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Abstract: This research investigates the long-term environmental impact and historical temporal
pollution patterns caused by a former copper mine in Iwiny (south-western Poland) using a dendro-
chemical approach. An additional aspect of this research was considering the possibility of using the
inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement technique as a
cheaper alternative to inductively coupled plasma mass spectrometry (ICP-MS) in dendrochemical
analyses conducted in copper mining areas. In the study area, a tailings storage facility (TSF) dam
failure (1967) took place and the alkaline flotation waste containing high concentration of Cu and
Pb are stored. Tree cores from pedunculate oak (Quercus robur L.) were analysed for the content of
11 trace elements (TEs) (Cd, Mn, Ni, Zn, Cr, Co, Pb, Cu, Fe, Al, Ag) using the ICP-OES technique,
while tree rings’ widths (TRWs) were also measured. Samples that were most significant in the
context of the research goals were verified with the ICP-MS method. The results revealed the strong
long-term impact of the copper industry as reflected in a substantial increase in the mean contents of:
(1) Mn, Ni, Zn, Cr, Pb, Cu and Fe in industrial vs. control trees, (2) TRWs for control vs. industrial
trees. However, the observed patterns of TEs and TRWs did not correspond to the known timing
of pollution inputs (mining activity, tailings spill). Peak levels were observed for Zn and Fe after
the mine was closed. The lack of new sources of pollution and the temporal relationship strongly
suggests that the tree rings recorded the chemical signal of the TSF reclamation (the use of fertilizers
and agrotechnical interventions). Patterns of 7 elements were detected in most of the samples by
ICP-OES (Co and Cd were not detected, Al and Ag were partly detected), while ICP-MS detected all
of the elements. Significant differences were obtained for Ag, Cd, and Co. Despite challenges with
the application of dendrochemistry in research on old mining areas (e.g., lack of old trees), it has
proved to be a useful tool for investigating the aggregate environmental impact.

Keywords: tree rings; ICP-OES; ICP-MS; trace elements; tailings storage facility

1. Introduction

Over the years, Europe has made great strides towards becoming a sustainable indus-
trial system, striving to be the first climate-neutral continent [1]. These efforts have raised
awareness of environmental problems, leading to restrictive government regulations that
increasingly affect the mining industry [2]. The aggregate environmental impact, even of
medium-scale mining, can be significant as a result of considerable cumulative volumes
and slow chemical processes [3]. In particular, the accumulation of mine tailings is consid-
ered a key problem, because every year billions of tons of waste are generated globally by
processing plants [4–6]. They are often disposed in tailings storage facilities (TSF) using
the hydrotransport method. Waste streams often contain hazardous contaminants such
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as heavy metals, sulfur compounds, and process reagents [7,8]. Therefore, dam failure
poses a great risk to TSFs. There is still a lack of data concerning the impact of TSFs on
the environment, especially forest ecosystems [9,10]. Studies conducted in areas affected
by tailings leakages have focused mainly on the analysis of water [11,12], soil [13], and
leaves and fruits [14], because direct monitoring of environmental chemistry often does not
cover long periods of time. This poses a problem for conducting environmental studies,
because mining impact analysis must take into account historical time scales to evaluate
the temporal patterns of pollution [5].

1.1. Application of Dendrochemistry in Environmental Monitoring

The chemical analysis of tree rings, which have been used to monitor historical
changes in soil and atmospheric chemistry since the early 1970s [15], is considered to be
a powerful approach to monitoring environmental quality [16]. However, the limitations
of dendrochemistry need to be considered, namely: tree species-specific physiological
responses, age and species differences between trees, a small number of old trees in in-
dustrial areas and a shortage of control sites, mobility of chemicals in the xylem, uptake
mechanism (root, foliar, bark), and bioavailability depending on soil pH [17–22]. For
these reasons, it is extremely difficult to directly transfer all the principles underlying
dendrochronology to dendrochemistry. The principle of site selection [23] combined with
widespread deforestation in industrial areas plus a lack of sufficiently old trees means
that the principle of replication [23] can be very difficult to apply here fully. The standard
number assumed in dendrochronological studies, i.e., about 20 trees sampled on various
sites [22,24], may not be achievable in many industrial areas. Dendrochemical studies
usually involve an analysis of two or more cores per tree and more than one tree of a
given species per site [17,21,25]. However, due to the specificity of the research area and
the research questions posed, published papers also tend to include studies in which a
relatively small number of trees were used (several meticulously selected cores) [17,26–29].
An additional limitation concerns issues related to the suitability of individual tree species
for dendrochemical research [19,30–34], long a focus of scientific interest. These challenges
notwithstanding, many dendrochemical studies have successfully provided new environ-
mental data concerning various industrial sectors [21,25,29,35,36], many of which were
focused on mining [21,34,37–39], including the exploitation of copper ores [18,40,41].

1.2. Pollution in Old Copper Basin

Poland is the leading copper producer in the EU [42]. In the post-mining area of
the so-called Old Copper Basin (south-western Poland), a total of over 174 million Mg
of mining waste is deposited in TSFs over an area of more than 1000 hectares [43,44].
Moreover, in 1967 a tragic accident occurred there. In the village of Iwiny in TSF1 the
dam burst, resulting in the leakage of alkaline Cu-mine tailings that flooded the Bobrzyca
River Valley at a length of about 19 km and width of 50 to 220 m. Eighteen residents of
the surrounding villages lost their lives as a result [44]. The authorities kept secret the
results of chemical analyses of the water made immediately after the incident [45,46], and
only a few publications have focused on the subject. In the area of the Old Copper Basin,
high contents of heavy metals, mainly Cu and Pb, were found in the mining waste, which
may have posed a threat to the environment and to the health of the population [47–49].
Researchers have shown that although Cu and Pb remain in post-flotation sediments in
very poorly soluble forms, there is a risk of increasing their bioavailability, e.g., as a result
of some agrotechnical treatments [47].

To fill the indicated research gap, chemical analysis of tree rings was conducted to
interpret the temporal patterns of pollution in the Old Copper Basin using measurements
of selected chemical elements (Cd, Mn, Ni, Zn, Cr, Co, Pb, Cu, Fe, Al, Ag) in wood. The
main objective of this study was: (i) to investigate the long-term effects of copper mining
on trees growing in the Old Copper Basin. Two specific objectives were also set: (ii) to
ascertain whether the 1967 TSF1 failure had been recorded by changes in the concentrations
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of TEs in tree rings; and (iii) to analyse the effect of TSF reclamation on tree growth. Addi-
tionally, the technical aspect of the measurements was investigated. Inductively coupled
plasma mass spectrometry (ICP-MS) is a widely used technique in dendrochemical studies,
but inductively coupled plasma-optical emission spectrometry (ICP-OES, also known as
ICP-AES) is more readily available and a less expensive measurement technique. This
research tested whether the ICP-OES can be an alternative to ICP-MS in dendrochemical
studies conducted in copper mining areas (iv).

