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Abstract: Coptis chinensis Franch. (Ranales: Ranunculaceae) is a perennial species with high medici-
nal value. Predicting the potentially geographical distribution patterns of C. chinensis against the
background of climate change can facilitate its protection and sustainable utilization. This study
employed the optimized maximum entropy model to predict the distribution patterns and changes in
potentially suitable C. chinensis’ regions in China under multiple climate change scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0 and SSP5-8.5) across different time periods (1970–2000, 2050s, 2070s, and 2090s).
The results revealed that the currently potentially suitable regions of C. chinensis span an area of
120.47 × 104 km2, which accounts for 12.54% of China’s territory. Among these areas, the low,
moderate, and highly suitable regions are 80.10 × 104 km2, 37.16 × 104 km2, and 3.21 × 104 km2,
respectively. The highly suitable regions are primarily distributed in Chongqing, Guizhou, Zhejiang,
Hubei, and Hunan Provinces. Over time, the potentially suitable regions of C. chinensis are predicted
to shrink. Furthermore, our study revealed that the relatively low impact areas of C. chinensis were
mainly distributed in Yunnan, Guizhou, Hubei, Chongqing, and other Provinces. Centroid transfer
analysis indicated that except for SSP1-2.6, the center of the potentially suitable region of C. chinensis
showed a trend of gradual transfer to the northwest and high-altitude areas.

Keywords: bioclimatic factors; species distribution; ecological niche modeling; maximum entropy;
suitable area

1. Introduction

Over the last 3.5 billion years, approximately 4 billion species have evolved on Earth.
Subsequent to five mass extinction, 99% of these species have disappeared [1–3]. Due to
climate change caused by anthropogenic activities, we may be witnessing a sixth mass
extinction as species continue to vanish [4]. Numerous studies have shown that climate
change is an important driving factor for biodiversity loss, habitat fragmentation, and
changes in species spatial patterns, which may increase the risk of extinction of endangered
species [3,5]. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) revealed that the gradual increase in greenhouse gases (e.g., CO2) is leading
to global warming [6].

From 1880 to 2012, the global temperature increased by 0.85 ◦C, which is anticipated
to continue to rise by a further 0.3–4.8 ◦C by the end of the 21st Century [7]. Meanwhile,
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China’s Third National Climate Change Assessment Report revealed that the average
temperature of China’s terrestrial areas increased by 0.9–1.5 ◦C from 1909 to 2011, and
would further increase by 1.3–5.0 ◦C by the end of the 21st Century [8]. Climate warming
is expected to change the frequency and intensity of extreme climate events (e.g., high
temperatures, heat waves, drought, wildfires, storms, and floods) [4,8,9]. In response,
many species may shift their ranges to cope with the increasing changes in environmental
conditions (e.g., by migrating to high-altitude/-latitude areas) [10,11]. Numerous studies
have investigated the effects of climate change on a wide range of species, and have shown
that changes in climate conditions would profoundly affect species’ distribution ranges [12],
which may lead to changes in species dominance, survival, replacement and community
structure [13]. Thus, it is of long-term significance to elucidate the impacts of climate
change on the geographic distribution, germplasm, resource protection, and sustainable
utilization of plant species.

With the emergence of novel computational statistics technologies and the develop-
ment of the global information system (GIS), direct correlations between environmental
factors (e.g., climate, topography, meteorological data) and species data have become
possible, and such correlations have been extensively used in ecological studies [14]. Over
the last decade, ecological niche modeling (ENM) has been frequently and extensively
employed to simulate the spatial distribution of species, evaluate their potential responses
to climate change, and determine their niche based on environmental variables [15]. This
method has been used in various disciplines (e.g., global change biology, biogeography) to
predict the potentially suitable habitats by analyzing the known environmental conditions
of species occurrence [16]. ENM is a modeling tool that combines observations of species
occurrence or abundance with environmental estimates [17–19]. They are used to gain
ecological and evolutionary insights and to predict distributions across landscapes [20].
Previous comparisons of different ENM approaches have suggested that maximum entropy
modeling (MAXENT) has a relatively better prediction ability; thus, it has become one
of the most widely used modeling approaches [3,21,22]. MAXENT also utilizes species
presence and climate data to estimate the potential past and future distribution of species,
to facilitate the identification of relatively low impact areas for species, as well as the
trajectories of their migration and diffusion [10,23].

