
Article

Prediction of Regional Forest Soil Nutrients Based on Gaofen-1
Remote Sensing Data

Yingying Li 1 , Zhengyong Zhao 1,2,*, Sunwei Wei 1, Dongxiao Sun 3, Qi Yang 1 and Xiaogang Ding 3

����������
�������

Citation: Li, Y.; Zhao, Z.; Wei, S.; Sun,

D.; Yang, Q.; Ding, X. Prediction of

Regional Forest Soil Nutrients Based

on Gaofen-1 Remote Sensing Data.

Forests 2021, 12, 1430. https://

doi.org/10.3390/f12111430

Academic Editor: Georgios Mallinis

Received: 8 September 2021

Accepted: 18 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University,
Nanning 530004, China; lyygxu@st.gxu.edu.cn (Y.L.); vesuvius@st.gxu.edu.cn (S.W.);
qi66yang@yahoo.ca (Q.Y.)

2 Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
3 Institute of Forestry Economic Science, Guangdong Academy of Forestry, Guangzhou 510520, China;

sdx@st.gxu.edu.cn (D.S.); 27267152@sinogaf.cn (X.D.)
* Correspondence: z.zhao@unb.ca

Abstract: The study on the spatial distribution of forest soil nutrients is important not only as a
reference for understanding the factors affecting soil variability, but also for the rational use of soil
resources and the establishment of a virtuous cycle of forest ecosystems. The rapid development of
remote sensing satellites provides an excellent opportunity to improve the accuracy of forest soil
prediction models. This study aimed to explore the utility of the Gaofen-1 (GF-1) satellite in the
forest soil mapping model in Luoding City, Yunfu City, Guangdong Province, Southeast China. We
used 1000 m resolution coarse-resolution soil map to represent the overall regional soil nutrient
status, 12.5 m resolution terrain-hydrology variables to reflect the detailed spatial distribution of soil
nutrients, and 8 m resolution remote sensing variables to reflect the surface vegetation status to build
terrain-hydrology artificial neural network (ANN) models and full variable ANNs, respectively. The
prediction objects were alkali-hydro-nitrogen (AN), available phosphorus (AP), available potassium
(AK), and organic matter (OM) at five soil depths (0–20, 20–40, 40–60, 60–80, and 80–100 cm). The
results showed that the full-variable ANN accuracy at five soil depths was better than the terrain-
hydrology ANNs, indicating that remote sensing variables reflecting vegetation status can improve
the prediction of forest soil nutrients. The remote sensing variables had different effectiveness for
different soil nutrients and different depths. In upper soil layers (0–20 and 20–40 cm), remote sensing
variables were more useful for AN, AP, and OM, and were between 10%–14% (R2), and less effective
for AK at only 8% and 6% (R2). In deep soil layers (40–60, 60–80, and 80–100 cm), the improvement
of all soil nutrient models was not significant, between 3 and 6% (R2). RMSE and ROA ± 5% also
decreased with the depth of soil. Remote sensing ANNs (coarse resolution soil maps + remote
sensing variables) further demonstrated that the predictive power of remote sensing data decreases
with soil depth. Compared to terrain-hydrological variables, remote sensing variables perform
better at 0–20 cm, but the predictive power decreased rapidly with depth. In conclusion, the results
of the study showed that the integration of remote sensing with coarse-resolution soil maps and
terrain-hydrology variables could strongly improve upper forest soil (0–40 cm) nutrients prediction
and NDVI, green band, and forest types were the best remote sensing predictors. In addition, the
study area is rich in AN and OM, while AP and AK are scarce. Therefore, to improve forest health,
attention should be paid to monitoring and managing AN, AP, AK, and OM levels.

Keywords: forest soil prediction; soil nutrients; GF-1 satellite; full-variable ANNs; terrain-hydrology
ANNs; depth-specific soil; remote sensing ANNs

1. Introduction

The spatial distribution of forest soil nutrients is directly related to the growth and
health of forests and has an important influence on forest ecosystem restoration and
sustainable management [1]. Forest soil nutrients are essential components of forest tree
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growth and development, and their availability to the forest is determined by their state
in the soil [2]. Available nutrients are water-soluble and exchangeable elements in the
soil. They can be directly absorbed and used by plants or quickly exchanged from soil
colloid for plant use; alkali-hydro-nitrogen (AN), available phosphorus (AP) and available
potassium (AK), have a significant correlation with soil fertility [3]. Total nitrogen (TN),
total phosphorus (TP) and total potassium (TK) are the sum of available and unavailable
nitrogen, phosphorus and potassium in the soil, respectively, and have a slight correlation
with soil fertility [4]. Organic matter (OM) is all kinds of carbon-containing organic
compounds in the soil, one of the primary sources of plant nutrition [5]. Thus, high-
resolution maps of depth-specific soil nutrients clarifying their main controlling factors
are essential for forest culture, forest management policies, regional soil degradation, and
climate change study [1].

