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Abstract: Transitional climate zones (TCZ) are characterized by instability due to rapid changes in
climate and biological variables, and trees growing there are particularly sensitive to climate change.
Therefore, knowledge about the shifted relationships of tree growth in response to climate warming
will shape regional forest conservation and management strategies. China has experienced rapid
warming in recent decades. However, how tree growth in semihumid to semiarid regions, such as
the Guandi Mountains, responds to more sophisticated changes in the hydrothermal combination
is not yet clear. In this study, we used tree-ring width data from three sites along an elevational
gradient in the Guandi Mountains to present the response of Picea wilsonii Mast. radial growth
to increasing temperature and elevational differences in the relationship between tree growth and
climate. The results indicated that the Guandi Mountains have experienced rapid warming with a
clear trend toward aridity. From 1959 to 1995, the radial growth of P. wilsonii was mainly influenced
by temperature, while it was controlled by both temperature and precipitation after rapid warming
in 1996. From 1959 to 2017, this species showed a generally consistent growth–climate relationship
at different elevations in the Guandi Mountains. However, the radial growth of trees at higher
elevations had a higher climatic correlation than at lower elevations, and it was more conditioned
by higher summer temperatures and precipitation in December of the previous year. These results
suggested that P. wilsonii was more susceptible to drought and high temperatures due to a warming
climate and that more attention should be devoted to forest management, especially the adverse
consequences of summer drought on P. wilsonii.

Keywords: climate warming; tree growth; abrupt change in temperature; response; dendrochronology

1. Introduction

The global climate has shifted towards warmer and drier regimes during the past
100 years [1,2], and the trend in northern China has been stronger than that of the Asian
regional average [3,4]. Studies also found that semiarid areas in China expanded rapidly
and mainly transformed from subhumid/humid regions [5]. As a climatically sensitive
zone, the East Asian summer monsoon (EASM) margin changed from a temperate climate
to a dry climate due to changes in both temperature and precipitation over the past
60 years [2]. The hydrothermal pattern is considered more complex for mountain ranges in
climate transition areas such as the EASM margin due to the highly diverse topography and
altered atmospheric circulation. Whether such regions become drier under the condition of
rapid warming still needs further clarification.

Tree growth–climate relationships provide bases for climate reconstruction and refer-
ences for forest management. Variations in growth–climate relationships driven by climate
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change are also the focus of recent dendrochronology research. The limitation of low tem-
peratures and short growing seasons on tree growth at high-latitude/altitude treelines may
relax with warming [6], but moisture deficiency and drought caused by climate warming
can lead to declines in forest productivity and shrinkage of forest distribution [7,8]. Studies
have found that forests in semiarid regions are subject to seasonal or occasional drought
stress [7,9], tree growth decline, and mortality due to a drier climate [10,11], and the up-
ward movement of treelines caused by temperature increases in semiarid areas [12,13]
has been reported. In contrast, trees in subhumid regions are generally controlled by
temperature [14] because moisture does not act as the limiting factor. In the semihumid to
semiarid climate transition zone, trees are commonly under the control of both temperature
and precipitation [15]. Therefore, it is still unclear whether the factors controlling the
growth–climate relationship shift from temperature control to precipitation control as a
result of climate warming in semihumid to semiarid climate transition zones.

A general phenomenon found in tree physiological studies is that cool locations/high-
altitude tree growth is primarily driven by temperatures, while warm locations/low alti-
tudes are primarily driven by precipitation [12,16–19]. Different patterns of spruce growth
have been reported in response to recent warming at various altitudes in mountains of
semihumid and semiarid regions in China. Picea jezoensis var. microsperma (Lindl.) W.C.
Cheng & L.K. Fu growth was enhanced by warming at high altitudes but reduced at low
altitudes in two mountains of Northeast China [20]; in contrast, there was a significant
increase in Picea jezoensis var. komarovii (V.N. Vassil.) W.C. Cheng & L.K. Fu radial growth
at low altitudes and a significant decrease at high altitudes due to warming on Mt. Chang-
bai [21]; there were also more diverse responses of Picea meyeri Rehd. et Wils. to elevated
temperatures at different altitudes on Mt. Luya [22]. Spruce forests at low altitudes tend to
bear more drought stress and, thus, experience harsher climate stress than those at high
elevations in semiarid regions [23], as suggested by reports of reduced tree growth in
low-altitude areas because of rapid warming [9,17]. The response of tree growth to climate
change is extremely complex, and the climatic information in tree rings is highly regional
due to the comprehensive effects of tree physiology, climate variations, and topographic
conditions [24–26].