Coptis chinensis Franch. (Ranales: Ranunculaceae) is a perennial species with high
economic and medicinal values [24,25], which is primarily distributed across the Sichuan,
Chongqing, Guizhou, Hunan, Hubei, Zhejiang, and Shaanxi Provinces in China. This
species favors cold, humid, and shady environments, and typically thrives in mountain
forests or valleys at altitudes of from 500–2000 m [26]. It starts to bloom in the third
or fourth year after sowing or the second year after transplanting. Differentiation of
flower buds usually occurs between mid-August and mid-October. Both sexual and
asexual reproductions occur in C. chinensis, while asexual reproduction via developed
underground vegetative propagule prevails under natural conditions [27]. In traditional
Chinese medicine, C. chinensis is commonly used for the treatment of nausea and vomiting,
diarrhea due to spleen deficiencies, toothaches, sore mouth, and other diseases [28–31].
Due to climate change and anthropogenic activities, the distribution areas of C. chinensis
are gradually shrinking across China, to the extent that it has been listed as a Grade-II
state-protected plant by the central government [24,25,32].

In the past decades, due to the excessive exploitation and habitat destruction, the wild
resources of C. chinensis have been rapidly shrinking. However, it is difficult to develop a
conservation and management strategy without understanding its climate preferences and
potentially geographical distribution [33]. Moreover, climate change has been reported to
have significant implications for the habitat requirements of various species [34]. Hence,
determining whether climate change would affect the habitat suitability of the target
species is another critical issue related to its economic value and ecological significance [9].
Nonetheless, the ecological requirements of C. chinensis have rarely been investigated in
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previous studies. Little is known about the priority areas where C. chinensis should be
cultivated under climate change scenarios.

Based on optimized maximum entropy models, this study aimed to predict and
analyze the distribution patterns of potentially suitable regions for C. chinensis under
multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) over various time
periods (1970–2000, 2050s, 2070s and 2090s). The purposes of this study were to (1) predict
the potentially geographical distribution of C. chinensis under different climate scenarios;
(2) determine the environmental factors affecting the distribution of C. chinensis; (3) predict
the relatively stable suitable areas of C. chinensis under the background of climate change;
and (4) locate priority areas for effective conservation. The findings of this study would
provide important references for the investigation and protection of germplasm resources
for this medicinal herb, as well as the promotion of artificial planting.

2. Materials and Methods
2.1. Study Area

The boundaries of C. chinensis’ distribution range includes Baoji City, Shaanxi Province
to the north; Taizhou City, Zhejiang Province to the east, Nujiang Autonomous Prefecture,
Yunnan Province to the west; and Hechi City, Guangxi Province to the south. The geo-
graphic coordinates of the natural distribution areas of C. chinensis are 24◦49′56′′–34◦3′28′′

N and 98◦52′15′′–121◦2′16′′ E.

2.2. Species Occurrence Data

Based on an extensive literature review, we determined a total of 31 occurrence lo-
calities of C. chinensis across its main production area in Shaanxi, Sichuan, Chongqing
and Yunnan Provinces of China, and conducted field surveys from 2019 to 2020. These
31 occurrence points were included in the dataset for the model development in this
study. Furthermore, an additional 195 occurrence points were retrieved from the previ-
ously published literature and publicly accessible databases [China National Knowledge
Infrastructure/CNKI (https://www.cnki.net; accessed on 15 July 2021), China Digital
Plant Herbarium/CVH (https://www.cvh.ac.cn; accessed on 15 July 2021), and Global
Biodiversity Information Facility/GBIF (https://www.gbif.org; accessed on 15 July 2021)].
The resulting dataset was then quality-controlled following the protocol of Ye et al. [2]. To
minimize errors caused by clustering effects, each grid (2.5 arc-minutes) retained only one
occurrence point; thus, a final dataset of 136 occurrence points was employed for MAXENT
modeling (Figure 1; Table S1).

