges and dark brown undersides,
similar to previous reports [38,39]. Ca. yuhsienensis is famous for its resistance to anthracnose,
and there have been no reports of anthracnose on Ca. yuhsienensis to date. Therefore, the
phenomenon that the healthy leaves of Ca. yuhsienensis were infected by Colletotrichum spp.
attracted our attention. Five leaves of Ca. yuhsienensis were collected to obtain the pathogens.
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Figure 1. Typical symptoms of anthracnose on Camellia yuhsienensis. (A) No symptoms were observed
on control leaves treated with sterilized water; (B) Anthracnose symptoms on Ca. yuhsienensis in a
plantation in Youxian, Hunnan Province, China; (C) Anthracnose symptoms were seen on attached,
unwounded leaves treated with a conidial suspension (1 × 106 conidial/mL) of isolate YX2-5-2;
(D) Anthracnose symptoms were seen on attached wounded leaves treated with a conidial suspension
(1 × 106 conidial/mL) of isolate YX2-5-2.
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3.2. Cultural and Morphological Characteristics

Five isolates (YX2-5-2, 2YX-3-1, 2YX-5-1, 2YX-8-1-1 and 2YX-8-1-2) were obtained
from Ca. yuhsienensis for the first time. Their morphological characteristics are shown
in Figure 2. Few differences in colony morphology were clearly observed among the five
isolates. Figure 2 shows that the upper side of these colonies on PDA was fluffy, cottony
and white at first, then became light gray, whereas the reverse side slowly turned dark gray.
Thus, the color of the upper side of the colony was generally lighter than that of the reverse
side. There were significant differences in the rate of mycelial growth between 2YX-5-1 and
the other isolates. The mycelial growth of 2YX-5-1 was generally slower than that of the
other four isolates (Table 1). The conidia were all hyaline, guttulate, smooth, one-celled, and
cylindrical (Figure 2). In addition, the conidial sizes of 2YX-8-1-1 and 2YX-5-1 were larger
than those of other isolates (Table 1). An interesting phenomenon was observed that larger
conidia can result in slower mycelial growth. A similar phenomenon has been described in a
previous study; the conidia of isolate C07046 was larger than those of isolate C96002, and the
mycelial growth was slower than that of C96002 even though both C07046 and C96002 are
isolates of Colletotrichum coccodes [40]. In conclusion, the characteristics of the five isolates
were consistent with the morphological characteristics of Colletotrichum spp. [31,41].
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Figure 2. (A–E) Colony morphology of isolates YX2-5-2, 2YX-8-1-2, 2YX-3-1, 2YX-8-1-1 and 2YX-5-1
on PDA after 5 days at 28 ◦C, respectively; (F–J) Conidia of isolates YX2-5-2, 2YX-8-1-2, 2YX-3-1,
2YX-8-1-1 and 2YX-5-1, respectively; scale bar = 10 µm.

Table 1. Summary of the morphological data of the five isolates.

Isolates Conidial Size (µm) Mycelial Growth (mm/d)

YX2-5-2 7.27 ± 0.52 × 1.81 ± 0.31 13.9 ± 0.6
2YX-8-1-2 7.27 ± 0.48 × 2.42 ± 0.27 13.7 ± 0.3
2YX-3-1 7.27 ± 0.55 × 1.81 ± 0.21 13.1 ± 0.8