Guandi Mountain is located at the edge of the EASM, which is at the transitional
climate zone (TCZ) of semihumid and semiarid areas in Northern China. The region is
characterized by its instability, which is related to the strong gradients of climate and
biological variables [27]. The timing of rapid warming and the degree of variation in
temperature and precipitation are not clear. Picea wilsonii is an endemic species and a widely
distributed spruce species of the montane coniferous forest of China [28], and old-age trees
with long-term ring recorders can provide valuable information for dendrochronology
studies. Considering the Guandi Mountain to be an ideal area to study the relationship
dynamics between tree growth and climate change in the TCZ, we collected core samples
of P. wilsonii along an altitude gradient and attempted to answer the following questions:
(1) What is the degree of climate warming in the past 60 years on Mt. Guandi, and were
there abrupt changes in temperature and precipitation? (2) How did the tree growth–
climate relationships change? Did the dominant climatic factors that control the radial
growth of P. wilsonii shift with warming? (3) Were the growth–climate relationships
consistent on the altitudinal gradient, and were there any altitudinal differences in the
response of tree radial growth to warming?

2. Materials and Methods
2.1. Study Area

Mt. Guandi is located in the middle part of the Lvliang Mountains (37.33◦~38.33◦ N,
110.3◦~111.3◦ E), Shanxi Province, over the margin of the EASM [2,29], and at the alternat-
ing position of being semihumid and semiarid in the TCZ of North China. The region’s
annual average temperature is 3–4 ◦C, the January average temperature is 10.6 ◦C, and the
average temperature is 16.1 ◦C in July. The frost-free period is approximately 100 days.
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The mean annual precipitation is 830 mm, and July, August, and September account for
60% of the annual precipitation (Figure 1). The horizontal zonal vegetation of Guandi
Mountain is a deciduous broad-leaved forest, with a complete vertical vegetation tran-
sect sequence from low to high as follows: deciduous broad-leaved forest (800–1600 m),
coniferous and broad-leaved mixed forest (1600–1750 m), cold temperate coniferous forest
(1750–2600 m), and subalpine shrub meadow (2600–2831 m). Natural and secondary forests
comprise a large part of the study area, and the dominant species of cold-temperature
coniferous forest are Picea wilsonii, P. meyeri, Larix gmelinii var. principis-rupprechtii (Mayr)
Pilg., etc. According to the FAO soil classification system [30], the soil types of this region
are Luvisols, Cambisols, and Phaeozems.
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2.2. Tree-Ring Data Sampling

The sampling sites were situated in Pangquangou, the hinterland of Guandi Mountain.
Within the altitude range of 1900–2300 m that was out of human disturbance, three sampling
sites with altitudes of 2020 m (L-site), 2090 m (M-site), and 2220 m (U-site) were arranged
in the forest. Well-growing sample trees were selected at each sampling site, and two
tree cores were drilled at the diameter at breast height (DBH) position in each tree along
two perpendicular cardinal directions (north–south, and east–west). At least 25 trees and
50 tree cores were collected at each sampling point. The collected tree cores were placed in
a fine paper tube, marked, and sealed.

2.3. Chronology Development

All tree-ring samples were dried and polished for cross-dating. The ring width of
the tree cores was measured using a LinTab5 system (precision of 0.001 mm; Rinntech,
Heidelberg, Germany), and the time series were cross-dated using COFECHA [31] to
eliminate the core samples with difficulty calibrating or poor correlation with the main
sequence. The modified negative exponential curve [32] was used to remove nonclimatic
growth effects, such as age-related trends or other long-term trends [33]. The standard
chronologies of P. wilsonii were synthesized by using the double-weighted average method,
and then the residual chronologies were produced by removing the autocorrelation effect
in the standard chronologies (Figure S1) [34]. Residual chronologies were recommended
for detecting the climatic influence on tree growth because they had better responses to
high-frequency signals [35–37]. The quality of the chronologies was assessed, including the
expressed population signal (EPS) [38,39], mean sensitivity (MS) [40], first order autocorre-
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lation (AR1), and pairwise correlation between all cross-sections using dplR packages [34]
in R version 3.6.3 [41].