To date, various methods have been developed to produce soil nutrient maps, some of
which include spatial interpolation methods [6], linear regression models [7], co-kriging [8]
and regression kriging [9]. These methods require many sample points and hypotheses pre-
determining the relationships between soil texture and predictors [10,11]. However, when
the soil nutrient prediction is performed at a large scale and in a diversified environment,
sample points are scarce. Moreover, the relationship between soil nutrients and the environ-
ment variables is a nonlinear process [11]. Artificial intelligence technology is considered
an appropriate and useful method to obtain a more detailed spatial distribution map of
soil nutrients with auxiliary environmental variables [12,13]. Representative achievements
have included McBratney et al.’s [14] use of an Artificial Neural Network (ANN) model
to predict soil physical properties; regression tree and spline function were proposed to
estimate 1 m deep soil organic carbon (SOC) [13]. Taghizadeh-Mehrjardi et al. [15] re-
ported that an ANN showed the highest performance for prediction of SOC in the four
standard depths compared to five other data mining techniques. Research has proven that
the detailed spatial distribution of soil nutrients can be modelled with high-resolution
terrain-hydrology variables at a local level [16] because water movements along terrain
gradients preferentially transfer soil components such as SOM, nutrient elements, and fine
soil particles [17]. The terrain is only one of the five major soil forming factors, however,
and relying on it alone is not enough to perfectly model the spatial variation of soil nutri-
ents. Therefore, the growth of precision agriculture has created an urgent need to provide
more available data sources to make soil science more rigorous [18].

According to Zhao et al. [19,20] and Ding et al. [21], average soil properties are related
to geological formations, parent materials and climate that could be captured by existing
coarse-resolution soil maps. Coarse resolution maps are important for the production of soil
maps. In addition, Ballabio et al. [22] concluded that vegetation is the most important factor
affecting soil nutrients in the organism. Remote sensing data provide information about
soil nutrients from direct images of bare soils [23]. However, soils are usually covered by
vegetation in the forest, which obviously has impacts on the application of remote sensing
data for soil mapping because remote sensors cannot directly detect soils, and remote
sensing images reflect ground vegetation [24]. The reflectance of the ground vegetation
varies with wavelength, and different vegetation conditions have different reflectance
spectral characteristics. Vegetation indices are formed by combining the visible and near
infrared bands of satellites based on the spectral characteristics of vegetation. Vegetation
indices are simple, valid, and empirical measures of surface vegetation conditions [18].
Given this background, many previous DSM studies have incorporated vegetation indices
and spectral reflectance from optical images into soil prediction models in areas covered by
vegetation [25,26]. This approach is promising because vegetation is viewed as a crucial
determinant of soil formation through its impacts on soil biophysical processes, and, in turn,
is a strong indicator of the spatial variation of soil nutrients. Consequently, we gain insight
into the spatial distribution of soil nutrients through quantifying the variability of remote
sensing vegetation features [24]. Odebiri et al. [27] found that the critical environmental
variable of soil nutrient prediction in densely forested areas is remote sensing data. Based
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on previous research, the remote sensing images of the Landsat series satellite are the most
widely used. However, as the first high-resolution earth observation satellite in China, the
Gaofen-1 (GF-1) satellite has an important strategic significance for developing remote
sensing technology. The remote sensing images obtained by GF-1 have a shorter revisit
period (4d) and higher spatial resolution (8 m/16 m), and it is easier to show detailed
surface features and fragmentation features [28]. At present, GF-1 images are mainly used
for forest detection, ground object identification and disaster monitoring. However, their
application in DSM has not been explored or developed to its full potential.

An approach combining the ANN model with GF-1 remote sensing variables to
predict nutrients in a forest site has not been reported. Thus, this study seeks to combine
the GF-1 satellite to improve the accuracy of traditional terrain-hydrology soil models. The
purpose is to find the most suitable prediction model to map five forest soil depths of AN,
AP, AK, and OM. The specific research objectives were to: (1) select the combination of
optimal variables for all ANN models for each depth and evaluate model performance
and prediction performance outside of the area used for model development; (2) use the
selected model to produce depth-specific soil element maps in the study area; and (3)
evaluate the effects of the used remote sensing variables and terrain-hydrology variables
on depth-specific soil elements.