2.3. Screening of Environmental Variables

Climate change is the most crucial environmental factor that affects the distribution
of species across suitable regions, where bioclimatic factors are frequently used for plant
niche modeling [21,35]. The bioclimatic factors used in this study were downloaded from
the WorldClim website (https://www.worldclim.org; accessed on 23 June 2021), which
encompassed one recent (1970–2000) and three future periods (2050s, 2070s and 2090s). The
selection of various climate change scenarios clearly affected the accuracy of the developed
models [36].

To minimize this effect, four shared socioeconomic pathways (SSPs; SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5) for three general circulation models (GCMs; BCC-CSM2-MR,
CNRM-CM6-1, and MIROC-ES2L) were selected for future bioclimatic data. Consequently,
a total of 37 sets of bioclimatic data were integrated into this study, including one recent
and 36 future sets. The spatial resolution of the above data was 2.5 arc-minutes.

The screening of climatic factors has an important impact on the accuracy of the results
of model prediction. Based on the data of species occurrence points and 19 bioclimatic
factors, the Pearson correlation coefficient and Jackknife method were used to evaluate the
most important bioclimatic factors that influenced the potential distribution of C. chinen-
sis [37]. Firstly, the Jackknife method was employed to evaluate the importance of each

https://www.cnki.net
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variable of the model. Secondly, Pearson correlation coefficients among the 19 bioclimatic
factors were calculated, and |R| ≥ 0.8 was used as the threshold to judge the signifi-
cant correlation between climatic factors. Finally, for each pair of significantly correlated
variables, only one with the greater contribution was retained [1,38].
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Figure 1. Photos of Coptis chinensis in the field and its distribution. (A) location; (B) flower; (C) rhizome; (D) individual;
(E) habitat.

2.4. Model Optimization and Establishment

For this study, MaxEnt v3.4.1 software [39] was used to construct the maximum
entropy model of C. chinensis. To ensure that the distribution of C. chinensis was close to
normal probability, we selected 70% of the data for model training, and the remaining data
for model testing. Further, to reduce the occurrence of errors, the maximum number of
parameters was set to 5000, where each process was repeated 10 times; the other settings
were selected by default [40,41].

We used the <kuenm> package in R v3.4.1 [42] to optimize the feature class (FC) and
regularization multiplier (RM) of the model. Initially, the RM was set to 0.1–4 at 0.1 intervals,
which resulted in a total of 40 RM values. Next, four FCs (Linear (L), Quadratic (Q), Hinge
(H), and Product (P)) in the MAXENT model were arranged and combined to create 15 FC
combinations [L, P, Q, H, LP, LQ, LH, LPQ, LPH, LQH, LPQH, PQH, PQ, PH and QH].
Thus, a total of 600 parameter combinations were multiplied by FC and RM. Based on the
optimal model, we selected the model (OR_AICc) that was statistically significant, where
the omission rate was lower than the threshold (0.05), and the delta AICc value was not
higher than 2 [43,44].

2.5. Model Reliability Test and Classification of Suitable Regions

Following model construction, the area under the receiver operating characteristic
curve (AUC) is typically used to evaluate the accuracy of the model prediction, where the
AUC range was (0,1). The higher the AUC value, the higher the credibility of distinguishing
between suitable and unsuitable habitats, where AUC≥ 0.9 indicated a very accurate model
prediction [45,46].

The suitability of a given area for species is generally expressed by the value of 0–1,
where the higher the value, the more adaptive the species that grows in this area. According
to Tang et al. [47], the maximum test sensitivity plus specificity (MTSPS) threshold is
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superior to other threshold options for the classification of suitable regions. In this study,
MTSPS was used as the threshold, and those regions with suitability values below the
threshold were considered unsuitable. The suitability range between the MTSPS and 1
was partitioned into three equal sections, which corresponded to low, moderate, and high
suitability regions, respectively [38,48].