2. Materials and Methods
2.1. Study Area and Tailings’ Characteristics

The Old Copper Basin is located in the Lower Silesian Voivodeship (south-western
Poland) (Figure 1). The Konrad mine was established in 1950, TSF1 in Iwiny (51◦12′23.5′ ′ N,
15◦43′57.3′ ′ E) (Figure 1) was commissioned in 1953. On 13 December 1967, 4.6 million m3

of tailings leaked from it and flooded the surrounding area. Low negative temperatures
were recorded on December 12 (–8 ◦C) and December 13 (–2.78 ◦C) [50]. Due to the
extent of the damage, the sediment layer was removed from the soil surface mainly in
built-up areas. In agricultural and forest areas, it has been left largely unchanged in many
cases [47]. During the reconstruction of the dam, the waste was deposited in a newly
created TSF2 (emergency), built on the forebay of the existing tailing pond embankment.
TSF1 was decommissioned in 1971 and TSF3 was commissioned at the same time and
only closed for copper ore mining at the Konrad mine in 1989 [51]. As a result of the
post-flotation tailings’ treatment using technology, the Old Copper Basin areas are very
difficult to remediate [43,48,49]. In 1991, TSF1 and 2 were reclaimed by planting poplars,
birches, black locust, pines and larches [51]. However, a field inspection conducted during
the 2020 fieldwork revealed that it was still not possible to introduce vegetation over the
entire area occupied by the TSFs. The unfavourable conditions for plant growth are due to
poor physical characteristics (a high share of very fine particles and low content of skeletal
fraction and organic matter) and chemical characteristics (low biological activity, high Ca,
Cu and Pb contents, and pH of the sediment at about 7.7) [47–49], which is characteristic
of many forms of waste generated by copper mining [52]. Due to the physical properties
of post-flotation tailings, the windblown dust from the beaches of the tailings’ ponds is
virtually non-existent. Thus, the main potential route for pollutant uptake is through tree
roots.

Archival Research

Due to the scarcity of publications on the study area, particularly on the 1967 accident
in terms of the exact extent of the leakage and detailed chemical composition of the waste,
an archival search was necessary. The archival materials were searched both directly in
the State Archive in Wrocław and by means of the ‘Search the Archives’ archival resources
on-line service (https://www.szukajwarchiwach.gov.pl, accessed on 5 March 2021), entries:
“Iwiny” “Katastrofa w Iwinach” (“The disaster in Iwiny”), “Kopalnia Konrad” (“Konrad
mine”). At the State Archives in Wrocław, access to research carried out immediately after
the dam failure was obtained.

2.2. Tree-Ring Sampling and Ring-Width Measurements

Based on archival materials [53], the area of the leakage was plotted on a contemporary
map (Figure 1), before the sampling locations were determined. For this purpose, trees
over 80 years old were selected (allowing for results from years prior to the accident) that
were located in the area of the leakage, known as Industrial (Ind.) sites. The only trees
meeting the above conditions were two pedunculate oaks (Ind. 1 and 2) growing close
to the site of the breach formation, between TSF2 (built after the failure) and TSF1 (from
which the leakage occurred) (Figure 1). Taking into account habitat compatibility (fresh
mixed broadleaved forest), species and the appropriate age, a reference tree was selected
from the control site (Control) located at a distance of 3 km from the tailings pond in the
direction opposite to the course of the Bobrzyca River. The prevailing wind directions, W

https://www.szukajwarchiwach.gov.pl
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and WSW, were also considered by selecting the control site location from the windward
side of TSF1.
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Figure 1. Location of study plot: Industrial (Ind.) and Control site and tailings storage facilities
(TSFs) in so-called Old Copper District, Poland. The 1967 leakage area is presented on the basis of
materials from the State Archive in Wrocław, Bolesławiec Branch [53].

Field work was conducted in June 2020. Three 5 mm diameter tree-ring samples were
collected at breast height from the northern side of each tree using a Pressler increment
borer. To avoid contaminating the cores, latex gloves were worn and the increment borer
was rinsed with isopropyl alcohol between each core [22]. The samples were then secured
in clean polypropylene containers. After being brought to the laboratory, samples were
placed in a core clamp [22] and pre-dried. All cores were dated; however, in order to avoid
contamination of the samples, only one of the three cores taken per tree was sanded (for
better visibility of the tree rings). For this reason, it was a reference point for the dating
of the other cores. The tree-ring’s width (TRW) was measured using the LINTABTM 6
with a precision of 0.01 mm. For each tree, two samples for each four-year period were
used for dendrochemical analyses. Surfaces that came in contact with the sanding tools
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and increment borer were removed from two cores with diamond tools. After that, cores
were cut into 4-year sections with a ceramic knife [18]. A time interval of 1959–2014 was
designated to allow for analysis in the context of the long-term impact of copper mining
(began 8 years prior to TSF1 dam failure and ended 23 years after reclamation of TSF1 and
TSF2).

The next stage was drying the wood samples in a drier at a temperature of 60 ◦C
for 24 h and weighing them to determine the dry weight of the samples. They were then
pre-digested in 3 mL of 69% HNO3 acid (Merck KGaA, Darmstadt, Germany, Suprapur®)
for 24 h at room temperature, before the temperature was raised to 90 ◦C for 2 h [18].
The process was continued as long as the solids were not completely dissolved. Thus,
another 3 mL of 69% HNO3 acid (Merck, Darmstadt, Germany, Suprapur®) was added
for 2 h at 90 ◦C. The blank solution (HNO3 and H2O2) was prepared in the same way.
The samples were then allowed to cool to room temperature and diluted to 50 mL using
LiChrosolv® solvents for liquid chromatography (Merck KGaA, Darmstadt, Germany)
and filtered through a 0.45-µm PTFE filter (Merck KGaA, Darmstadt, Germany, Millipore)
immediately before further analyses. Continuous quality control procedures were followed
during sample preparation and analysis.

The analysis of 11 chemical elements (Cd, Mn, Ni, Zn, Cr, Co, Pb, Cu, Fe, Al, and
Ag) was performed using ICP-OES (Thermo Scientific iCAP 7000 Series ICP-OES analyser,
Thermo Fisher Scientific Inc. Waltham, MA, USA). ICP Multi-element standard IV (Merck
KGaA, Darmstadt, Germany, Certipur®) was used to validate the constant quality assess-
ment of the calibration curve during analyses. The certified reference material of Apple
leaves NIST Standard Reference Material 1515 (Merck KGaA, Darmstadt, Germany) was
used to validate the analytical procedures. Machine blanks and reference samples were
included every 20 samples.

2.3. Verification of Results

The most significant samples in terms of the research goals were re-examined: from
the period of the TSF1 dam failure (1967–1970) and from the time intervals during which
the most significant changes in the contents of analysed TEs were recorded using the
ICP-OES method. They were measured using the ICP-MS technique (Agilent 7900 ICP-MS,
Agilent Technologies, Inc., Santa Clara, CA, USA) and the same chemical reagents. For
subsequent verification of the results obtained via the ICP-MS measurement technique, the
following time intervals were selected:

• A (1967–1970), in which the dam failure occurred.
• B (1995–1998), in which Zn and Fe content reached a peak in the tree rings from

the Ind. site. The Zn content at the Ind. site is more than 10 times higher than the
result obtained at the Control site and nearly three times higher than the average Zn
content at the Ind. site during 1959–2014. Moreover, Fe in the Ind. site represents the
highest result of all measurements made in this study. It was nearly 48 times the result
obtained at the Control site and more than 2 times the average Fe content in the Ind.
site from 1959 to 2014.