2YX-8-1-1 9.09 ± 0.45 × 3.64 ± 0.43 13.4 ± 0.3
2YX-5-1 9.09 ± 0.36× 3.64 ± 0.39 8.5 ± 0.9

3.3. Phylogenetic Analysis

For molecular identification, internal transcribed spacer (ITS), partial actin (ACT),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), manganese-superoxide dismutase
(SOD2) and chitin synthase (CHS-1) genes/region of all the isolates were successfully
amplified and sequenced (Table 2). The sequences at individual loci were insufficient to
separate closely related species within the Co. gloeosporioides species complex. Thus, the five
genes/region of each isolate were combined in the order of ITS-ACT-GAPDH-SOD2-CHS-1.
A phylogenetic tree of these five isolates in this study indicated that there were three well
separated clades (Figure 3). YX2-5-2, 2YX-3-1 and 2YX-8-1-2 belonged to first clade along
with Co. fructicola ICMP 18581, ICMP 17,921 and ICMP 18646. 2YX-8-1-1 belonged to the
second clade along with Co. siamense ICMP 18642. Lastly, 2YX-5-1 belonged to the third
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clade with Co. camelliae ICMP 10646, ICMP 10,643 and ICMP 18542. These results suggest
that Co. fructicola is probably the most distributed species on Ca. yuhsienensis. Li (2016) [18]
also found that Co. fructicola was the dominant species on Ca. oleifera. Wang (2020) [38]
further discovered that Co. fructicola was common and a widely distributed species on the
leaves of Ca. oleifera, which indicated that the tea oil tree is probably the most susceptible
to Co. fructicola. The anthracnose of Ca. yuhsienensis was first discovered with a small rate
of incidence and a few samples, and the disease has not yet been found in other areas.
Consequently, the deduction above merits further verification with more samples in the
future. However, this result is still helpful for the study of anthracnose on Ca. yuhsienensis.
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Table 2. GenBank accession number of the five isolates.

Isolate Gene Name Genbank Accession Number

YX2-5-2 GAPDH MW398864
YX2-5-2 ACT MW398863
YX2-5-2 CHSI MW886232
YX2-5-2 SOD2 MW398866
YX2-5-2 ITS MW398865

2YX-8-1-2 GAPDH MZ224482
2YX-8-1-2 ACT MZ224483
2YX-8-1-2 CHSI OL310498
2YX-8-1-2 SOD2 MZ224480
2YX-8-1-2 ITS MZ224481
2YX-8-1-1 GAPDH MW398861
2YX-8-1-1 ACT MW398860
2YX-8-1-1 CHSI OL310500
2YX-8-1-1 SOD2 MZ048745.1
2YX-8-1-1 ITS MW398862
2YX-5-1 GAPDH MZ048746
2YX-5-1 ACT MW924872
2YX-5-1 CHSI MW924874
2YX-5-1 SOD2 MW924873
2YX-5-1 ITS MW911446
2YX-3-1 GAPDH MW924878
2YX-3-1 ACT MW924879
2YX-3-1 CHSI OL310499
2YX-3-1 SOD2 MW924877
2YX-3-1 ITS MW924880
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3.4. Pathogenicity Tests

To explore the reason why the Colletotrichum spp. isolated from Ca. yuhsienensis, Youxian,
China (YX-Colletotrichum spp.) could infect Ca. yuhsienensis without requiring an injury
to the tree, the Colletotrichum spp. isolated from Ca. oleifera, Guangdong, China (GD-
Colletotrichum spp.) and YX-Colletotrichum spp. were used for pathogenicity tests. First,
GD-Colletotrichum spp. infected Ca. yuhsienensis without injury for 15 days. There were no
typical symptoms of anthracnose, proving that Ca. yuhsienensis could not be infected by
GD-Colletotrichum spp. Therefore, we suspected that some changes may have taken place
in the biological characteristics, such as pathogenicity, optimal temperature, pH, carbon
and nitrogen source, of the YX-Colletotrichum spp., so that they could infect Ca. yuhsienensis
without injury, while GD-Colletotrichum spp. could not.