2.6. Analysis of Low Impact Area and Spatial Pattern Change

Low impact areas refer to those where species were less affected by climate change [49],
which were identified by overlaying the binary prediction maps of suitable regions for
different periods and isolating the completely overlapping portions. Using DIVA-GIS v7.5
software (http://www.diva-gis.org; accessed on 12 May 2021), the distribution maps of
potentially suitable regions for different years were initially superimposed. The spatial
units with probability values greater than the MTSPS threshold were redefined as suitable
regions for the species, while the spatial units with probability values less than the threshold
were redefined as non-suitable regions. Thus, the unsuitable and suitable matrices of
C. chinensis were established, and the fully overlapping portions in the overlay layer were
selected. This study predicted the relatively low impact areas of four different shared
socioeconomic paths (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) for recent and future
periods of C. chinensis propagation (2050s, 2070s and 2090s).

Spatial pattern changes refer to the modification of potentially suitable regions of
species for different time periods, which can be obtained via the superposition of binary
prediction maps of suitable regions for different time periods [4,8,50]. Using DIVA-GIS
v7.5 software, the distribution maps of potentially suitable regions for different time
periods were superimposed to establish the suitable and unsuitable matrices of C. chinensis.
Based on the matrix table, changes in the spatial patterns of suitable distribution areas of
C. chinensis under current and future climate change scenarios were further analyzed. For
this study, we generated a total of 12 spatial pattern change prediction maps, which were
employed to analyze the change patterns of potentially suitable regions across different
time periods for C. chinensis under current and differently shared socioeconomic pathways.

2.7. Core Distributional Shifts

Using the SDMtoolbox v2.4 toolkit as in ArcGIS v10.2 [51–53], we calculated the
change trend of different regions for C. chinensis and compared the central points of
different regions. We considered the suitable regions for C. chinensis as a whole and
simplified them as a vector particle using the change of the centroid position to reflect their
sizes and directions. Finally, the SDMtoolbox toolkit was utilized to track the centroid of
C. chinensis to investigate its distribution for different time periods under various climatic
conditions, to evaluate the migration distances and altitude changes for suitable C. chinensis
regions, including longitude and latitude coordinates [50,54].

3. Results
3.1. Model Parameter Optimization and Accuracy Analysis

For this study, six environmental variables were ultimately selected and used to
construct the prediction model. These included the mean diurnal range (max temp-min
temp) (BIO02), temperature seasonality (BIO04), minimum temperature of the coldest
month (BIO06), mean temperature of warmest quarter (BIO10), mean temperature of
coldest quarter (BIO11), and precipitation of driest month (BIO14). The contribution
percentages of these six variables for model construction were BIO06 (41.4%) > BIO02
(36.2%) > BIO11 (12.2%) > BIO04 (5.1%) > BIO14 (3.0%). (Table 1; Figures S1 and S2).

http://www.diva-gis.org
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Table 1. Environmental variables and their contributions and suitable value ranges.

Code Environmental Variable Percent Contribution (%)

BIO02 Mean diurnal range (Mean of monthly (max temp–min temp)) (◦C) 36.2
BIO04 Temperature seasonality (standard deviation × 100) 5.1
BIO06 Min temperature of coldest month (◦C) 41.4
BIO10 Mean temperature of warmest quarter (◦C) 2.1
BIO11 Mean temperature of coldest quarter (◦C) 12.2
BIO14 Precipitation of driest month (mm) 3.0

Based on the 136 distribution points and six bioclimatic variables for C. chinensis,
MAXENT modeling was employed to predict the distribution of potentially suitable regions
for C. chinensis in China. Following model optimization, the ideal FC and RM were LQ
and 0.1, respectively. The mean values of the training AUC (AUCTRAIN) and test AUC
(AUCTEST) for the model were 0.9755 ± 0.0012 and 0.9734 ± 0.0013, respectively. The
absolute value of the difference between the training AUC and test AUC (|AUCDIFF|) was
0.0021, which indicated that the model had excellent prediction accuracy (Figure S3).

Based on the MTSPS threshold (0.1217), the spatial units were divided as follows:
0–0.1217 unsuitable; 0.1218–0.4138 low suitability; 0.4139–0.7069 moderate suitability;
0.7070–1 high suitability.