• C (1999–2000), in which the Al content reached a peak at the tree rings from the Ind.
site. Furthermore, the Zn content at the Ind. site was more than 18 times higher than
the Control site result and more than two times higher than the average Zn content
at the Ind. site from 1959 to 2014. Fe also maintained a high level, its content in the
Ind. site was more than six times the Control site result and less than two times the
average content in the Ind. site from 1959 to 2014.

• D (2011–2014), in which the Mn content in the Ind. site was the highest of all the
samples analysed. It was nearly 32 times higher than the result obtained at the Control
site and almost two times higher than the average Mn content at the Ind. site during
1959–2014. Moreover, the Fe content at the Ind. site was more than 172 times higher
than the result at the Control site and more than 1.5 times higher than the average Fe
content of the Ind. site from 1959 to 2014.
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2.4. Statistical Analysis

All statistical analyses and graphical representations of the results were performed in
Statistica 13.3 statistical software and the Adobe Photoshop graphic program. If the content
of an element in the sample was below the limit of detection (LOD), it was marked as not
detected (nd). These results were always treated as zero in statistical analyses. Given the
number of samples, the results were mainly analysed using the mean (x) and standard devi-
ation (±SD). Similarity measures (— Gleichläufigkeit coefficient of convergence (GLK, %),
TVBP—t value according to Baillie and Pilcher, TVH—t value according to Hollstein) were
calculated using TSAP-Win Scientific software (version 4.69f (c)), Rinntech-Metriwerk
GmbH & Co. KG, Heidelberg, Germany. The ARSTAN software program [54] was used for
detrending and indexing (standardising) tree-ring series (Industrial (Ind.) and Control).
Due to normal data distribution, the parametric t-test was used to determine any significant
statistical difference between the mean TRW for Industrial vs. Control site (significant at
p < 0.05). Due to non-normal data distribution, the non-parametric Mann–Whitney U test
was used to determine any significant statistical difference between the mean TEs values
for Industrial vs. Control site and ICP-MS vs. ICP-OES measurement technique (significant
at p < 0.05).

3. Results
3.1. Cumulative Impact of Copper Mining on Trees in the Old Copper Basin

The results of this study have provided insight into the long-term impact of copper
mining on trees growing in the Old Copper Basin. Comparison of the TEs contents
(Figure 2a) illustrates differences between the mean results obtained at the Ind. site and
the Control site. The control site for each analysed TE showed lower values than the
Ind. site: Mn and Zn almost five times, Pb almost seven times, Fe more than three
times, Cu more than two times. For Cd and Co, all values obtained were below the
LOD, while Ag and Al were detected only in trees growing at the Ind. site. Significant
differences (at p < 0.05) were obtained for Mn, Ni, Zn, Cr, Pb, Cu, and Fe (Figure 2a,
Supplementary Materials Table S1). Also, TRW measurements show differences between
tree growth at these two sites (Figure 2b). The mean TRW over the entire period analysed
(1959–2014) was significantly greater at the Control site (t = 4.4, p < 0.001), a difference of
0.7 mm.
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3.2. Temporal Patterns of Pollution in the Old Copper Basin

The results of analyses performed with the ICP-OES technique have made it possible
to understand the historical changes in the TE content at the Ind. and Control site in the
years 1959–2014 (Figure 3). Mn, Ni, Zn, Cr, Cu and Fe were detected in each tree at all time
intervals analysed. For Pb, Ni, Cu, Ag and Al, some results below the LOD were recorded.
The tree from the Control site showed lower TE content than the trees from the Ind. site in
most cases. The exception here was Fe from 1979 to 1982 and from 1999 to 2006. Short-term
fluctuations are visible for most of the elements, but generally their contents remain at
comparable levels.
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Figure 3. Historical variations of selected trace elements (TEs) in the tree rings of pedunculate oak in
different study sites (Control vs. Industerial (Ind.)) between 1959 and 2014. Vertical dashed lines
indicate the time intervals (A–D) that have been selected for verification by inductively coupled
plasma mass spectrometry (ICP-MS).

Figure 3 highlights the events relevant to the purpose of the study area’s copper mining
history: 1967 accident, 1971 closure of TSF1, 1989 mine closure, and the 1991 reclamation
of TSF1 and TSF2. These are important reference points for the results obtained, for they
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show that the content of the analysed TEs did not increase after the 1967 leakage, nor did
they decrease after the closure of either TSF1 or the entire mine. Peak levels were observed
for Zn and Fe in 1995–2002, i.e., after completion of mining activities in the study area and
reclamation of TSF1 and TSF2.

Historical variations of selected TEs in the tree rings of each of the analysed trees are
presented in Figure 4. In the mid-1990s and early 2000s, there was a peak in Zn (Ind. 1), Fe
(Ind. 1 and Ind. 2 but with a four-year time lag) and Al content (Ind. 2). In the remaining
years, Fe and Zn stabilised at a much lower level with concomitant low contents in the
Control trees throughout the analysed period (except for Fe in 1979–1982). Al, on the
other hand, was only detected in the Ind. 2 tree starting from the time interval 1975–1978.
Several short-term Al content fluctuations can be observed. In the case of Mn, a gradual
increase can be observed throughout the analysed period (Ind. 1 and Ind. 2), in contrast to
the results obtained for the Control tree. Pb was not detected in the 1960s (in the Ind. 1
since the mid-1970s and in the Ind. 2 since the early 1980s). At that time, Pb stabilises at a
similarly low level except for the peak in the time interval 2003–2006 (lnd. 2).
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Temporal patterns of Cr and Cu are characterised by the presence of short-term
fluctuations and differences in the directions of changes (increase/decrease) between Ind.
1 and Ind. 2 trees. In the late 1970s and early 1980s, it is possible to notice a slight increase
in Cu content (Ind. 2), in which values decrease and stabilise at a similar level (both Ind. 1
and Ind. 2) from the beginning of the 1990s until the end of the studied period. Short-term
increases in Ni (Ind. 1 with a 4-year lag), Cu (Ind. 2 with an 8-year lag), and Cr (Ind.2 with
an 8-year lag) were recorded after the TSF1 dam failure. However, these increases were by
no means recorded in both Ind. 1 and Ind. 2. All other steep increases in concentrations of
the studied TEs occurred after the reclamation of TSF1 and TSF2. In the vast majority of
the samples, the control tree exhibited significantly lower elemental contents compared to
the Ind. area trees. The exceptions were abrupt increases in Ni and Fe contents (1979–1982).
However, their contents were generally and substantially lower than in trees of Ind. 1 and
Ind. 2.

3.3. Measurements of Tree-Rings’ Width throughout the Period 1959–2014

The samples extracted from pedunculate oaks ranged from 81 to 100 years (Table 1). In
order to assess the degree of similarity in the course of compared growth curves, the GLK
index was calculated (ranged from 80% to 83%). The accuracy of the measurements was
also assessed using the t-value index (ranged from 11.7 to 19.7). Therefore, the course of
the increments of all the studied trees revealed high consistency. Due to the small number
of trees that met the study criteria, it was not possible to create a local chronology (a master
chronology has never been developed for this area). In subsequent studies, samples were
analysed only in the designated time interval of 1959–2014. Similarity measures were lower,
but still quite high for Ind. and Control site (GLK-63 %, TVBP-3.8, TVH-3.9). A different
response between sites occurred only in 1981–1983 and 1969 (Figure 5 -increases in TRW at
the Control site are accompanied by concomitant decreases in TRW at the Ind. site and vice
versa). Moreover, no sustained release of Ind. trees’ growth was observed after closure of
the mine or TSF1. Additionally, there was no reduction in TRW after the leakage of mine
tailings (time interval A).