Secondly, wounded leaves of Ca. yuhsienensis were used for pathogenicity. The results
are shown in Figure 4. Different species of Colletotrichum differ in their degree of pathogenic-
ity to Ca. yuhsienensis. The pathogenicity of Co. fructicola was the weakest, in which the
diameter of lesion formed by GD-Co. fructicola was 2.45 mm and those of YX-Co. fructicola
(YX2-5-2, 2YX-3-1, 2YX-8-1-2) were 4.97 mm, 4.6 mm, and 4.95 mm, respectively. Co. camelliae
was the most aggressive at causing infection, in which the diameter of the lesion formed
by GD-Co. camelliae was 4.95 mm and that by YX- Co. camelliae (2YX-5-1) was 7.83 mm
(Figure 4G). These results showed that the pathogenicity of Co. fructicola was weaker than
that of the other species of Colletotrichum spp., which is consistent with previous stud-
ies [13,20,38,42]. Lu (2018) [20] concluded that the difference in appressorium development
between Co. camelliae and Co. fructicola led to pathogenic variation between these two
species. However, a phenomenon was observed that YX-Co. camelliae (2YX-5-1) with larger
conidia and slower mycelial growth may be more pathogenic. Choi (2011) [40] also found
that the pathogenicity of isolate C07046 with larger conidia and slower mycelial growth was
stronger than that of isolate C96002, even though they are all members of Co. coccodes.
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Figure 4. Pathogenicity of GD-Colletotrichum spp. (isolated from Camellia oleifera) and YX-Colletotrichum
spp. (isolated from Ca. yuhsienensis) on Ca. yuhsienensis. (A–C) Lesion development by YX-Co. fructicola
(YX2-5-2, 2YX-3-1, 2YX-8-1-2) and GD-Co. fructicola was photographed at 4 days post infiltration (dpi);
(D) Lesion development by YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense was photographed at
4 dpi; (E) Lesion development by YX-Co. camelliae (2YX-5-1) and GD-Co. camelliae was photographed
at 4 dpi; (F) Schematic diagram of the pathogenicity test in which the conidia of GD-Colletotrichum
spp. were infiltrated into the underside panel of the leaf, while those of YX-Colletotrichum spp. were
infiltrated into the upper side panel of the same leaf; (G) Lesion diameters were measured at 4 dpi.
The error bars represent standard deviations based on six biological replicates. Lesion diameters
followed by the same lowercase letter are not significantly different at p < 0.05 using an ANOVA.
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Significantly, in contrast to the previous experimental results, only one isolate of
YX-Co. camelliae (2YX-5-1) and YX-Co. siamense (2YX-8-1-1) with stronger pathogenicity
was obtained, while three isolates of YX-Co. fructicola with weaker pathogenicity were
obtained. Li (2016) [18] also found that although Co. camelliae had strong pathogenicity,
the prevalent Colletotrichum spp. on Ca. oleifera was Co. fructicola, which indicated that
the strong pathogenicity may be owing to the loss of other abilities, such as transmission
and mycelial growth. This phenomenon is also consistent with the law of infectious dis-
eases in animals. For instance, influenza has strong transmissibility, but the mortality
rate is poor. In contrast, Creutzfeldt -Jacob disease has high mortality but poor transmis-
sion. In addition, these results also indicated that during the same incubation time, the
diameter of lesions caused by YX-Colletotrichum spp. were generally larger than those
of GD-Colletotrichum spp. (Figure 4). Thus, the pathogenicity of YX-Colletotrichum spp. to
Ca. yuhsienensis was stronger than that of Colletotrichum spp.

The pathogenicity of Colletotrichum spp. to different hosts varies. For example,
Han (2016) [43] found that Co. fructicola was more pathogenic to strawberry than other
Colletotrichum spp., which differs from the results of this study. Owing to the fact that
Ca. yuhsienensis is more resistant to anthracnose than Ca. oleifera, we hypothesized that YX-
Colletotrichum spp. was also more pathogenic on Ca. oleifera than GD-Colletotrichum spp. [44].
Thus, wounded leaves of Ca. oleifera were used for pathogenicity. Figure 5 shows similar
results. Co. fructicola was the weakest pathogen. The diameter of the lesion formed by GD-
Co. fructicola was 2.75 mm and by those of YX-Co. fructicola (YX2-5-2, 2YX-3-1, 2YX-8-1-2)
were 5.67 mm, 4.33 mm, and 4.75 mm, respectively. Co. camelliae was the most pathogenic.
The diameter of the lesion formed by GD-Co. camelliae was 3.83 mm and that of YX-Co.
camelliae (2YX-5-1) was 8.0 mm (Figure 5G). The fact that the pathogenicity of Co. fructicola
was weaker than that of the other Colletotrichum spp. is also consistent with the results. The
diameter of lesions caused by YX-Colletotrichum spp. were generally larger than those of
GD-Colletotrichum spp. during the same amount of incubation (Figure 5).
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Figure 5. Pathogenicity of GD-Colletotrichum spp. and YX-Colletotrichum spp. on Camellia. oleifera.
(A–C) Lesion development by YX-Co. fructicola (YX2-5-2, 2YX-3-1, 2YX-8-1-2) and GD-Co. fructicola
was photographed at two days post inoculation (dpi); (D) Lesion development by YX-Co. siamense
(2YX-8-1-1) and GD-Co. siamense were photographed at 2 dpi; (E) Lesion development by YX-
Co. camelliae (2YX-5-1) and GD-Co. camelliae were photographed at 2 dpi; (F) Schematic diagram of
pathogenicity. The conidia of GD-Colletotrichum spp. were infiltrated into the underside panel of
the leaf, while the YX-Colletotrichum spp. was infiltrated into the upper side panel of the same leaf;
(G) Lesion diameters were measured at 2 dpi. The error bars represent standard deviations based on
six biological replicates. Lesion diameters followed by the same lowercase letter are not significantly
different at p < 0.05 using an ANOVA.
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These results prove that whether the host was Ca. oleifera or Ca. yuhsienensis, the
pathogenicity of YX-Colletotrichum spp. was stronger than that of GD-Colletotrichum spp.,
which could be the reason why YX-Colletotrichum spp. could infect Ca. yuhsienensis without
injury. Different plants respond differently to pathogens, which leads to different growth
environments after the pathogen has colonized. For instance, Wang (2018) [45] found
two varieties of Ca. sinensis Zhongcha 108 and Longjing 43 with different resistances to
anthracnose. Among them, Zhongcha 108, having strong resistance could be due to the
important role of H2O2. When the same isolate of Colletotrichum spp. infected Zhongcha
108, only the Colletotrichum spp. that were more resistant to H2O2 could colonize. The
formation of resistance to H2O2 requires the cooperation of multiple metabolic pathways of
Colletotrichum spp. During this process, the biological characteristics of Colletotrichum spp.
may change. Similarly, increased pathogenicity of YX-Colletotrichum spp. may also cause
changes in some biological characteristics. Consequently, the other biological characteristics
of YX-Colletotrichum spp. were studied. Owing to the strong pathogenicity of YX2-5-2 in
YX-Co. fructicola, YX2-5-2 was selected as the representative isolate of YX-Co. fructicola for
the convenience of the follow-up experiments.