3.2. Current Potentially Suitable Region

The current potentially suitable regions of C. chinensis were predicted to be
120.47 × 104 km2 in area, which were primarily distributed across Chongqing, Guizhou,
Zhejiang, Sichuan, Hunan, Jiangxi, Fujian, Shanghai, and Guangxi Provinces (Figure 2).
The high, moderate, and low suitability regions were 3.21 × 104 km2, 37.16 × 104 km2, and
80.10 × 104 km2, respectively. The highly suitable regions are mainly distributed across
Chongqing, northern Guizhou, southern Zhejiang, southwestern Hubei, and southern
Hunan Provinces (Table 2).
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Table 2. Predicted suitable areas under current and future climatic conditions.

Decades Predicted Area (× 104 km2) and % of the Corresponding Current Area

Total Suitable Region Lowly Suitable
Region

Moderately Suitable
Region

Highly Suitable
Region

1970–2000 120.47 80.10 37.16 3.21
SSP1-2.6 2050s 68.66 57.30 11.05 0.30

(56.99%) (71.53%) (29.74%) (9.51%)
2070s 69.64 57.17 12.02 0.45

(57.81%) (71.38%) (32.34%) (14.00%)
2090s 74.47 60.53 13.50 0.44

(61.82%) (75.57%) (36.33%) (13.78%)
SSP2-4.5 2050s 68.72 56.98 11.40 0.35

(57.05%) (71.14%) (30.66%) (10.92%)
2070s 54.98 48.17 6.68 0.14

(45.64%) (60.14%) (17.96%) (4.22%)
2090s 49.08 43.64 5.36 0.07

(40.74%) (54.49%) (14.42%) (2.27%)
SSP3-7.0 2050s 70.40 60.58 9.65 0.18

(58.44%) (75.63%) (25.97%) (5.51%)
2070s 50.80 45.84 4.90 0.06

(42.17%) (57.23%) (13.20%) (1.73%)
2090s 33.52 31.79 1.73 0.00

(27.83%) (39.69%) (4.65%) (0.11%)
SSP5-8.5 2050s 55.66 48.08 7.38 0.20

(46.21%) (60.02%) (19.86%) (6.38%)
2070s 32.63 30.50 2.12 0.02

(27.09%) (38.07%) (5.69%) (0.49%)
2090s 14.69 14.28 0.41 0.00

(12.19%) (17.83%) (1.10%) (0.00%)

3.3. Future Potentially Suitable Regions

The potentially suitable regions of C. chinensis for the three future time periods were
observed to diminish by varying degrees. With the exception of the 2050s under the
increased severity of climate change (SSP1-2.6→ SSP5-8.5), the potentially suitable regions
of C. chinensis gradually decreased (Figures 3–5; Table 2).

Under the SSP1-2.6 scenario, the total area of potentially suitable regions for C. chinen-
sis showed an initially shrinking, and then expanding trend which accounted for 56.99%
(2050s), 57.81% (2070s) and 61.82% (2090s) of the areas of currently suitable regions. Span-
ning the 2050s to the 2090s, the central and western Hunan, Jiangxi, Northeastern Fujian,
Eastern Sichuan, and Southeastern Jiangsu Provinces gradually changed from an original
low suitability region to an unsuitable region for C. chinensis, whereas the low suitability
region of southern Gansu Province expanded. The currently highly suitable regions exhib-
ited significant contraction, which accounted for 9.51% (2050s), 14.00% (2070s), and 13.78%
(2090s) of the current corresponding values, respectively. The highly suitable regions of
southern Zhejiang, northern Guizhou, and Hunan Provinces gradually become moderate
or low suitability regions.

Under the SSP2-4.5 scenario, the total area of the potentially suitable regions for C. chi-
nensis gradually shrank over time. In the 2090s, the total potentially suitable region was
only 49.08× 104 km2, which accounted for only 40.74% of the total currently suitable region.
The moderately and highly suitable regions showed a significant shrinking trend, and
the potentially highly suitable region of C. chinensis in the 2090s was only 0.07 × 104 km2,
which accounted for 2.27% of the current corresponding value. The original highly suitable
habitat had low suitability or was even unsuitable, whereas the highly suitable region
remained only in central Sichuan Province.
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Under the SSP3-7.0 scenario, the total area of potentially suitable regions for C. chinensis
for all three future time periods showed varying degrees of contraction, which accounted
for 58.44% (2050s), 42.17% (2070s), and 27.83% (2090s) of the current corresponding values.
The shrinking of the moderately and highly suitable regions was the most obvious, with
the moderately suitable region in the 2090s of 1.73 × 104 km2, which was 95.35% smaller
than the current value, while the highly suitable region almost disappeared.