2. Materials and Methods
2.1. Study Area

The model building area (22◦25′–22◦57′ N, 111◦03′–111◦52′ E) was Luoding City,
which is located in the southwestern Yunfu City, Guangdong Province, China, with
1426.9 km2 of its total 2327.5 km2 area forested. The extra validation area was Xinxing
County (22◦22′–22◦5′ N, 111◦57′–112◦31′ E), which is located in the southeastern Yunfu
City, with 1008.4 km2 of its total 1521.7 km2 area forested, see Figure 1. The two study
areas are in the subtropical monsoon zone, with high temperature and ample precipitation
in the same period (May–October), which is conducive to plant growth [21]. The two
areas are mountainous regions with elevations ranging from 12 to 1320 m. In both study
areas, tropical monsoon forest types are dominated by natural secondary evergreen broad
leaved forests, coniferous forests, and mixed forests. The main coniferous species are
Pinus massoniana, Eucalyptu ssp. and Cunninghamia lanceolate, and the main broad leaved
tree species include Chenopodium album, Liquidambar formosana, and Cinnamomum camphora
(Guangdong Forestry Survey and Planning Institute, Guangzhou, China, 2014). As eco-
nomic forests occupy larger and larger areas, human management activities on forests are
intensifying, affecting the structure and fertility of forest soils. As a result of local climate,
terrain, and vegetation type, the two study areas comprised Typic Kanhapludults (Lateritic
Red Earths) and Typic Hapludults (Red Earths). Udults is the common soil type in tropics
and subtropics of China, and it is rich in iron and aluminum as a result of desilication. In
nature, the content of N, P, K and OM are low because of the strong physical and chemical
weathering of soil minerals, the rapid decomposition of OM and the massive leaching of
nutrients in the field [20]. Based on this, high-resolution three-dimensional models are
effective to analyze and predict the spatial distribution of forest soil nutrients.

2.2. Data Sources

In this study, the coarse-resolution soil nutrient maps at 1000 m resolution represented
the overall state of forest soil nutrients, the 12.5 m resolution digital elevation model
(DEM)-derived terrain-hydrology variables represented the detailed forest soil nutrients
change caused by terrain-hydrology conditions, and the 8 m resolution GF-1 satellite-
derived band reflectance and vegetation indices represented the detailed forest soil nutrient
variation caused by vegetation (see Table 1). All variable maps from various sources were
interpolated into 10 m resolution raster format using the conventional inverse distance
weighted approach. The pixel values of the raster layers (environmental variables) that
corresponded to the coordinates of sampling points were extracted to build the model.
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Figure 1. DEM and soil profile distribution in model building and extra validating areas. 
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Figure 1. DEM and soil profile distribution in model building and extra validating areas.

2.2.1. Coarse-Resolution Soil Map and Soil Sampling

A coarse-resolution soil nutrient map roughly reflects the spatial distribution of soil
nutrients in large-scale areas. In this study, a 0–20 cm coarse-resolution soil nutrient map
(http://www.soilinfo.cn/map/index.aspx (accessed on 27 October 2018)) was used, and
the basic necessary input variables, including coarse resolution alkali hydro nitrogen (CAN),
coarse resolution available phosphorus (CAP), coarse resolution available potassium map
(CAK), and coarse resolution organic matter map (COM), were obtained from the Institute
of Soil Research, Chinese Academy of Sciences with a scale of 1:1,000,000. Soil vector
maps (1:1,000,000 scale) were converted into 1000 m resolution raster maps in ArcGIS
10.2, and then resampled to 10-m resolution. In this study, a coarse resolution soil map
represents the soil nutrient average value in the field. The soil nutrient content provided
by the coarse-resolution soil nutrient map is the basis for model construction, and both
terrain-hydrology and remote sensing variables are used to respond to more details.

The soil profiles (n = 385) for building (260) and validating (125) were collected by the
2015 Forest Soil Survey Project of Guangdong Academy of Forestry Sciences, taking soil
type, terrain-hydrology conditions, and vegetation characteristics into consideration. Two
sample schemes, including thematic distribution and random distribution, were used to set
the sample points. Based on these conditions, the soil samples were small in number but
were representative soil points for the area. The distribution of the sample points is shown
in Figure 1. The latitude and longitude of all soil points were located by a hand-held GPS
(global positioning system) receiver, and the positioning accuracy was 5 m. A 1 m deep soil
pit was dug at each sample site. If the profile had no record before 1 m depth, the soil profile
was excavated to the parent material horizon. Each soil profile was divided into five depth
intervals: 0–20 cm (D1), 20–40 cm (D2), 40–60 cm (D3), 60–80 cm (D4), and 80–100 cm (D5).

http://www.soilinfo.cn/map/index.aspx
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Sampling stratification was based on the coarse-resolution soil nutrient maps to obtain
enough samples within every class of soil elements. Each soil sample was air-dried, ground,
passed through 2 mm sieves, and stored in glass bottles for further analysis. The NaOH
alkali solution expansion method and NaHCO3 extraction molybdenum blue colorimetric
method were used to determine AN concentrations and AP concentrations, respectively. A
NH4OAC extraction-flame photometric method was used to measure AK content and a
dichromic acid oxidation–external heating method to estimate OM [17,29].

Table 1. Input variables for Model A, Model B, and Model C.