3.5. Effect of Temperature and pH on Mycelial Growth

Figure 6 indicates that the mycelia of isolates grew more quickly as the temperature
increased. When the temperature reached 25 ◦C~30 ◦C, the diameter of colonies decreased
with an increase in temperature. Lima (2015) [46] also found that both high and low
temperatures significantly affected the development of the pathogen in vitro and in vivo,
and that a high temperature (35 ◦C) can completely inactivate the virulence of Colletotrichum
acutatum, while low temperatures (≤2 ◦C) can inactivate the virulence of Co. gloeosporioides.
The results illustrate that the optimal temperature of different isolates differed, but the
growth trend was similar. The optimal temperature of GD-Co. fructicola and YX-Co.
fructicola (YX2-5-2) was 30 ◦C. The optimal temperature of GD-Co. siamense was 30 ◦C,
while the optimal temperature of YX-Co. siamense (2YX-8-1-1) was 28 ◦C. The optimal
temperature of YX-Co. camelliae (2YX-5-1) was 25 ◦C, while the optimal temperature of GD-
Co. camelliae was 30 ◦C (Table 3). These results prove that the optimal growth temperature
of GD-Colletotrichum spp. and YX-Colletotrichum spp. were slightly different. This could
be because GD-Colletotrichum spp. and YX-Colletotrichum spp. originated from different
latitudes. GD-Colletotrichum spp. was isolated from Guangdong Province in southern
China, while YX-Colletotrichum spp. was isolated from Youxian, Hunan Province in central
China. Therefore, the optimal growth temperature of GD-Colletotrichum spp. may be
slightly higher than that of YX-Colletotrichum spp. A similar phenomenon was also found
by Han, in that isolates of Colletotrichum nymphaeae, which are only distributed in areas of
higher altitude (1,000 m), were highly sensitive to higher temperatures [43].