Under the SSP5-8.5 scenario, the potentially suitable region for C. chinensis showed a
decreasing trend. The total suitable region (14.69 × 104 km2) contracted most significantly
for the 2090s, which accounted for only 12.19% of the current area. The moderately
suitable region in the three future time periods was 7.38 × 104 km2 (2050s), 2.12 × 104 km2

(2070s) and 0.41 × 104 km2 (2090s), which accounted for 19.86%, 5.69%, and 1.10% of the
current corresponding areas, respectively. The currently highly suitable regions almost
disappeared, with only 0.20 × 104 km2 and 0.02 × 104 km2 remaining in the 2050s and
2070s, respectively.

3.4. Low Impact Areas

Relatively low impact areas refer to those where species are less influenced by climate
change; thus, predictions may also differ under different climate scenarios (Figure 6 and
Figure S1, Table 3). With the increased severity of climate change (SSP1-2.6→ SSP5-8.5), the
total of relatively low impact areas for C. chinensis was observed to decrease (64.22 × 104

→ 12.86 × 104 km2), where their proportion of the total currently potentially suitable
region was also reduced, from 53.31% to 10.67%. However, our analysis also revealed that
regardless of climate scenarios, southeastern Sichuan, northeastern Yunnan, northwestern
Guizhou, eastern Chongqing, and southwestern Hubei Provinces have always been suitably
stable for the growth of C. chinensis. Furthermore, the classification of southeastern Gansu,
southern Shaanxi, southern Hunan, central and southern Zhejiang, and northeastern
Fujian Provinces (as relatively low impact areas) were also supported by the three climate
scenarios (Figure 6).
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Table 3. Low impact areas (LIAs) under different shared socio-economic pathways (SSPs).

LIA Statistics
Shared Socio-Economic Pathways (SSPs)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Geographic area (×104 km2) 64.22 47.33 31.29 12.86
Percentage of current suitable area (%) 53.31 39.29 25.97 10.67

Percentage of SSP1-2.6 area (%) 100.00 73.70 48.72 20.02

3.5. Shift in the Distribution Center of the Suitable Region

Our model simulation revealed that under all climate scenarios except for SSP1-2.6,
the center of the potentially suitable region for C. chinensis tended to shift to the northwest
(Figure 7). Under the SSP5-8.5 scenario, the center of the potentially suitable region was
transferred from Taoyuan County (Changde City, Hunan Province) to Longshan County
(Xiangxi Autonomous Prefecture, Hunan Province; 2050s), Pengshui County (Chongqing
Municipality; 2070s), and Linshui County (Guang’an City, Sichuan Province; 2090s). The
migration distances were 157.65 km, 128.54 km, and 173.78 km, respectively. Under the
SSP1-2.6 scenario, the center of the potentially suitable region shifted by 106.26 km (2050s)
and 47.55 km (2070s) to the northwest, and 24.82 km (2090s) to the southeast over time.
The center of the potentially suitable region shifted from Taoyuan County (1970–2000) to
Yongshun County (Xiangxi Autonomous Prefecture, Hunan Province) (2090s).

From the analysis of altitude changes, the center of the potentially suitable region
for C. chinensis shifted to high altitudes under all climate scenarios except for SSP1-2.6
(Figure 7). For example, under the SSP3-7.0 scenario, the elevation of the central point of
the potentially suitable region gradually increased from 70 m (1970–2000) to 1047 m (2090s).
However, under the SSP1-2.6 scenario, the elevation of the central point showed an initial
increase, which then decreased over time. The elevation increased from 70 m to 430 m
(2050s) and 700 m (2070s), respectively, and then decreased to 443 m (2090s).
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4. Discussion
4.1. Effects of Climate Change on Species Distribution and Migration Trends

In response to global warming, some species may remain in place through physiolog-
ical adaptations; however, others may migrate to higher latitudes or higher altitudes to
escape warming [38,55,56]. Generally, with the passage of time, the potentially suitable
regions for C. chinensis gradually shifted to the northwest (Figures 4 and 7). For example,
under the SSP1-2.6 scenario, the suitable regions in Jiangsu, Zhejiang and Fujian Provinces
gradually decreased, while those in southern Gansu Province increased. Under the SSP5-
8.5 scenario, by the 2090s, the potentially suitable region shifted to the northwest. With
the intensification of the greenhouse effect, Jiangxi, Hubei, and Guangxi Provinces would
become almost unsuitable for the growth of C. chinensis, whereas a new potentially suitable
region would appear in southeastern Gansu Province.