Variable Abbr. Description Resolution

Coarse-resolution soil maps
Coarse resolution alkali hydro nitrogen CAN The content of AN in a coarse-resolution soil map 1000 m
Coarse resolution available phosphorus CAP The content of AP in a coarse-resolution soil map 1000 m

Coarse resolution available potassium map CAK The content of AK in a coarse-resolution soil map 1000 m
Coarse resolution organic matter map COM The content of OM in a coarse-resolution soil map 1000 m

DEM-derived terrain-hydrology
Slope Slope Slope gradient (degrees) 12.5 m

Aspect Aspect Direction of the steepest slope from the north 12.5 m
Topographical position index TPI The relative terrain position of the central pixel 12.5 m

Potential solar radiation PSR Total solar radiation reaching the earth surface
based on location for a single year 12.5 m

Depth to water DTW The elevation differences between the pixel and
the nearest water surfaces (m) 12.5 m

Sediment delivery ratio SDR The ratio of the sediment transported to the outlet
and total erosion in watershed area (%) 12.5 m

Flow length FL The length of the maximum ground distance along
the flow direction projected to the horizon (m) 12.5 m

Soil terrain factor STF A modified version of the hydrological similarity
index 12.5 m

Flow direction FD The steepest descent direction of each pixel along
the water flow 12.5 m

GF-1 derived remote sensing variables
Blue band B Wavelength of 450–520 nm 8 m

Green band G Wavelength of 520–590 nm 8 m
Red band R Wavelength of 630–690 nm 8 m

Near infrared band NIR Wavelength of 770–890 nm 8 m
Normalized difference vegetation index NDVI (NIR−R)/(NIR+ R) 8 m

Difference vegetation index DVI NIR–R 8 m
Ratio vegetation index RVI NIR/R 8 m

Renormalized difference vegetation index RDVI
√

NIR ∗DVI 8 m

Forest types Forest Broad leaved forest, coniferous forest,
mixed forest, bamboo, bush, and other 8 m

Notes: Input variables of Model A: necessary variables (coarse-resolution soil map) and candidate variables (terrain-hydrological variables).
Input variables of Model B: necessary variables (coarse-resolution soil map + optimal terrain-hydrological variables) and candidate
variables remote sensing variables. Input variables of Model C: necessary variables (coarse-resolution soil map) and candidate variables
(remote sensing variables).

2.2.2. Terrain-Hydrology Variables

Moore, I.D. et al. [30] summarized the significance and physical meaning of various
terrain attributes to landscape processes. Building on their work, many authors have used
terrain attributes derived from DEM as explanatory variables in predictive soil models [31].
Terrain affects water movement, which involves the transportation and deposition of
sediment. In the model building area, nine terrain hydrology variables, including slope,
aspect, topographical position index (TPI), potential solar radiation (PSR), depth to water
(DTW), sediment delivery ratio (SDR), flow length (FL), flow direction (FD), and soil terrain
factor (STF), were derived from DEM images. Detailed information is shown in Table 1.
The DEM was obtained from Cartosat-1 (IRS P5) with a 12.5 m resolution of Guangdong
Academy of Forestry Sciences and was resampled to 10 m raster using ArcGIS 10.2 software.
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The spatial analyst extension tools and developed forest hydrology tools of ArcGIS were
used to generate terrain and hydrology variables [32]. Terrain-hydrology variables affect
the accumulation of forest soil nutrients in the region.

2.2.3. Remote Sensing Variables

In nature, vegetation litter is the main source of forest soil nutrients. Vegetation density
and vegetation type determine the amount of litter, and the root condition of vegetation
affects its ability to absorb soil nutrients. Remote sensing images provide direct land
vegetation information. Therefore, the close relationship between vegetation variables and
soil nutrients allows remote sensing variables that reflect the condition of vegetation to be
applied to forest DSM work [33]. The clearest 8 m resolution GF-1 multi-spectral remote
sensing images covering the model building area were downloaded from the geospatial
data cloud website (http://www.gscloud.cn (accessed on 9 May 2016)). Firstly, remote
sensing images were pre-processed by ENVI 5.3 software, including radiometric calibration,
atmospheric correction, geometric correction, mosaic, cropping, and resampling to the
10 m resolution. In this study, the remote sensing variables included four bands of GF-1,
including the blue band (B), green band (G), red band (R), and near infrared band (NIR).
These bands were selected because they represented the growth and biomass of vegetation.
We also used the band math function of ENVI 5.3 to extract four plant indices: NDVI
(normalized difference vegetation index), DVI (difference vegetation index), RVI (ratio
vegetation index), and RDVI (renormalized difference vegetation index). Some information
on remote sensing variables is shown in Table 1. Vegetation indices are effective indicators
for detecting vegetation growth status, vegetation cover, and eliminating some radiation
errors. In remote sensing science, NDVI is widely used in forest growth monitoring and
yield prediction [34] and is an uncertain graphical sign that can be employed to outline
the greenness, relative density, and healthiness of vegetation [35]. DVI is very sensitive to
the change in soil background, and it increases rapidly with an increase in vegetation [36].
RVI can better reflect the difference in vegetation coverage and growth status, which is
especially suitable for vegetation monitoring with vigorous growth and high coverage [37].
RDVI is commonly used to investigate plants at the growth stage and the greenness present
in the vegetation [38].