However, Figure 6C indicates an interesting phenomenon, in that the mycelial growth
of YX-Co. camelliae (2YX-5-1) was slower than that of GD-Co. camelliae when the tempera-
ture exceeded 20 ◦C. The results of 3.1 and 3.2 show that YX-Co. camelliae with stronger
pathogenicity has mycelia that grow more slowly than those of the other species of YX-
Colletotrichum spp. A previous study also displayed the strong pathogenicity and slow
mycelial growth of Co. camelliae [38]. Therefore, we hypothesized that the increased
pathogenicity of YX-Co. camelliae (2YX-5-1) was at the expense of its mycelial growth
rate. Xue (2019) [47] also discovered a similar phenomenon, that the mycelial growth of
Colletotrichum fioriniae with stronger pathogenicity was slower than that of Co. fructicola.
Li (2008) [48] also discovered that the mycelial growth of Colletotrichum gloeosporioides with
stronger pathogenicity was slower than that of Colletotrichum gloeosporioides with weaker
pathogenicity. Thus, these phenomena further proved the previous hypothesis that the
improvement in pathogenicity may come at the expense of other adaptive abilities.
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Figure 6. Effect of temperature on the growth of (A) YX-Co. fructicola (YX2-5-2) and GD-Co. fructicola;
(B) YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense; (C) YX-Co. camelliae (2YX-5-1) and GD-Co.
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Table 3. Optimum mycelial growth temperature of the six isolates.

Isolates Optimal Temperatures (◦C)

YX-Colletotrichum spp.
YX-Co. fructicola 30
YX-Co. siamense 28
YX-Co. camelliae 25

GD-Colletotrichum spp.
GD-Co. fructicola 30
GD-Co. siamense 30
GD-Co. camelliae 30
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Figure 7 illustrates that all of Colletotrichum spp. could grow at pH 3~10, but the
growth was greatly limited when the pH was 3 or 10. The optimal pH for the growth of
the six isolates was between 6 and 8, which indicates that Colletotrichum spp. can grow
in acidic, alkaline and neutral environments. He (2016) [49] also found that the optimal
growth pH of Colletotrichum truncatum was 5~8.
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A previous study indicated that Colletotrichum spp. alkalinizes its surroundings during
the colonization of host tissue [50,51]. Tardi-Ovadia (2017) [52] also found that the pH of the
area infected by Co. coccodes and Helminthosporium solani increased from the native pH of
approximately 6.0 for potatoes to 7.4 to 8.0, which proved that Colletotrichum spp. grow better
in an alkaline environment. However, De Costa (2014) [53] found that the optimal pH for the
mycelial growth of Colletotrichum musae was 4.5. These results prove that different species
of Colletotrichum respond differently to environmental factors, such as pH. Consequently, it
is necessary to explore the biological characteristics of YX-Colletotrichum spp.

An interesting phenomenon appeared in that the mycelial growth of YX-Co. fructicola
(YX2-5-2) and YX-Co. siamense (2YX-8-1-1) was slower than that of GD-Co. fructicola and
GD-Co. siamense at pH 3~10. We hypothesized that the existence of ions inhibits their
growth. We further hypothesized that the enhancement of their pathogenicity may come at
the cost of the reduction of ion resistance, just as YX-Co. camelliae (2YX-5-1) increased its
pathogenicity at the cost of its ability to grow.

3.6. Effect of Carbon and Nitrogen Sources on Mycelial Growth

When glucose, sucrose and mannitol were used as carbon sources, there was no
significant difference in the mycelial growth of GD-Co. fructicola and YX-Co. fructicola
(YX2-5-2) (Figure 8A). When lactose was used as the carbon source, the mycelial growth
of YX-Co. fructicola (YX2-5-2) decreased, and when soluble starch was used as the carbon
source, the mycelial growth of YX-Co. fructicola (YX2-5-2) increased (Figure 8A). There was
no significant difference between YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense in the
utilization of glucose, sucrose and soluble starch, but YX-Co. siamense (2YX-8-1-1) was less
effective than GD-Co. siamense at utilizing lactose and mannitol (Figure 8B). Furthermore,
compared with GD-Co. camelliae, YX-Co. camelliae (2YX-5-1) did not differ significantly in
the utilization of glucose, sucrose and soluble starch, but YX-Co. camelliae (2YX-5-1) was
significantly less effective than GD-Co. camelliae in the utilization of lactose and mannitol
(Figure 8C). Therefore, there was no significant difference in the utilization of glucose,
sucrose and soluble starch between YX-Colletotrichum spp. and GD-Colletotrichum spp.
Nevertheless, the ability of YX-Colletotrichum spp. to utilize lactose and mannitol was
generally less than that of GD-Colletotrichum spp. The reason for this phenomenon could
be that Ca. yuhsienensis was difficult to infect and colonize. Thus, YX-Colletotrichum spp.
may sacrifice some functions not normally used, such as the utilization of mannitol and
lactose, to improve its pathogenicity.