2.4. Climate Data

A valid method was recommended for the growth–climate analysis in the regions lo-
cated at the boundaries of the climate zones, i.e., taking temperature from the closest station
but precipitation from the closest station within the same precipitation zone [42]. Consider-
ing that the spatial distance between the sample site and the nearby climate stations, and
geographic direction could influence the correlation, the inverse distance weighted (IDW)
method was used when calculating the average climate to reduce the correlation bias in
growth–climate relationship analysis [15]. There were four climate stations around the
sample site, including Fangshan, Jiaocheng, Loufan, and Xingxian. Jiaocheng and Xingx-
ian have not been relocated. Climate data from the two stations were used for analysis,
including monthly precipitation, monthly mean temperature, monthly maximum temper-
ature, and monthly minimum temperature (1959–2017), which were downloaded from
the China Meteorological Data Sharing Service Platform (http://data.cma.cn, accessed on
8 August 2021).

2.5. Data Analysis

Since the structure change (strucchange) method is more stable than other methods
in terms of looking for potential change points [43,44], it was used for change-point de-
tection of the annual and monthly temperature and precipitation of the meteorological
station from 1959 to 2017 in the study area, and the optimal breakpoints were given accord-
ing to the minimum residual sum of squares (RSS) and Bayesian Information Criterions
(BIC). The Pearson correlation coefficient between the residual chronology and monthly
climate temperature and precipitation was calculated [33] before and after the tempera-
ture breakpoints, to confirm the variation in the relationship between radial growth of
spruce and climate factors before and after rapid temperature increase. Considering the
lag influence of the previous year’s climate on the growth in current year, the climate
factors from previous June to current September (a 16-month window) were selected for
the correlation analysis [45]. We employed a moving correlation function approach [46] to
obtain interannual dynamics of radial growth response to rapid warming by calculating
the Pearson correlations between the chronologies and monthly climate variables over a
30-year window from 1960 to 2017 and testing for significance using the 95% percentile
range method [47]. All statistical analyses were performed using the strucchange [48] and
treeclim [49] packages in R version 3.6.3 [41].

3. Results
3.1. Climate Variations in the Study Area

Strucchange analysis (Figure 2) showed that there was a sudden rise in the annual
mean temperature in 1996 (RSS = 10.815, BIC = 83.647), which rose from 10.0 ◦C (before
1996) to 11.5 ◦C (after 1996) with a 1.5 ◦C increase. Concurrently, the annual precipitation
decreased from a mean value of 457.6 mm to 439.8 mm. A significant decrease in precip-
itation was observed from 1997 to 2008. The monthly climate analysis results (Table S1)
showed that the monthly mean temperature (MMT) increased by approximately 1.47 ◦C
after 1996 in the winter and spring, which was approximately twice as high as that in the
summer and autumn. The monthly sum of precipitation (MSP) mainly decreased in sum-
mer (1.19–15.03 mm) and spring (2.62–6.59 mm), with little change in autumn and winter.

http://data.cma.cn
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Figure 2. Annual mean temperature and annual precipitation during 1959–2017 around Mt. Guandi, Central China. (a) Mean
annual temperature; (b) Annual sum of precipitation. The black dashed line marks the breakpoints with significant change.
The red line indicates the mean value of the whole period, and the blue line shows the fitted levels by the identified breakpoints.