The hierarchical classification method was used to classify forest types from the
processed 8 m resolution images in the eCognition 9.0 software to improve the accuracy
of forest classification. The mixed forest, coniferous forest, and broad-leaved forest were
automatically classified according to the spectral characteristics, geometric characteristics,
texture characteristics, and vegetation indexes of the segmented objects. Samples of
900 forest types were taken from the forest class vector map of Luoding City provided by
the Guangdong Academy of Forestry Sciences and randomly divided into two parts, in
which 600 samples were used for classification training, and 300 samples were used for
accuracy verification. The “Feature Space Optimization” module of eCognition was used
to select the features with the best separation. The first step was to distinguish between
the vegetation area and the non-vegetation area. Next, we determined the forest land
and the cultivated land in the vegetation areas. Finally, we divided the forest land into
conifers, broad-leaved forests, and mixed forests. The “Error Matrix based on Sample” in
eCognition was used for classification accuracy evaluation. The overall accuracy was 0.81
and KIA (Kappa coefficient) was 0.77. The overall accuracy and KIA reflect the classification
accuracy of the whole map. Broad leaved forest, coniferous forest, and mixed forest were
the main forest types in the area, but bamboo and other kinds of vegetation were too small
for automatic classification. Therefore, these plants were distinguished according to the
forest class vector map [39]. Finally, resampling the forest type image to the 10 × 10 m
resolution corresponded to other variable raster maps. The forest types and other eight
remote sensing variables obtained from GF-1 are shown in Figure 2.

http://www.gscloud.cn
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2.3. Artificial Neural Network Model

We applied the ANN model, a machine learning algorithm developed by
Zhao et al. [17,40,41], to predict the spatial distribution at 1 m depth of AN, AP, AK, and
OM by MATLAB 2016 software. The most common ANN type is a multi-layer perceptron
with three layers: input layer, output layer, and hidden layer. The input layer contained
in-dependent variables used to make a model prediction (the coarse-resolution nutrient
maps, the DEM-generated terrain-hydrology variables, and GF-1-generated remote sensing
variables). The output layer contained the prediction dependent variable (the measured
data of AN, AP, AK, and OM). The input layer and the output layer were connected by a
hidden layer whose number of neurons determined the complexity of the ANN model: too
many hidden neurons will cause over-fitting, and too few hidden neurons will lead to poor
fit. All links between the input and hidden layers form the input weight matrix, and all
links between the hidden and output layers form the output weight matrix [42]. The ANN
model was trained using a back-propagation technique that adjusted the weight and bias
values along a negative gradient descent, using the Levenberg Marquardt algorithm [43] to
minimize the mean squared error (MSE) between the network output (predicted value) and
the target value (measured value). When MSE is less than 0.01, the training stops. A 10-fold
cross-validation was used to evaluate and train the ANNs; the entire model building area
data set (260 soil profiles) was divided into 10 equal subsets. The data from 9 subsets were
used as calibration data to build the model, and the remaining subsets were used as data for
validation. This process was repeated 10 times until all subsets were used as the validation
set. Meanwhile, an early stopping method was used to avoid “over-fitting”, which uses
a training set (80% of the calibration data) to calculate the gradient, update the network
weights, and estimate the bias. The testing dataset (20% of the calibration data) was used
to monitor the training process to prevent overfitting. If the training MSE decreases but the
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test MSE increases, the training of the ANN model was stopped assuming that the most
appropriate model coefficients had been obtained. According to previous studies [40,41],
the number of hidden layer neurons changed from 5 to 40. Finally, 35 neurons in the hidden
layer were the best structure in this study.

Screening and Assessing ANN Models

In this study, 260 soil samples of each soil depth were used to build, train, and evaluate
the ANN model in the model building area (Luoding City). Xinxing County, which had
125 sample profiles, served as an independent verification area outside the ANN model
building area to test the generalization ability of the selected ANN model. Three indexes
were adopted to compare the performance of the ANN model accuracy, including root
mean square error (RMSE), coefficient of determination (R2), and relative overall accuracy
(ROA ± 5%). According to the three model evaluation indexes, the best model appears
when the model precision is not obviously improved after other variables are added.
Therefore, the best model should have a relatively higher R2 and ROA ± 5% and lower
RMSE. The specific formulas were as follows:

RMSE =

√
∑n

i=1(Yi − Xi)
2

n
(1)

R2=
∑n

i=1 (X i −Yi)
2

∑n
i=1 (X i −Yi

)2 (2)

ROA =

∑n
i=1

{
1 if abs

(
Yi−Xi

Xi

)
× 100 < T

0 else

}
n

× 100 (3)

where Yi is the predicted value; Xi is the measured value; n is number of sample points;
Yi is the average value of the model’s predicted values; T is the accuracy threshold (e.g.,
5 for 5% in this study) determined based on target to fit the model.