Table 1. Assessment of the quality of the analysed individual sequences based on the characteristics.

Tree Years GLK (%) TVBP TVH

Ind. 1 1921–2020 80 13.6 13.4
Ind. 2 1939–2020 82 11.7 11.8

Control 1923–2020 81 17.3 19.7
Notes: GLK—Gleichläufigkeit coefficient of convergence (%), TVBP—t value according to Baillie and Pilcher,
TVH—t value according to Hollstein.

3.4. Results’ Verification

Measurements by the ICP-MS technique off all samples for periods A–D obtained
roughly 10–100 times lower LOD compared to ICP-OES (Table 2). The exceptions were
Fe and Zn. However, it should be noted that the contents of Fe and Zn in wood were
the highest in the analysed samples. The ICP-MS technique was sufficient for TEs the
content of which was too low to be detected with the ICP-OES technique (Cd, Co and some
results of Pb, Ni, Cu, Ag, and Al) (Table 3). Only in the case of Ag were some values below
the LOD (also for ICP-MS). The results obtained by the ICP-MS technique showed less
variation compared to the ICP-OES technique, as reflected by the lower standard deviation
(Table 3). Significant differences (at p < 0.05) were obtained for Ag, Cd, and Co (Table 4). It
should be noted that the results obtained with both methods are convergent for most of
the TEs: Al, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. The contents not detected with the ICP-OES
technique, as a result of verification with the ICP-MS technique, usually obtained very low
values.
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Figure 5. Raw and standardised tree rings’ widths (TRWs) measurements for Ind. and Control site.
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Table 2. Comparison of limit of detection (LOD) levels [ppm] for trace elements (TEs) from selected
periods A–D analysed by both inductively coupled plasma-optical emission spectrometry (ICP-OES)
and inductively coupled plasma-mass spectrometry (ICP-MS) techniques.

Table
LOD

ICP-MS ICP-OES

Ag 1.8 × 10−5 3.0 × 10−3

Al 2.3 × 10−3 1.4 × 10−2

Cd 2.1 × 10−5 1.0 × 10−3

Co 5.3 × 10−5 2.3 × 10−3

Cr 1.7 × 10−4 1.0 × 10−3

Cu 1.6 × 10−4 1.0 × 10−3

Fe 2.6 × 10−3 1.0 × 10−3

Mn 1.3 × 10−4 9.0 × 10−4

Ni 9.6 × 10−5 1.0 × 10−3

Pb 2.1 × 10−4 2.0 × 10−3

Zn 3.6 × 10−3 3.0 × 10−4
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Table 3. TEs contents in mineralised solutions. Comparison of results obtained by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical
emission spectrometry (ICP-OES) measurement techniques [ppm] and standard deviation (±SD) at selected time intervals A–D.

A (1967–1970) B (1995–1998) C (1999–2002) D (2011–2014)

Ind.1 1 Ind.1 2 Control Ind.1 1 Ind. 1 2 Control Ind. 1 1 Ind. 1 2 Control Ind. 1 1 Ind. 1 2 Control

Ag

ICP-MS 3.8 × 10−3 3.3 × 10−3 4.0 × 10−3 3.3 × 10−4 3.4 × 10−3 1.6 × 10−4 8.7 × 10−4 1.9 × 10−3 1.3 × 10−3 2.9 × 10−4 9.2 × 10−3 5.6 × 10−5

±SD 1.6 × 10−4 9.2 × 10−5 1.8 × 10−4 9.0 × 10−6 4.1 × 10−5 3.0 × 10−6 1.0 × 10−5 1.8 × 10−5 1.4 × 10−5 1.0 × 10−5 6.9 × 10−5 2.0 × 10−3

ICP-OES nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 7.8 × 10−3 nd 2

±SD - - - - - - - - - - 1.5 × 10−3 -

Al

ICP-MS 7.2 × 10−3 2.3 × 10−3 nd 2 6.4 × 10−1 2.9 × 10−2 nd 2 7.4 × 10−2 2.4 × 10−1 nd 2 9.3 × 10−2 1.1 × 10−1 nd 2

±SD 2.2 × 10−4 8.4 × 10−5 - 1.8 × 10−3 6.0 × 10−4 - 1.1 × 10−3 3.3 × 10−3 - 1.1 × 10−3 1.0 × 10−3 -

ICP-OES nd 2 nd 2 nd 2 nd 2 1.8 × 10−2 nd 2 nd 2 1.5 × 10−1 nd 2 nd 2 6.1 × 10−2 nd 2

±SD - - - - 7.1 × 10−3 - - 5.5 × 10−3 - - 8.5 × 10−3 -

Cd

ICP-MS 2.3 × 10−4 1.9 × 10−4 1.7 × 10−4 3.4 × 10−4 4.1 × 10−4 1.2 × 10−4 4.0 × 10−4 3.1 × 10−4 4.9 × 10−5 3.6 × 10−4 6.7 × 10−4 3.9 × 10−5

±SD 1.1 × 10−5 1.2 × 10−5 7.0 × 10−6 1.4 × 10−5 1.3 × 10−5 5.0 × 10−6 1.6 × 10−5 9.0 × 10−6 4.0 × 10−6 8.0 × 10−6 1.6 × 10−5 1.0 × 10−6

ICP-OES nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2

±SD - - - - - - - - - - - -

Co

ICP-MS 1.3 × 10−3 6.5 × 10−3 1.8 × 10−3 4.6 × 10−4 1.1 × 10−3 1.8 × 10−3 3.5 × 10−4 1.5 × 10−3 2.3 × 10−3 5.2 × 10−4 nd 2 5.2 × 10−4

±SD 4.7 × 10−5 3.2 × 10−4 5.8 × 10−5 3.7 × 10−5 5.4 × 10−5 4.0 × 10−6 1.5 × 10−5 2.9 × 10−5 3.0 × 10−6 1.8 × 10−5 - 1.2 × 10−5

ICP-OES nd 2 nd 2 nd 2 nd 2 2.3 × 10−3 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2 nd 2

±SD - - - - 8.3 × 10−4 - - - - - - -

Cr

ICP-MS 1.3 × 10−2 3.0 × 10−2 6.9 × 10−3 1.3 × 10−2 7.1 × 10−3 3.3 × 10−3 4.4 × 10−2 6.7 × 10−3 2.3 × 10−3 1.2 × 10−2 5.5 × 10−3 1.4 × 10−3

±SD 3.3 × 10−4 5.4 × 10−4 2.3 × 10−4 3.5 × 10−4 1.3 × 10−4 3.4 × 10−5 6.1 × 10−4 7.2 × 10−5 4.6 × 10−5 1.2 × 10−4 6.7 × 10−5 2.2 × 10−5