Using unoptimized maximum entropy models, Li et al. [57] predicted suitable areas
for three Coptis herbs under the background of climate change, and showed that the total
suitable area of C. chinensis would shrink in the 2070s as compared to the current area
under RCP8.5. Our study confirmed this trend. Besides, we also predicted the distribution
of suitable areas of C. chinensis in the 2050s and 2090s and the displacement of the central
point in different periods. A similar distribution pattern of suitable area was predicted
for the 2050s and the 2070s, suggesting that the predicted change of C. chinensis in the
2070s would already be visible in the 2050s. This finding corroborates a previous study
of Robinia pseudoacacia L. in Europe [58], and means it would take about 20 fewer years to
develop reasonable measures to mitigate the effects of climate change.
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During our field surveys, we observed that C. chinensis usually occurs as small popula-
tions in narrow and fragmented habitats, has an extremely narrow ecological niche, and is
basically confined to the steep slope under humid evergreen broad-leaved forests. Soil and
microclimatic factors play important roles in its natural distribution. Under climate change
scenarios, with the increase in global temperature and rainfall caused by the greenhouse
effect, the suitable area of C. chinensis may be further reduced. C. chinensis reproduces
both sexually and asexually [28]. However, under natural conditions, the prevalence of
asexual reproduction of C. chinensis via developed underground vegetative propagule
would further increase the difficulty of natural migration from the perspective of species
migration [59]. Over time, the distribution of C. chinensis in southeastern Provinces of
China would gradually decrease, while new suitable areas may emerge in southern Gansu
Province. However, considering its ecological requirement and reproductive mode, C.
chinensis would possibly be unable to cross the north of the Qinling Mountains and the
west of the Guanshan Mountain under natural conditions.

4.2. Effects of Environmental Variables on Species Distribution

Temperature and precipitation are two main environmental factors that influence plant
distribution, as exemplified by the cold tolerance, growing seasonal temperatures, and the
availability of water for alpine vegetation [4,60–62]. The main bioclimatic factors that affected
the potential distribution of C. chinensis were the lowest temperature during the coldest month
(BIO06), the monthly mean temperature difference between day and night (BIO02), and the
mean temperature during the coldest quarter (BIO11) (Figures S1 and S2; Table 1).

The minimum temperature during the coldest month which was suitable for the
growth of C. chinensis was −7.2–6.5 ◦C, which was likely because lower temperatures in
January would not be conducive to its growth. The suitable temperature difference between
day and night ranged from 4.3–9.2 ◦C, which indicated that the growth of C. chinensis
was moderately sensitive to daily temperature changes. The coldest seasonal temperature
suitable for the growth of C. chinensis ranged from−1.2–11.6 ◦C, where lower temperatures
may affect its vernalization [24]. This corroborated the findings of our field investigation:
As a shade plant, C. chinensis favors shady environments, is cold-resistant, often appears in
sandy loam, and has strict temperature requirements [25,27].

4.3. Protection of Genetic Resources

C. chinensis typically grows in sandy loam with a deep soil layer in loose and fertile
soil, which is rich in humus. It has a certain cold resistance and is suitable for planting in
the mountainous regions of southern China [24]. Normally, plant habitats on mountains are
surrounded by forests, which leads to their isolation and fragmentation, while constraining
the migration of pollen and fruit, thereby preventing long-range transmission [4,63,64].
Thus, it is urgent to formulate effective protection strategies and long-term protection
actions for C. chinensis. According to our prediction model (Figures 6 and S4), C. chinensis
might be less impacted by climate change in southeastern Sichuan, northeastern Yunnan,
northwestern Guizhou, eastern Chongqing, and southwestern Hubei Provinces; thus, these
regions may be suitable for planting.