3. Results
3.1. Exploratory Data Analysis

In total, the measured soil nutrient data from 260 soil profiles in Luoding City and
125 soil profiles in Xinxing County were used in this study. The statistical results of AN,
AP, AK, and OM are shown in Figure 3. The boxplot was drawn using GraphPad Prism
8.0 software. AN content varied from 7.44 to 310.07 mg kg−1 with the most significant
variation at D4 from 10.33 to 310.07 mg kg−1. AP content was from 0.01 to 6.52 mg kg−1,
AK content was from 4.80 to 140.62 mg kg−1, and OM content was from 0 to 63.20 g kg−1;
these three nutrient elements had the most significant variation at D1. The mean of the
four soil nutrients showed a general decreasing trend in variation from D1–D5. AK and
OM means at D3, D4, and D5 were about two times lower than D1, but AN and AP means
at each depth did not significantly change. Using ArcGIS software to analyze the spatial
autocorrelation of the samples, the results show that the Moran index (I) approaches 0,
showing weak autocorrelation.
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Figure 3. Descriptive statistics of available nutrients (mg kg−1) and organic matter (g kg−1).
D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen;
AP: available phosphorus; AK: available potassium; OM: organic matter.

3.2. Optimal Variables Combination of Each Soil Depths

The accuracy results of the Model A are shown in Table 2. For each depth, based
on coarse-resolution data, model prediction performance was significantly improved by
increasing terrain-hydrology variables. Still, this improvement was not sustainable when
the additional variable exceeded a certain degree. Taking AN as an example, the accuracy of
the Model A in D1 was significantly improved by gradually adding the terrain-hydrology
variable from one to six, decreasing the RMSE values from 1536.42 to 863.56, 823.64, 580.53,
528.38 and 495.68 mg kg−1, increasing the R2 values from 0.23 to 0.55, 0.58, 0.71, 0.74 and
0.76%, and increasing the ROA ± 5% values from 55 to 59, 66, 70, 71, and 74%, respectively.
However, when further adding the seventh, eighth, and ninth terrain variables, RMSE
values increased from 593.21 to 638.11 and 748.31 mg kg−1, R2 values decreased from
72 to 69 and 67%, and ROA ± 5% values decreased from 72 to 69 and 68%, respectively.
This was not a surprise because the additional variables were based on their order of
importance to soil nutrients. The added variables were less important to the soil nutrients.
Therefore, the optimal variables combined for the D1 layer of AN were SDR, Slope, Aspect,
DTW, TPI, and FD. On the other hand, the additional input variables may have introduced
more uncertainty because of their own precision and accuracy, thus limiting the model’s
prediction performance. Based on this selection scheme, the optimal Model A, Model B,
and Model C of all soil layers were generated by this screening method. The slope and
aspect appear in all selected optimal Model A in Table 2, indicating that slope and aspect
had a huge impact on the distribution of soil nutrients. Tables 3 and 4 show the prediction
accuracies for the Model B and Model C fore four soil nutrient contents, respectively.
Model B had better predictive performance than the Model A. In Table 3, the NDVI, G, and
forest have the highest occurrence frequency, indicating that they had the greatest influence
on soil nutrients among the nine remote sensing variables.
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Table 2. Optimal variable combination and accuracies of the terrain hydrology ANN model (Model A) of soil nutrients.

Nutrient Depth Number * RMSE R2 ROA ± 5% (%) Optimal Candidate Variables Combination

AN

D1 1 1536.42 0.23 55 SDR
2 863.56 0.55 59 SDR, Slope
3 823.64 0.58 66 SDR, Slope, Aspect
4 580.53 0.71 70 SDR, Slope, Aspect, DTW
5 528.38 0.74 71 SDR, Slope, Aspect, DTW, TPI
6 495.68 0.76 74 SDR, Slope, Aspect, DTW, TPI, FD
7 593.21 0.72 72 SDR, Slope, Aspect, DTW, TPI, FD, FL
8 638.11 0.69 69 SDR, Aspect, Slope, FL, TPI, STF, PSR, FD
9 748.31 0.67 68 SDR, Aspect, Slope, FL, TPI, STF, PSR, FD, DTW

D2 5 476.36 0.76 74 SDR, Slope, Aspect, DTW, FL
D3 7 630.51 0.79 77 SDR, Slope, Aspect, STF, DTW, FL, FD
D4 5 554.46 0.76 78 SDR, Aspect, Slope, STF, FL
D5 6 668.18 0.79 77 SDR, Slope, Aspect, TPI, STF, FD

AP

D1 6 0.88 0.74 53 PSR, Slope, Aspect, SDR, TPI, FD
D2 6 0.34 0.74 48 PSR, Slope, Aspect, TPI, DTW, FD
D3 6 0.17 0.68 45 PSR, Aspect, Slope, SDR, TPI, FD
D4 7 0.15 0.66 43 PSR, Slope, Aspect, SDR, TPI, STF, FD
D5 7 0.12 0.69 45 PSR, Slope, Aspect, TPI, DTW, FL, FD

AK

D1 6 253.96 0.75 62 Slope, SDR, Aspect, FL, TPI, STF
D2 6 208.53 0.76 59 Slope, Aspect, FL, SDR, TPI, DTW
D3 7 156.68 0.77 61 Slope, Aspect, FL, SDR, FD, TPI, PSR
D4 7 141.35 0.78 61 Slope, Aspect, FL, SDR, STF, DTW, PSR
D5 6 143.60 0.76 59 Slope, Aspect, FL, SDR, STF, FD