ICP-OES 1.3 × 10−2 2.9 × 10−2 7.4 × 10−3 1.3 × 10−2 6.4 × 10−3 2.4 × 10−3 4.3 × 10−2 6.8 × 10−3 2.6 × 10−3 1.1 × 10−2 6.5 × 10−3 nd 2

±SD 1.0 × 10−3 1.1 × 10−3 2.7 × 10−3 4.4 × 10−4 1.4 × 10−3 9.0 × 10−4 4.2 × 10−4 3.9 × 10−4 2.1 × 10−3 1.6 × 10−3 2.3 × 10−4 -

Cu

ICP-MS 6.6 × 10−3 2.0 × 10−3 2.8 × 10−3 1.2 × 10−2 9.6 × 10−3 4.9 × 10−3 1.6 × 10−2 9.7 × 10−3 3.5 × 10−3 1.2 × 10−2 1.7 × 10−2 2.4 × 10−3

±SD 1.9 × 10−4 1.0 × 10−4 7.1 × 10−5 2.8 × 10−4 1.3 × 10−4 5.3 × 10−5 3.4 × 10−4 5.3 × 10−5 2.3 × 10−5 1.4 × 10−4 6.0 × 10−5 3.3 × 10−5

ICP-OES 7.7 × 10−3 5.0 × 10−3 7.0 × 10−3 9.4 × 10−3 8.9 × 10−3 nd 2 1.4 × 10−2 8.8 × 10−3 nd 2 9.2 × 10−3 1.4 × 10−2 nd 2

±SD 6.1 × 10−4 4.9 × 10−4 5.1 × 10−4 3.5 × 10−4 2.1 × 10−3 - 8.1 × 10−4 9.1 × 10−4 - 7.6 × 10−4 2.0 × 10−3 -
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Table 3. Cont.

A (1967–1970) B (1995–1998) C (1999–2002) D (2011–2014)

Ind.1 1 Ind.1 2 Control Ind.1 1 Ind. 1 2 Control Ind. 1 1 Ind. 1 2 Control Ind. 1 1 Ind. 1 2 Control

Fe

ICP-MS 1.6 × 10−1 6.2 × 10−2 9.1 × 10−3 2.9 × 10−1 4.0 × 10−1 4.8 × 10−2 6.5 × 10−1 2.0 × 10−1 6.3 × 10−2 4.1 × 10−1 3.1 × 10−1 3.2 × 10−2

±SD 3.1 × 10−3 7.4 × 10−4 1.9 × 10−4 8.9 × 10−3 5.7 × 10−3 1.0 × 10−3 1.1 × 10−2 3.3 × 10−3 7.8 × 10−4 3.6 × 10−3 9.0 × 10−4 5.8 × 10−4

ICP-OES 6.0 × 10−2 7.5 × 10−2 1.8 × 10−2 1.3 × 10−1 2.7 × 10−1 4.7 × 10−3 4.0 × 10−1 1.1 × 10−1 3.2 × 10−2 2.5 × 10−1 1.7 × 10−1 1.4 × 10−3

±SD 2.1 × 10−3 1.0 × 10−3 1.9 × 10−3 1.8 × 10−3 1.1 × 10−2 2.8 × 10−3 1.0 × 10−2 2.1 × 10−3 2.1 × 10−3 8.0 × 10−3 3.0v 1.6 × 10−3

Mn

ICP-MS 6.5 × 10−2 3.8 × 10−2 2.5 × 10−2 3.0 × 10−2 7.8 × 10−2 5.5 × 10−3 9.8 × 10−2 7.9 × 10−2 3.8 × 10−3 2.9 × 10−1 1.7 × 10−1 7.6 × 10−3

±SD 1.3 × 10−3 8.0 × 10−4 2.7 × 10−4 8.1 × 10−4 1.0 × 10−3 7.6 × 10−5 1.6 × 10−3 5.7 × 10−4 3.9 × 10−5 2.1 × 10−3 1.2 × 10−3 1.3 × 10−4

ICP-OES 6.6 × 10−2 3.9 × 10−2 2.8 × 10−2 2.9 × 10−2 7.7 × 10−2 4.9 × 10−3 9.4 × 10−2 7.6 × 10−2 3.0 × 10−3 2.2 × 10−1 1.3 × 10−1 6.2 × 10−3

±SD 2.6 × 10−4 5.9 × 10−4 6.3 × 10−4 4.9 × 10−4 1.2 × 10−3 1.5 × 10−4 1.8 × 10−3 1.1 × 10−3 2.0 × 10−4 7.6 × 10−3 2.4 × 10−3 1.9 × 10−4

Ni

ICP-MS 1.3 × 10−2 1.1 × 10−3 6.9 × 10−3 6.1 × 10−3 3.1 × 10−3 8.8 × 10−4 7.8 × 10−3 3.4 × 10−3 8.6 × 10−4 6.5 × 10−3 6.5 × 10−3 7.9 × 10−4

±SD 2.7 × 10−4 3.7 × 10−5 9.0 × 10−5 1.7 × 10−4 7.0 × 10−5 1.7 × 10−5 8.1 × 10−5 4.9 × 10−5 2.8 × 10−5 7.3 × 10−5 4.6 × 10−5 1.1 × 10−5

ICP-OES 9.1 × 10−3 nd 2 1.1 × 10−3 2.2 × 10−3 9.7 × 10−4 nd 2 4.2 × 10−3 1.1 × 10−3 nd 2 2.4 × 10−3 3.3 × 10−3 nd 2

±SD 3.2 × 10−4 - 5.4 × 10−4 5.3 × 10−4 5.4 × 10−4 - 1.6 × 10−3 8.0 × 10−4 - 4.7 × 10−5 8.2 × 10−4 -

Pb

ICP-MS 2.1 × 10−3 2.0 × 10−3 1.7 × 10−3 1.2 × 10−2 2.1 × 10−2 1.4 × 10−3 1.2 × 10−2 1.7 × 10−2 2.2 × 10−3 1.1 × 10−2 2.0 × 10−2 1.5 × 10−3

±SD 4.0 × 10−5 5.6 × 10−5 4.5 × 10−5 9.6 × 10−4 2.5 × 10−4 1.5 × 10−5 1.6 × 10−4 1.3 × 10−4 1.6 × 10−5 1.3 × 10−4 1.1 × 10−4 3.7 × 10−5

ICP-OES nd 2 nd 2 nd 2 6.9 × 10−3 2.0 × 10−2 nd 2 7.8 × 10−3 1.5 × 10−2 nd 2 4.9 × 10−3 2.1 × 10−2 nd 2

±SD - - - 9.5 × 10−4 5.0 × 10−3 - 4.4 × 10−3 2.9 × 10−3 - 3.2 × 10−3 5.7 × 10−3 -

Zn

ICP-MS 5.2 × 10−2 2.1 × 10−1 1.1 × 10−2 4.0 × 10−1 1.7 × 10−1 4.6 × 10−2 7.1 × 10−1 6.9 × 10−2 2.7 × 10−2 1.0 × 10−1 1.3 × 10−1 2.7 × 10−2

±SD 1.2 × 10−3 5.9 × 10−3 3.4 × 10−4 8.2 × 10−3 2.1 × 10−3 4.5 × 10−4 1.3 × 10−2 5.8 × 10−4 1.3 × 10−4 1.0 × 10−3 1.4 × 10−3 4.7 × 10−4

ICP-OES 4.2 × 10−2 2.1 × 10−2 1.5 × 10−2 3.2 × 10−1 1.2 × 10−1 2.1 × 10−2 5.9 × 10−1 3.5 × 10−2 1.3 × 10−2 6.9 × 10−2 9.9 × 10−2 6.3 × 10−3

±SD 4.5 × 10−4 6.7 × 10−4 9.6 × 10−4 1.2 × 10−3 5.5 × 10−4 4.4 × 10−4 1.4 × 10−3 5.6 × 10−4 4.0 × 10−4 7.4 × 10−4 1.1 × 10−3 3.8 × 10−4

1 Industrial. 2 Not detected.
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Table 4. Evaluation of the significant difference between the mean values of the analysed TEs calcu-
lated using inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively
coupled plasma-mass spectrometry (ICP-MS) measurement techniques from selected periods A–D
(N = 12).