When urea, NH4Cl, casein tryptone and NaNO3 were used as nitrogen sources,
there was no significant difference in the mycelial growth of GD-Co. fructicola and YX-Co.
fructicola (YX2-5-2). When NH4NO3 was used as the nitrogen source, the mycelial growth
of YX-Co. fructicola (YX2-5-2) increased (Figure 9A). There was no significant difference
between YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense in the utilization of urea and
NaNO3, but YX-Co. siamense (2YX-8-1-1) was less effective than GD-Co. siamense at utilizing
casein tryptone (Figure 9B). In addition, YX-Co. siamense (2YX-8-1-1) was significantly
more effective than GD-Co. siamense at utilizing NH4Cl and NH4NO3 (Figure 9B). YX-Co.
camelliae (2YX-5-1) was less effective than GD-Co. camelliae at utilizing casein tryptone and
NaNO3 but slightly more effective at utilizing NH4NO3 (Figure 9C). These results illustrate
that the utilization of NH4

+ of YX-Colletotrichum spp. was generally stronger than that of
GD-Colletotrichum spp., while the utilization of casein tryptone was generally less effective
than that of Colletotrichum spp. We hypothesized that there are fewer proteins or amino
acids that can be directly used in the leaves of Ca. yuhsienensis, but more NH4

+, resulting in
the stronger utilization of NH4

+ by YX-Colletotrichum spp. Prusky (2001) [54] also believed
that NH4

+ was an important pathogenic factor of Colletotrichum. Therefore, the increased
utilization of NH4

+ may increase the pathogenicity of YX-Colletotrichum spp.
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was no significant difference in the mycelial growth of GD-Co. fructicola and YX-Co. fruc-
ticola (YX2-5-2). When NH4NO3 was used as the nitrogen source, the mycelial growth of 
YX-Co. fructicola (YX2-5-2) increased (Figure 9A). There was no significant difference be-
tween YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense in the utilization of urea and 
NaNO3, but YX-Co. siamense (2YX-8-1-1) was less effective than GD-Co. siamense at utiliz-
ing casein tryptone (Figure 9B). In addition, YX-Co. siamense (2YX-8-1-1) was significantly 
more effective than GD-Co. siamense at utilizing NH4Cl and NH4NO3 (Figure 9B). YX-Co. 
camelliae (2YX-5-1) was less effective than GD-Co. camelliae at utilizing casein tryptone and 

Figure 8. Effect of carbon sources on the growth of (A) YX-Co. fructicola (YX2-5-2) and GD-Co.
fructicola; (B) YX-Co. siamense (2YX-8-1-1) and GD-Co. siamense; (C) YX-Co. camelliae (2YX-5-1) and
GD-Co. camelliae. The error bars represent standard deviations based on three biological replicates.
Diameters of colonies followed by the same lowercase letter are not significantly different at p < 0.05
using an ANOVA.
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using an ANOVA.
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4. Conclusions

This study presents the first research on anthracnose in Ca. yuhsienensis leaves caused
by Colletotrichum spp. in Hunan Province, China. Five isolates (YX2-5-2, 2YX-3-1, 2YX-5-1,
2YX-8-1-1 and 2YX-8-1-2), having the morphological characteristics of Colletotrichum spp.,
were obtained from Ca. yuhsienensis. A phylogenetic analysis demonstrated that YX2-5-2,
2YX-3-1 and 2YX-8-1-2 belonged to Co. fructicola, 2YX-8-1-1 belonged to Co. siamense and
2YX-5-1 belonged to Co. camelliae. A pathogenicity test indicated that the pathogenicity
of YX-Colletotrichum spp. to Ca. yuhsienensis and Ca. oleifera was stronger than that of
GD-Colletotrichum spp. The results of biological characteristics indicated that the mycelial
growth and ionic resistance of YX-Colletotrichum spp. were generally less than that of
Colletotrichum spp. Further research illustrated that the ability of YX-Colletotrichum spp. to
utilize lactose and mannitol was less than that of Colletotrichum spp., while the ability to
utilize NH4

+ was generally greater than that in Colletotrichum spp. In summary, the results
will provide theoretical guidance for the study of the pathogenesis and control schemes of
anthracnose in Ca. yuhsienensis.
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