OM

D1 6 45.26 0.75 56 Slope, Aspect, SDR, TPI, STF, DTW
D2 6 15.23 0.76 60 Slope, Aspect, SDR, TPI, DTW, PSR
D3 7 10.68 0.79 63 Slope, Aspect, SDR, TPI, STF, FD, PSR
D4 5 14.82 0.76 60 Slope, Aspect, SDR, STF, FL
D5 6 11.40 0.77 62 Slope, Aspect, TPI, STF, DTW, FD

Notes: D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen; AP: available phosphorus;
AK: available potassium; OM: organic matter. The optimal variables were selected among all combinations with the same number of
DEM-generated terrain variables based on the values of ROA ± 5% of model. For example, the number of combinations with four variables
is when the optimal variables were selected among all combinations with the same number of DEM-generated terrain-hydrology variables
based on ROA ± 5% of model values. For example, the number of combinations with four variables is C4

9 = 26. The RMSE unit of AN, AP
and AK were mg kg−1, OM was g kg−1. TPI, terrain position index; PSR, potential solar radiation; STF, soil terrain factor; SDR, sediment
delivery ratio; DTW, depth to water; FL, flow length; FD, flow direction; R2, the coefficient of determination; RMSE, root-mean-squared
error; ROA, relative overall accuracy. The RMSE unit of AN, AP and AK were mg kg−1, OM was g kg−1. TPI, terrain position index;
PSR, potential solar radiation; STF, soil terrain factor; SDR, sediment delivery ratio; DTW, depth to water; FL, flow length; FD, flow
direction; R2, the coefficient of determination; RMSE, root-mean-squared error; ROA, relative overall accuracy. * Number of optimal terrain
hydrology variables.

Table 3. Optimal variable combination and accuracies of full variables ANN model (Model B) of soil nutrients.

Nutrient Depth Number * RMSE R2 ROA ± 5% (%) Optimal Candidate Variables Combination

AN

D1 1 447.67 0.79 84 A1 + NDVI
2 400.34 0.80 85 A1 + NDVI, Forest
3 361.25 0.84 87 A1 + NDVI, Forest, G
4 232.80 0.86 88 A1 + NDVI, Forest, G, R
5 214.25 0.89 90 A1 + NDVI, Forest, G, R, NIR
6 307.44 0.85 88 A1 + NDVI, Forest, G, RVI, R, NIR
7 391.30 0.81 85 A1 + NDVI, Forest, G, RDVI, RVI, B, NIR
8 448.61 0.79 82 A1 + NDVI, Forest, G, RVI, RDVI, B, DVI, NIR
9 491.35 0.78 80 A1 + NDVI, Forest, G, RVI, RDVI, B, DVI, NIR, R

D2 5 263.60 0.88 88 A2 + NDVI, Forest, G, RVI, NIR
D3 5 419.03 0.85 87 A3 + NDVI, Forest, G, B, NIR
D4 6 544.59 0.81 85 A4 + NDVI, Forest, G, RDVI, RVI, NIR
D5 5 423.17 0.84 84 A5 + NDVI, Forest, G, R, DVI
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Table 3. Cont.

Nutrient Depth Number * RMSE R2 ROA ± 5% (%) Optimal Candidate Variables Combination

AP

D1 5 0.45 0.87 82 A1 + G, NDVI, Forest, RDVI, NIR
D2 4 0.19 0.86 80 A2 + G, NDVI, Forest, RDVI
D3 7 0.14 0.73 75 A3 + G, NDVI, Forest, DVI, RDVI, RVI, NIR
D4 7 0.12 0.71 74 A4 + G, NDVI, Forest, RVI, DVI, B, R
D5 6 0.10 0.75 77 A5+G, NDVI, Forest, RDVI, DVI, B

AK

D1 6 144.70 0.83 81 A1 + NDVI, G, Forest, DVI, RDVI, NIR
D2 6 126.83 0.82 79 A2 + NDVI, Forest, DVI, B, R, NIR
D3 5 127.90 0.81 76 A3 + Forest, G, RVI, DVI, B
D4 7 116.43 0.83 77 A4 + NDVI, G, Forest, DVI, RDVI, B, NIR
D5 7 120.30 0.81 75 A5 + NDVI, G, Forest, RDVI, DVI, B, R

OM

D1 6 21.98 0.89 82 A1 + Forest, NDVI, RDVI, G, B, R
D2 4 10.20 0.86 82 A2 + Forest, NDVI, RVI, DVI
D3 5 9.67 0.84 75 A3 + Forest, RDVI, G, B, RVI
D4 6 10.31 0.80 72 A4 + Forest, NDVI, RDVI, DVI, G, NIR
D5 7 9.60 0.80 74 A5 + Forest, NDVI, RDVI, RVI, DVI, R, NIR

Notes: D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen; AP: available phosphorus; AK:
available potassium; OM: organic matter. The optimal variables combined include the optimal variables combination screened out in Model
A, and the variables were selected among all combinations with the same number of GF-1 derived remote sensing variables based on the
values of ROA ± 5% of model. The RMSE unit of AN, AP, and AK were mg kg−1, OM was g kg−1. D1, D2, D3, D4 and D5, the optimal
variable combination of the depth of D1, D2, D3, D4 and D5 in the Model A, respectively. TPI, terrain position index; PSR, potential solar
radiation; STF, soil terrain factor; SDR, sediment delivery ratio; DTW, depth to water; FL, flow length; FD, flow direction; R2, the coefficient
of determination; RMSE, root-mean-squared error; ROA, relative overall accuracy. * Number of optimal terrain hydrology variables.