TEs Technique Sum of ranks U 1 p2

Ag
ICP-MS 211 11 <0.001

ICP-OES 89

Al
ICP-MS 180 42 0.089

ICP-OES 120

Cd
ICP-MS 222 0.01 <0.001

ICP-OES 78

Co
ICP-MS 207 16 <0.001

ICP-OES 94

Cr
ICP-MS 151 71 0.977

ICP-OES 149

Cu
ICP-MS 161 61 0.551

ICP-OES 139

Fe
ICP-MS 173 49 0.198

ICP-OES 127

Mn
ICP-MS 154 68 0.843

ICP-OES 146

Ni
ICP-MS 183 39 0.060

ICP-OES 117

Pb
ICP-MS 173 49 0.198

ICP-OES 127

Zn
ICP-MS 173 49 0.198

ICP-OES 127
1 U—Mann–Whitney U test. 2 Significant at p < 0.05 (bold font).

4. Discussion
4.1. History of Changes in the Environmental Chemistry of the Old Copper Basin

The conducted dendrochemical analyses and TRW measurements demonstrated
the long-term impact of the copper mining industry on trees in the Old Copper Basin
(objective i). This was reflected in a substantial increase in mean contents of all TEs in
industrial vs. control trees (significant differences were obtained for Mn, Ni, Zn, Cr, Pb,
Cu, and Fe) as well as a significantly lower mean TRW of industrial vs. control trees (mean
TRW lower by over 0.7 mm).

Research into the impact of the 1967 post-flotation tailings leakage showed that it
did not cause significant increases in the content of selected TEs in tree rings or decreases
in their width between 1967 and 1970 (objective ii). Some increases were observed for
Ni, Cu, and Cr, but none for the second Ind. site tree, and the differences were not as
significant as the results from the mid-1990s and early 2000s. Moreover, they occurred
with different delays (from 4 to 12 years). The failure to record a strong chemical signal
associated with the leakage is most likely due to the very low phytoavailability of heavy
metals in the sediments. Additionally, this effect may have been amplified due to the
timing of the TSF1 dam failure, which happened in December (tree dormancy in winter
combined with seasonally frozen soils). However, no significant increase in the TE content
was recorded, even assuming a long delay in recording, and no significant changes in
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the contents of the studied TEs lasted until the 1990s. During this time, the content of
Zn and Fe reached their highest levels in periods B and C. The mining activity in the
area was terminated 6 years earlier (with a significant decrease in mining from the 1980s
until closure), and no new sources of contamination appeared in the vicinity. Therefore,
attention was drawn to the temporal relationship between the reclamation carried out
and an increase in the contents of Zn and Fe, as well as a gradual increase in Mn. These
significant changes occurred only among elements necessary for the proper functioning
of plants, with relatively low toxicity, commonly used in fertilizers [55–57] and regulating
plant uptake of TEs, that pose a greater ecological risk, i.e., Pb, Cr, Cu, and Ni [56]. The
above information substantiates the statement that the uptake of Zn, Fe, and Mn by tree
roots occurred after their deliberate, professional application in the form of fertilizers
and plant preparations as part of reclamation efforts. Also, the resulting improvement in
the soil’s physical and chemical properties may have increased the phytoavailability of
elements (Fe, Zn, and Mn show limited solubility in alkaline and carbonate soils) [56]. Fe is
an immobile nutrient whose deficiency symptoms (chlorosis) show up in new growth [56].
Moreover, Fe, Mn, and Zn are not easily translocated across ring boundaries [58], therefore
the dating is not subject to high uncertainty. Although the environmental data alone cannot
indisputably link the significant increase in Fe, Zn, and Mn directly to the agrotechnical
interventions and fertilization of TSF1, we may speculate that we might have obtained a
chemical signal delayed by approximately 4 years describing the impact of TSF1 and TSF2
reclamation (objective iii). Moreover, the results obtained in period D for Mn suggest a
progressive decrease in sediment pH, most likely due to the impact of treatments carried
out during reclamation. These results, combined with lack of activation of Cu and Pb
stored in the tailings, may be the premise for a partial improvement of the soil’s physical
and chemical properties (lowering of pH, increasing the proportion of sand and skeletal
fractions, supplementation of nutrients).

Many studies have successfully used dendrochemical methods to detect TE contami-
nation in soil [17,21,26,36]. The presented results from Iwiny showed that the tree rings did
not register a strong signal of contaminants we know were introduced into the environment
as a consequence of the leakage, and most likely recorded the impact of reclamation with
a four-year lag. Results of chemical measurements of water samples from the Bobrzyca
River made between 6. 12. 1967 and 2. 01. 1968. [mg/l]: Fe between 1. 2–100, Cu between
not detected (nd)-1. 4, Pb nd, Zn between 0. 10–0. 15, Phenols between nd-10. 02. They
confirmed that anthropogenic activities introduced considerable amounts of heavy metals
into the environment [45]. Furthermore, the results of the radioactivity measurements
showed that the post-flotation tailing slurries carried large amounts of ground miner-
als containing possibly radioactive elements. The highest recorded results in samples
from the Bobrzyca River obtained on consecutive days after the event were the following:
(15. 12. 1967), 01:00 h = 752. 6 pCi/l, (16. 12. 1967) 01:00 h = 107. 6 pCi/l. (at that time, the
Soviet standard for surface waters was 30 pCi/l) [46]. The analysis of the study results
indicates the occurrence of environmental contamination that can potentially be recorded
in tree rings. The State Archive in Wrocław, Bolesławiec Branch, provided access to a map
made immediately after the accident, which shows the exact extent of the leakage [53].
However, the obtained data proved the existence of a cumulative multi-year environmental
impact of the copper industry. The research findings are consistent with many previous
studies. Those studies proved that higher concentrations of trace elements are definitely
present in rings of trees exposed to pollution than from reference sites. At the same time,
they admitted that the known date of entry for the contaminant into the environment was
not properly recorded in the tree rings. The above conclusions were reached as a result
of the analysis of the content of Cd and Zn in Scots pine wood 12 years after contamina-
tion [37], as well as research investigating changes in the trace element content in Norway
spruce rings following soil amendment with Cd and Zn [59]. The study on N, P, K, Ca, and
Mg concentrations in oak rings in the context of a fertilization experiment reported that a
change in element composition was registered by the trees, albeit spread over the entire
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radial profile (20 years before and 38 years after the known timing of nutrition inputs) [60].
A research project carried out in Zhengzhou, China proved that dendrochemical methods
are an effective part of any environmental monitoring programme, even though at the
same time the temporal patterns in tree rings of elements Zn, Cu, and Pb were only roughly
consistent with the contamination history [61]. In the case of air pollutants, a delay by at
least 13 years has been noted between atmospheric emissions from metallurgical activities
and when they were recorded by rings [38].