3.2. Chronologies Statistics of Picea wilsonii

The mean sensitivity (MS) and signal to noise ratio (SNR) reflect the change in tree-ring
width between adjacent tree rings, mainly representing short-term or high-frequency cli-
mate change. As the chronology statistics for established residual chronologies of P. wilsonii
at three elevations (Table 1) showed, the MS of the three chronologies at different elevations
were approximately 0.173–0.188, with an SNR of 29.156–34.169, indicating that the radial
growth of spruce was under the control of climate factors. The MS value of Picea spp. tends
to decrease with increasing humidity: it was reported to be only approximately 0.17 of
P. meyeri at higher elevations on Mt. Luya in subhumid climates [22]. The mean inter-series
correlation coefficient (Rbar) and express population signal (EPS) are statistical parameters
reflecting the synchronicity of each sample sequence in the chronology. A higher value of
Rbar and EPS means that more restrictive growth was under the control of climate factors,
with more climate information contained in the chronology [50]. It was pointed out that
Picea spp. usually display lower Rbar values than other tree species, which reduces the
chance of attaining high correlation coefficients [51]. However, the Rbar of these chronolo-
gies was 0.426–0.564, which all reached a high level. In addition, EPS (0.967–0.972) was also
above the critical value (0.85), which indicated that the chronologies had adequate signal
strength during their common period [39]. The first order autocorrelation (AR1) reflects the
degree of influence of climate conditions in the previous year on the growth of ring width
in the current year. All the AR1 values were below zero, which indicated that the effects of
autocorrelations were eliminated in the residual chronologies. The effective chronology
signal (Reff) was 0.543–0.564. Therefore all parameters indicate that there was sufficient
signal strength in the chronologies and could be applied to address the growth–climate
relationship in this region.

Table 1. Chronology statistics for residual chronologies of Picea wilsonii in Mt. Guandi, Central China.

Sample Information Time Span
SSS > 0.85

Eigenvalue of Residual
Chronology

Common Interval Analysis
(1949–2017)

Site Altitude (m) Slope Trees Cores MS SD MC AR1 EPS SNR Rbar Reff

U-site 2220 5◦ 27 54 1923–2017 0.188 0.158 1.003 −0.111 0.972 34.169 0.564 0.564
M-site 2090 15–30◦ 25 50 1906–2017 0.176 0.159 0.984 −0.077 0.967 29.156 0.440 0.543
L-site 2020 15–30◦ 27 54 1917–2017 0.173 0.150 0.996 −0.127 0.969 30.899 0.426 0.549

SSS, Sub-sample signal strength; MS, Mean sensitivity; SD, Standard deviation; MC, Mean indices; AR1, First order autocorrelation; EPS,
expressed population signal; SNR, Signal to noise ratio; Rbar, Mean inter-series correlation coefficient; Reff, Effective chronology signal.
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3.3. Tree Ring—Climate Relationship Changes with Increasing Temperature
3.3.1. Years 1959–1995 versus 1996–2017

Since there were significant differences in temperature conditions before and after
1996, the effects of temperature and precipitation on the growth of P. wilsonii were evaluated
separately in two periods (1959–1995 and 1996–2017). All tree-ring widths at three altitudes
showed consistent relationships that responded to climatic factors, and the tree–climate
relationship was significantly enhanced (Figure 3) after 1996.
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Figure 3. Correlation coefficients between the growth index and monthly climate for the previous
June to current September (1959−1995 and 1996−2017). Star marks significant correlation (*, p < 0.05;
**, p < 0.01). Three sample sites were L-site at 2020 m, M-site at 2090 m, and U-site at 2220 m. The letter
p before months indicates the months of previous year, and letter c indicates the months of current year.
MMT, Monthly mean temperature; MSP, Monthly sum of precipitation.

Before 1996, temperature had a more significant impact on radial growth than precipi-
tation. Negative correlations between ring width and monthly mean temperature (MMT)
from the current March at all three altitudes were found at a significant level (p < 0.05).
Tree-ring widths at the Lower-site were positively correlated with MMT of the current May
(p < 0.05), those at the Middle-site were positively correlated with MMT of the previous
September (p < 0.05), and those at the Upper-site were negatively associated with MMT of
the current January (p < 0.05). After 1996, the correlation coefficients between radial growth
and MMTs in later summer and early autumn intensified overall. Negative relationships
between ring widths and the MMTs of the current July and September changed from
nonsignificant to a significance level of 0.01 at all three sites. Similar to the MMT of the
current August, a significant negative correlation was only exhibited at the Upper-site
(p < 0.05).

No significant correlations were detected between ring widths and the monthly sum
of precipitation (MSP) before 1996; nevertheless, it strengthened obviously after the tem-
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perature rose in 1996. The nonsignificant correlations of radial growth with the MSPs of
the current July before 1996 changed to significant positive correlations at all three sites
(p < 0.05) later, and negative correlations between the ring widths and MSPs of December
also reached significant levels (p < 0.05) at both the Middle- and Upper-site.