As a medicinal herb, C. chinensis has a long history of exploitation in traditional
Chinese medicine for clearing heat and drying dampness, as well as discharging fire and
detoxification [28,30,31,65–67]. The prediction model revealed that the potentially highly
suitable regions were mainly distributed across Chongqing, Northern Guizhou, Southern
Zhejiang, Southwestern Hubei, and the junction of Hunan, Guangdong, and Guangxi
Provinces. Previous studies have indicated that Shizhu County in Chongqing Municipality
and Lichuan City in Hubei Province are typically considered as the traditional producing
areas of C. chinensis [24]. However, the quality of C. chinensis habitats in these regions may
be affected by future climate change [68,69]. Therefore, the investigation, collection, and
sorting of high-quality germplasm, and the establishment of a core germplasm resources
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database may play key roles for the protection of C. chinensis genetic resources under
intensifying global warming.

4.4. Rationality and Prediction Model Defects

The use of the MAXENT model to predict the potential distribution of species in
suitable habitats has become common in the disciplines of global change biology and
biogeography [70–72]. However, previous studies often ignored optimization, or involved
only the insufficient optimization of model parameters, which can affect the accuracy of pre-
diction models [36,40,57]. Earlier studies have indicated that the quality control of species
occurrence points, the selection of bioclimatic factors, atmospheric circulation models, and
shared socioeconomic pathways, the classification of suitable regions, the optimization
of regularization multipliers, and feature classes may all have significant impacts on the
predictive results of models. For this study, these parameters were systematically and
comprehensively optimized, such that the scientific accuracy of the prediction results could
be guaranteed to the maximum extent [1,3,38,73].

It was assumed that under the background of climate change, C. chinensis had sufficient
dispersal capacities to migrate to any climatically suitable region. Factors such as species
migration rate and geographical and ecological isolation were not reflected in the modeling
analysis. Obviously, all these factors may influence the prediction results to some extent
to be different from the actual distribution pattern. Another limitation is that we only
considered the impacts of bioclimatic variables on species distribution. In practice, however,
species distribution is also affected by biotic factors (e.g., competition, predation, and
disease) and abiotic factors (e.g., soil, topography, and anthropogenic activities). If we
comprehensively consider the influence of multiple factors, we need to simulate a more
comprehensive niche model, which constitutes one of the most important directions for
future model development.

5. Conclusions

For this study, an optimized maximum entropy model was employed to predict
the distribution patterns and changes in potentially suitable regions for the growth of
C. chinensis in China under multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and
SSP5-8.5) across multiple time periods (1970–2000, 2050s, 2070s and 2090s). The predicted
suitable area of C. chinensis would be reduced to varying degrees in the future. Except
for SSP1-2.6, the potentially suitable area of C. chinensis shifted to the northwest and
high-altitude areas, and the southeast of Gansu Province would become suitable for the
growth of C. chinensis. Considering the distribution of C. chinensis in different periods and
under different climate scenarios, the relatively stable suitable areas of C. chinensis were
mainly distributed in Yunnan, Guizhou, Hubei and Chongqing, and these regions should
be given priority when establishing conservation sites for C. chinensis. In addition, the shift
trend of potentially suitable areas of C. chinensis in the 2070s could already be visible in
the 2050s. Therefore, early implementation of reasonable in situ or ex situ conservation
measures for C. chinensis could reduce the impact of climate change by about 20 years.
Our findings would provide a theoretical basis for the protection of genetic resources and
artificial planting promotion of this valuable medicinal herb.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12111464/s1, Figure S1: Jackknife test of the importance of variables. Blue, green, and red
bars represent running the MaxEnt model with the variable alone, without the variable, and with all
variables, respectively. (A): regularization training gain; (B): test gain; (C): AUC, Figure S2: Response
curves of six environmental predictors used in the ecological niche model for Coptis chinensis,
Figure S3: Prediction validation with receiver operator characteristic (ROC) curves using the MaxEnt
model. AUC: the area under curve, Figure S4: Low impact area of Coptis chinensis under four shared
socio-economic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5), Table S1: The rarefying data
points (136) of Coptis chinensis in China.
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