4.2. Verification of Results

An additional aspect of the research was considering the possibility of using the ICP-
OES measurement technique as a cheaper alternative to ICP-MS in dendrochemical analyses
conducted in copper mining areas. A key advantage of using ICP-MS over ICP-OES is the
higher sensitivity of this technique, which allows it to achieve LOD as low as parts per
trillion (ppt) [62,63]. ICP-MS therefore offers the possibility of very high sample throughput
in the laboratory, but with the consequence that laboratory set-up costs (multiple high
purity gases requirement, HEPA filters, dust reduction measures) and operating costs
are higher than for ICP-OES [63]. ICP-OES is used in environmental monitoring for
analyses, including elemental concentrations in deposited dust on leaves [64], TE content
measured in tree bark [65] or leaves and fruits using a combined approach, i.e., using
more than one technique, e.g., ICP-MS for TE analyses and ICP-OES for mineral element
measurements [65]. Multiple dendrochemical studies have also been published showing
the successful use of ICP-OES [26,60,66–69] or a mixed approach: ICP-OES (Ca, Mg, Cu,
Fe) combined with GFAAS (K, Pb, Cd) [66]. The LOD was sufficient to address the research
questions posed, but it was not always possible to detect all the elements analysed. For
example, concentrations of 17 elements (Mn, P, Ba, B, Cu, Co, Ca, Mg, Na, Cd, Cr, Ni, Al,
Fe, As, Mn, and Zn) measured in the rings of oak trees using ICP-OES showed that only
the results for Ni were below the detection limits [69]. In the conducted ICP-OES analyses
of tree rings from the Old Copper Basin, Co, Cd, and partly Al and Ag were not detected.
For Pb, Ni, and Cu, single results below LOD were recorded (Figure 4). Essentially, all
verified results were detected by ICP-MS. Only for Ag did some results not exceed the
LOD at all on both ICP-MS and ICP-OES. The ICP-OES technique can, therefore, be an
affordable alternative to ICP-MS, but with lower TE values, the required adequate LOD
of the analytes will also dictate the technique of choice. Depending on the requirements
of the study, the mass of the samples can be increased [60], a combined approach can be
used [65], or the repeat control measurement of selected samples proposed in this paper
can be performed using a measurement technique with a lower LOD. Although the studies
carried out in Iwiny did not allow for the detection of all elements, performing verification
on ICP-MS for key years gave us confirmation of the results obtained (objective iv). In
particular, when taking into account the research objectives, the key role was played by
TEs, which generally occur in wood in higher amounts (Fe, Zn, Mn). Moreover, the content
of these trace metals showed the greatest changes in the analysed period.

4.3. Challenges in the Application of Dendrochemistry to the Old Copper Basin

The research attempted to reconstruct contamination in an area that is special in terms
of its history as well as being the subject of very little research work to date. It is an example
of an area where environmental problems related to the consequences of mining activities,
such as TSF failures, storing a large amount of mining waste characterised by a high content
of heavy metals that is difficult to reclaim, are common in Europe and globally. In this
investigation, the main difficulties concerned the lack of consistent long-term instrumental
records (which at the same time constituted a premise for the application of dendrochemical
analyses), field constraints (small number of trees fulfilling the research criteria), tree species
conditions (ring-porous wood structure), and contamination characteristics.

Due to the characteristics of the research area and site selection criteria, two trees
growing on the Ind. site and one tree growing on the Control site were analysed in
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this study (three cores were collected from each). According to many studies, in such
a situation a cautionary approach is recommended. If possible, all arguments favour
the use of multiple cores from multiple trees in various sites to reduce uncertainty in
dendrochemical research [15,17,18,70]. However, published work in dendrochemistry also
presents results for only two cores from two different trees, e.g.,: Scots pine [29], Horse
chestnut [17], Chinese pine [26]. Due to site conditions and lack of availability of other
species (especially conifers), pedunculate oak cores were used. Despite the ring-porous
wood structure, oaks have found applicability in dendrochemical studies [30,60,66,71–73].
Some studies have concluded that oak rings did not passively record certain soil nutrient
concentrations [72]. Other researchers point to some potential for the white oak species,
but emphasize that the size of the sapwood zone of this species renders analyses difficult
(the smaller the number of rings in the sapwood, the lower the mobility of elements in
the xylem) [19,30,60,74]. High concentrations of mineral elements in sapwood and low
levels in heartwood are characteristic of oaks [71] In addition, at the sapwood/heartwood
boundary a sudden increase in the concentration of mineral element is observed due to
resorption from senescing sapwood rings. However, this does not apply when it comes to
explaining the observed peaks in the Mn, Fe, and Zn content in Iwiny for time intervals B
(1995–1998) and C (1999–2002), because in the analysed trees the sapwood zone ends in
later years: Ind. 1 in 2007 (13 rings), Ind. 2 and Control in 2009 (11 rings). This represents
the standard score for pedunculate oaks in Central Europe [75].

In order to carry out a correct interpretation of the results obtained, it is necessary to
take into account the characteristics of the pollutants (high pH, low phytoavailability of Cu,
Pb). The interpretation of the results adopted in the present work is supported by other
studies who claimed that the Mn content in rings is inversely proportional to the soil pH
whose changes are well-documented [72,76]. Moreover, acidic soils at the sampling site are
essential for the efficient uptake of Pb [76]. At the Ind. site, Pb was not detected until after
TSF1 closure. In general, higher Pb contents were observed in the period after the mine
closure (including its peak in 2003–2006). Moreover, the Cu content is higher after TSF1
closure. Taking into account the way Cu and Pb behave in carbonate soils when planning
agrotechnical procedures, and especially when choosing the forms of nitrogen fertilizers,
reduces the risk of formation of soluble complexes of these metals with ammonium ions
or low-molecular organic acids [47,77,78]. The reclamation carried out avoided this threat
related to the increased bioavailability of large amounts of Cu and Pb in areas adjacent to
TSF 1 and TSF2, resulting in its uptake by trees. The cessation of mining activity, combined
with the absence of new sources of pollution in the area, renders the reclamation carried out
as the most probable reason for the increase in Fe, Zn, and Mn contents. This is supported
by the temporal consistency and widespread use of these elements in fertilizers and plant
protection products [55–57].

In this study, we were able to follow the guidelines for minimizing any uncertainty in
dendrochemical measurements [17,30,70] to the following extent: more than one core was
taken from each tree, trees were of similar age, all grew in the same forest habitat, and in
the immediate vicinity of the pollution source (except for the Control tree). Additionally,
the multidecadal period was investigated. The definite and prevailing problem in the area
is soil contamination (limiting factor).