3.3.2. Moving Correlations between Radial Growth and Climate

The influence of climatic factors on the radial growth of Wilson spruce showed overall
temporal stability, as the result of the 30-year moving window correlation analysis (Figure 4)
suggested. The MMTs in the later growing season (June to September) had a significant
limiting effect on the growth of trees at all three sites. The MMTs of the previous July and
August, and the current July and September were negatively related to the radial growth,
and these relationships gradually became significant. Additionally, significant negative
correlations between MMTs of the current March and tree-ring width gradually weakened.
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The correlation of radial growth with MMT of the previous September gradually
transformed from positive to negative. The significantly negative correlations (p < 0.05)
with MMT of the previous November in the middle term turned positive in the end.
Additionally, the positive correlation between ring widths and MMT in May weakened
gradually, replaced by the positive correlation strengthening with the MMT of April.

Most correlations between radial growth and MSPs, particularly those of the previous
year, remained positive. The positive correlation between ring widths and the current
July MSP reached a significance level of 0.05 in the late phase. Concurrently, negative
associations with MSPs in December also gradually became significant.
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4. Discussion

The results of climate analysis for the region around Guandi (1959 to 2017) showed
that the tipping point of temperature rise in 1996 was synchronized with the nearby
Mt. Luya, which is also located in the semihumid region [52], but later than that of East
Qilian (the 1980s) in the semiarid region [53]. As the annual mean temperature increased
significantly, however, annual precipitation decreased for the same period (Table S1), which
suggested a climatic change in the region from semihumid to semiarid. The chronologies of
P. wilsonii show that the majority of the climate–growth relationships at the three elevations
showed similar responses to climate warming. Before 1996, there were obvious temperature
signals but no precipitation signals in the chronologies; in contrast, temperature signals
remained while precipitation signals were significantly enhanced after 1996 (Figure 3).
This result suggests that temperature control was replaced by moisture control for the
climate–growth relationship [16,54] on Mt. Guandi, which agrees with results in other TCZ
regions of North China, such as Mt. Changbai in the semihumid zone [21], and Mt. Helan
in the semiarid zone [11].

Previous studies have pointed out that the correlations between ring parameters of
P. wilsonii and temperatures are complex, varying during the growing season and across
biogeographic zones [51]. However, it has usually been found that in summer, inverse
relationships between temperature and spruce growth [21,55–59] are also exhibited on
Mt. Guandi after 1996 (Figure 3). The moving correlation analysis results showed that
strong and persistent negative correlations of the growth–temperature in the previous year
strengthened in the mid–late period due to warming (Figure 4). Studies have shown that
high temperatures in summer inhibit or damage the photosynthetic apparatus in P. wilsonii
leaves, resulting in heat-induced physiological drought stress even though water was pro-
vided sufficiently; additionally, respiration was enhanced but carbohydrate accumulation
was reduced [25,51,60]. Since earlywood formation strongly relies on photosynthates from
the previous year and secondary growth may even mobilize carbon reserves that have been
stored for several years if necessary [61–63], adverse effects of elevated temperature on
spruce growth may occur not only in the current season but also in the subsequent years
due to the lagged resource use strategy.

The growing season for P. wilsonii generally starts in April [26,64]. The onset of wood
formation in spring is controlled by the interaction of the chilling and forcing tempera-
ture [65,66]. However, it has been proven that the heat requirement is negatively correlated
with chilling, and winter temperature increases will lead to chilling shortening and require
more spring temperature accumulation to trigger wood growth [67]. Our results showed
that more temperature forcing was required for P. wilsonii in April due to the reduction in
chilling in winter as the temperature rose [66,67], the significantly negative correlation of
growth–temperature in March before 1996 disappeared, and the positive correlations in
May moved up to April and increased gradually after 1996 (Figures 3 and 4). This result
indicates that the earlier start of the tree growing season owing to the rapid increase in
temperature in April satisfied the demand of trees to trigger wood growth, which was
consistent with the finding that spring phenology had advanced in China [68].

The radial growth of the P. wilsonii annual ring had no obvious relationship with
precipitation before 1996 but a significant positive correlation with precipitation in July
later. This change indicated that summer droughts began to affect tree-ring growth on
Mt. Guandi. After 1996, precipitation in spring and summer decreased significantly in the
study area, while there were no significant growth–precipitation relationships in May and
June, which suggested that water deficit did not appear in early summer. In July, there
was a large amount of precipitation, but the majority was showery, which resulted in soil
respiration being inhibited due to soil moisture rapidly increasing [69], and reducing the
utilization efficiency of trees for precipitation [26]. However, since most wood cells had
formed and matured during this period, the spruce diameter expanded only moderately, al-
though adequate rainfall was provided in August and September [51,60]. In addition, there
were positive correlations between ring widths and precipitation in autumn of the previous
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season, which indicated that soil moisture replenished by autumn precipitation, especially
deep precipitation, helped earlywood formation in the next year [70,71]. We noted that
winter precipitation after warming did not benefit spruce growth because warmer winter
conditions led to more precipitation as rain than as snow [72], earlier melting of snow-
pack [73], and more frequent thaw–freeze cycles [74], which caused damage to fine roots
and led to physiological drought in trees [75]. Snow cover also helped soil temperature
remain at approximately 0 ◦C, enhanced soil respiration, and accelerated nutrient decom-
position [26,76,77]. Additionally, it was pointed out that higher temperatures in winter
increased the loss of spruce needles under better nutrient conditions [78], which would
lead to the decline in forest productivity in the following seasons [79].

The climate–growth relationship for P. wilsonii in Mt. Guandi changed significantly
before and after rapid warming. Before 1996, there were only temperature signals but
without precipitation signals in the chronologies at three altitudes. This disagreed with the
principle that describes how tree growth is more sensitive to temperature in upper treeline
environments, because stronger temperature–growth relationships appeared at middle
and low elevations than higher elevations, the same as mountains located in semihumid
climate regions [80]. This result accounted for the growth of P. wilsonii at low altitude
being subjected more to growth inhibition induced by high temperature [25,26]. After the
temperature’s rapid increase in 1996, both temperature and precipitation signals were en-
hanced significantly in the chronologies, with stronger correlations found at high altitudes
(Figure 3). The growth of P. wilsonii at all elevations in Mt. Guandi was deeply influenced
by summer droughts after 1996, especially at lower elevations (L-site r = 0.515, p < 0.01;
M-site r = 0.527, p < 0.01; U-site r = 0.401, p < 0.05). However, spruces at middle and high
elevations suffer from physiological drought caused by elevated temperatures in winter,
even with precipitation compensation [81]. The TCZ boundaries and surrounding regions
in future are more prone to drastic dry–wet variability [82], and with an increase in the
frequency and intensity of drought in the context of global warming [83], it is detrimental
for P. wilsonii, which is more susceptible to drought and high temperatures [25,54] in the
Guandi Mountains. Since the chronologies of trees at higher altitudes had higher standard
deviations, mean sensitivities, mean correlations between all series, and signal to noise
ratios than those at lower altitudes [84], this indicates that high-altitude trees are more sen-
sitive to drought with weaker resistance to drought stress, and have stronger resilience than
trees at lower altitudes [85]. In contrast, trees at lower altitudes showed a decreased growth
recovery and resilience to extreme drought after they experienced frequent droughts [86],
which resulted in an increase in potential tree mortality [11]. Thus, it is necessary to pay
more attention to the management of the trees at lower altitudes during periods of extreme
drought but to focus on trees at higher altitudes when less severe droughts occur.

5. Conclusions

Based on tree-ring width data of Picea wilsonii collected from three elevation sites in
Guandi Mountain, the relationships between radial growth and climate were analysed
to determine how spruces in such a semihumid to semiarid transitional zone of China
responded to rapid warming after 1996. The main conclusions can be summarized as
follows: The study area exhibited a climatic aridification trend with annual precipitation
decreases in recent decades. Before 1996, the radial growth of P. wilsonii responded mainly
to temperature not precipitation. However, after 1996, it presented negative correlations
with summer temperature, combined with positive correlations with precipitation in the
current July, which indicated the formation of a moisture-stressed growth pattern in a drier
climate for the spruce. Due to the strategy of lagged resource uses for P. wilsonii, the adverse
influence of summer drought on wood formation occurred not only in the current season
but also in the following years. Wilson spruces at high altitudes responded significantly to
both summer drying and precipitation in winter after the temperature increase. In contrast,
those at low altitudes responded more to summer drought. The shrinkage in biomass
productivity and carbon sequestration for P. wilsonii in the whole forest ecosystems of the
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region is a prospect. Therefore, regional forest management should pay more attention to
the adverse effects of summer droughts on conifer forests, especially those for P. wilsonii.
For natural forests, changing the canopy density can partially alleviate the decline in tree
growth due to drought. Meanwhile, spruce species that are less sensitive to drought could
be selected for afforestation in the area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12111602/s1, Figure S1: Standard chronologies (STD) and residual chronologies (RES) of
Picea wilsonii (1950–2017) at the three sites in Guandi Mountain. Table S1: Variations of monthly
temperature and precipitation around Guandi Mountain before and after 1996.
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54. Schurman, J.S.; Babst, F.; Björklund, J.; Rydval, M.; Bače, R.; Čada, V.; Janda, P.; Mikolas, M.; Saulnier, M.; Trotsiuk, V.; et al.
The Climatic Drivers of Primary Picea Forest Growth along the Carpathian Arc Are Changing under Rising Temperatures. Glob.
Chang. Biol. 2019, 25, 3136–3150. [CrossRef] [PubMed]