The dendrochemical analyses carried out should be considered as an important stage
in monitoring the condition of the environment, especially in areas where environmental
health risks for the population have been identified [16,25,79]. Thanks to dendrochemical
analyses carried out, it was possible to demonstrate the environmental load caused by
earlier long-term exploitation of copper ores. Furthermore, evidence was provided that
the reclamation of TSF1 and TSF2 was carried out, despite difficulties resulting from the
specific nature of the contamination, under the supervision of the Złotoryja Forestry District
in a professional and responsible manner. This avoided the existing real risk of mobilising
large amounts of Cu and Pb stored in sediments and mining waste in the area. Also thanks
to the results obtained, a signal from tree rings was detected indicating most probably an
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increase in the bioavailability of Zn, Fe, and Mn. These TEs are essential for plants and,
moreover, have relatively low toxicity [56]. The obtained results provide a rationale for
monitoring the bioavailability of heavy metals in sediments and soils in the vicinity of TSF1
and TSF2, as well as for research into factors that could potentially cause their activation
in the Old Copper Basin. It is also advisable to continue dendrochemical analyses using
different species on more trees in this area.

5. Conclusions

Dendrochemistry has proven to be a useful tool for studying the long-term impact of
pollution in the Old Copper District, even though an abrupt, short-term environmental
event was not recorded. Some limitations and challenges must be kept in mind as a direct
result of the study area’s characteristics and the type of contaminants analysed.

1. The main aim of the research (i) was achieved, i.e., the long-term impact of copper
mining in Iwiny was proved by comparing the average content of TEs in tree rings
(significant differences were obtained for Mn, Ni, Zn, Cr, Pb, Cu and Fe) and the
average TRW from the Ind. and Control site. At the Control site significantly lower
element contents were recorded than at the Ind. site. The average width of TRW
throughout the analysis period was significantly greater for the Control position, the
difference being 0.7 mm.

2. The 1967 TSF1 dam failure was not recorded in tree rings as a strong chemical signal
or TRW reduction (ii). In Iwiny, soil contamination prevailed, and the main limiting
factor was the low bioavailability of the dominant contaminants (Cu, Pb) found in
mining wastes and sediments deposited on soils. This was most likely the reason for
the lack of a significant increase in TEs content after 1967.

3. The factors listed in point 2 were partially modified in 1991 as a result of the remedi-
ation of TSF1 and TSF2 through the use of fertilizers and agrotechnical treatments
aimed at improving the physical and chemical properties of soils. The lack of new
sources of pollution on the Ind. site along with the temporal relationship strongly
suggests that the tree rings recorded the chemical signal of the TSF reclamation. Fe
and Zn content reached a peak in the 1990s and early 2000s, i.e., already after the
end of mining activities in the study area. Additionally, a gradual increase in Mn
between 1959 and 2014 was observed. These are essential plant elements of relatively
low toxicity. It should be stated that thanks to proper reclamation, a real threat was
avoided, i.e., the risk of mobilising large amounts of Cu and Pb deposited in mining
waste and sediments on the surrounding soil.

4. ICP-OES is an effective measurement technique for dendrochemical studies of the
environmental impact of old copper mining and can be a low-cost alternative to
ICP-MS (significant differences were obtained only for Ag, Cd, and Co). However, it
has to be considered, that in the case of lower TEs values, the required adequate LOD
of the analytes will also dictate the technique of choice.
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[Org. Założenia do generalnego planu działania likwidacji skutków katastrofy w dolinie rzeki Bobrzycy, Iwiny], The Supreme
Audit Office Wrocław Branch. Reference code: 86/75/0/-/1877. (In Polish)

54. Cook, E.R.; Holmes, R.L. Users Manual for ARSTAN (version 44h3); Laboratory of Tree-Ring Research, University of Arizona:
Tucson, AZ, USA, 1986.

55. Mortvedt, J.J.; Gilkes, R.J. Zinc Fertilizers. In Zinc in Soils and Plants; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands,
1993; pp. 33–44.

56. Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 104–106, 109, 119, 202,
205, 219, 221, 281, 283, 286.

57. Li, T.; Lü, S.; Ji, Y.; Qi, T.; Liu, M. A biodegradable Fe-fertilizer with high mechanical property and sustainable release for potential
agriculture and horticulture applications. New J. Chem. 2018, 42, 19129–19136. [CrossRef]

58. Hall, G.S. Multielemental analysis of tree-rings by proton induced x-ray (PIXE) and gamma ray emission (PIGE). In Proceedings
of the International Symposium on Ecological Aspects of Tree-Ring Analysis, Marymount College, Tarrytown, NY, USA, 17–21
August 1986; Jacoby, G.C., Hornbeck, J.W., Eds.; U.S. Department of Commerce: Washington, DC, USA, 1987.

59. Hagemeyer, J.; Lohrie, K. Distribution of Cd and Zn in annual xylem rings of young spruce trees [Picea abies (L.) Karst.] grown in
contaminated soil. Trees 1995, 9, 195–199. [CrossRef]

60. Durand, M.; Rose, C.; Dupouey, J.-L.; Legout, A.; Ponton, S. Do tree rings record changes in soil fertility? Results from a Quercus
petraea fertilization trial. Sci. Total Environ. 2020, 712, 136148. [CrossRef]

61. Zhang, X. The history of pollution elements in Zhengzhou, China recorded by tree rings. Dendrochronologia 2019, 54, 71–77.
[CrossRef]

62. Barin, J.S.; Mello, P.A.; Mesko, M.F.; Duarte, F.A.; Flores, E.M.M. Determination of elemental impurities in pharmaceutical
products and related matrices by ICP-based methods: A review. Anal. Bioanal. Chem. 2016, 408, 4547–4566. [CrossRef]

63. Wilschefski, S.; Baxter, M. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem.
Rev. 2019, 40, 115–133. [CrossRef] [PubMed]

64. Simon, E.; Baranyai, E.; Braun, M.; Cserháti, C.; Fábián, I.; Tóthmérész, B. Elemental concentrations in deposited dust on leaves
along an urbanization gradient. Sci. Total Environ. 2014, 490, 514–520. [CrossRef]

65. Minganti, V.; Drava, G.; Giordani, P.; Malaspina, P.; Modenesi, P. Human contribution to trace elements in urban areas as
measured in holm oak (Quercus ilex L.) bark. Environ. Sci. Pollut. Res. 2016, 23, 12467–12473. [CrossRef]

66. Krutul, D.; Zielenkiewicz, T.; Zawadzki, J.; Radomski, A.; Antczak, A.; Drożdżek, M. Influence Of Urban Environment Originated
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75. Rybníček, M.; Vavrčík, H.; Hubený, R. Determination of the number of sapwood annual rings in oak in the region of southern
Moravia. J. For. Sci. 2012, 52, 141–146. [CrossRef]

76. Guyette, R.P.; Cutter, B.E.; Henderson, G.S. Long-term correlations between mining activity and levels of lead and cadmium in
tree-rings of eastern red-cedar. J. Environ. Qual. 1991, 20, 146–150. [CrossRef]

77. McBride, M.B.; Bouldin, D.R. Long-Term Reactions of Copper (II) in a Contaminated Calcareous Soil. Soil Sci. Soc. Am. J. 1984, 48,
56–59. [CrossRef]

78. Varennes, A.; Torres, M.O. Remediation of a long-term copper-contaminated soil using a polyacrylate polymer. Soil Use Manag.
2006, 15, 230–232. [CrossRef]
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