55. Lloyd, A.H.; Bunn, A.G. Responses of the Circumpolar Boreal Forest to 20th Century Climate Variability. Environ. Res. Lett. 2007,
2, 045013. [CrossRef]

56. Zhang, Y.; Wilmking, M.; Gou, X. Changing Relationships between Tree Growth and Climate in Northwest China. Plant Ecol.
2009, 201, 39–50. [CrossRef]

57. Li, G.-Q.; Bai, F.; Sang, W.-G. Different Responses of Radial Growth to Climate Warming in Pinus Koraiensis and Picea jezoensis Var.
komarovii at Their Upper Elevational Limits in Changbai Mountain, China. Chin. J. Plant Ecol. 2011, 35, 500–511. [CrossRef]

58. Ribbons, R.R. Disturbance and Climatic Effects on Red Spruce Community Dynamics at its Southern Continuous Range Margin.
PeerJ 2014, 2, e293. [CrossRef] [PubMed]

59. Fang, K.; Gou, X.; Chen, F.; Yang, M.; Li, J.; He, M.; Zhang, Y.; Tian, Q.; Peng, J. Drought Variations in the Eastern Part of
Northwest China over the Past Two Centuries: Evidence from Tree Rings. Clim. Res. 2009, 38, 129–135. [CrossRef]

60. Rathgeber, C.B.K. Conifer Tree-Ring Density Inter-Annual Variability—Anatomical, Physiological and Environmental Determi-
nants. New Phytol. 2017, 216, 621–625. [CrossRef]

61. Kagawa, A.; Sugimoto, A.; Maximov, T.C. 13CO2 Pulse-Labelling of Photoassimilates Reveals Carbon Allocation within and
between Tree Rings. Plant Cell. Environ. 2006, 29, 1571–1584. [CrossRef] [PubMed]

62. Gessler, A.; Brandes, E.; Buchmann, N.; Helle, G.; Rennenberg, H.; Barnard, R.L. Tracing Carbon and Oxygen Isotope Signals
from Newly Assimilated Sugars in the Leaves to the Tree-Ring Archive. Plant Cell. Environ. 2009, 32, 780–795. [CrossRef]

63. Kuptz, D.; Fleischmann, F.; Matyssek, R.; Grams, T.E.E. Seasonal Patterns of Carbon Allocation to Respiratory Pools in 60-Yr-Old
Deciduous (Fagus Sylvatica) and Evergreen (Picea abies) Trees Assessed via Whole-Tree Stable Carbon Isotope Labeling. New
Phytol. 2011, 191, 160–172. [CrossRef] [PubMed]

64. Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Fournier, M. Kinetics of Tracheid Development Explain Conifer Tree-Ring
Structure. New Phytol. 2014, 203, 1231–1241. [CrossRef]

65. Viherä-Aarnio, A.; Sutinen, S.; Partanen, J.; Häkkinen, R. Internal Development of Vegetative Buds of Norway Spruce Trees in
Relation to Accumulated Chilling and Forcing Temperatures. Tree Physiol. 2014, 34, 547–556. [CrossRef]

66. Delpierre, N.; Lireux, S.; Hartig, F.; Camarero, J.J.; Cheaib, A.; Čufar, K.; Cuny, H.; Deslauriers, A.; Fonti, P.; Gričar, J.; et al.
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