Table 4. The optimal accuracies of remote sensing ANN model (Model C) of soil nutrients.

Nutrient Depth RMSE R2 ROA ± 5% (%)

AN

D1 552.37 0.77 71
D2 575.99 0.71 63
D3 753.97 0.61 58
D4 785.83 0.56 55
D5 806.17 0.51 47

AP

D1 0.83 0.75 63
D2 0.21 0.68 49
D3 0.29 0.56 43
D4 0.34 0.50 40
D5 0.42 0.46 37

AK

D1 289.90 0.66 52
D2 326.76 0.60 47
D3 569.44 0.51 42
D4 597.39 0.44 38
D5 620.77 0.38 35

OM

D1 35.41 0.78 75
D2 13.56 0.72 67
D3 15.67 0.60 58
D4 18.45 0.54 52
D5 20.08 0.50 48

Notes: D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen; AP:
available phosphorus; AK: available potassium; OM: organic matter. The RMSE unit of AN, AP and AK were
mg kg−1, OM was g kg−1. R2, the coefficient of determination; RMSE, root-mean-squared error; ROA, relative
overall accuracy.

This study mainly compared the performance of the Model A and Model B that are
shown in Tables 2 and 3. The full-variable ANNs (Model B) presented the best prediction
performance, exhibited the lowest RMSE, the highest R2 and ROA± 5%. This was expected
because when the terrain-hydrology ANNs (Model A) accepts more helpful information,
the prediction accuracy will naturally improve. Moreover, compared with the Model A, the
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Model B showed that the improved scales of surface soil depths (D1 and D2) were more
significant than deep soil depths (D3, D4, and D5). In the Model B, the R2 of AN at D1
and D2 layers increased 13 and 12%, while the D3, D4, and D5 layers only increased 6, 5,
and 5%, respectively. The R2 of AP for D1 and D2 increased 13 and 12%, but D3, D4, and
D5 only increased 5, 5, and 6%, respectively. The R2 of AK for D1 and D2 increased 8 and
6%, and D3, D4, and D5 increased 4, 5, and 5%, respectively. The R2 of OM for D1 and D2
increased 14 and 10%, and D3, D4, and D5 only increased 5, 4, and 3%, respectively. For the
other two accuracy evaluation indexes, RMSE and ROA ± 5% also showed a similar trend.
This revealed that remote sensing variables were limited in improving the accuracies of
AN, AP, AK, and OM. In addition, remote sensing variables had different performances
for different soil nutrients and different depths. The more effective for AN, AP, and OM at
0–40 cm were between 10–14% (R2), the less helpful for AK at 0–40 cm were only 8 and
6% (R2), and the improvement of all deep soil layers (40–100 cm) was not significant. The
results of remote sensing ANNs (Model C) further support this conclusion that the model
prediction accuracies decrease rapidly with depth and have poor predictive power for AK.

3.3. Performance of ANN Model Outside of the Model-Building Area

In an attempt to truly test the capability of generalization, the optimal models for
D1-D5 built with the 260 soil profiles from Luoding (model building area) were used
to estimate AN, AP, AK, and OM content in Xinxing (the extra validating area). The
accuracies of the extra validating area (125 soil profiles) are shown in Table 5. The five
soil layers of each soil nutrient index’s prediction ability decreased in the extra validation
area. Compared with the building accuracy, the RMSE of extra validation accuracy rose
by 65.77–105.08 mg kg−1 for AN, 0.08–0.15 mg kg−1 for AP, 35.50–57.50 mg kg−1 for AK,
and 1.02–4.35 g kg−1 for OM; the R2 decreased by 25–34% for AN, 27–39% for AP, 32–44%
for AK, and 23–42% for OM; and the ROA ± 5% declined by 26–40% for AN, 20–39%
for AP, 24–44% for AK, and 24–38% for OM. The prediction ability declined to a certain
extent, indicating that the early stopping technology played a limited role in preventing
the over-fitting of the model training data set. However, the three evaluation indexes still
showed a good prediction capability, close to or better than that of others [13,44,45]. The
complexity of the network architecture was adequate because the extra validation showed
that the model’s ability developed to generalize predictions. The optimal ANN model
screened from the model building area can be applied in similar areas.

3.4. Spatial Prediction of Soil Nutrients

Our model results showed that the Model B performs best, so it was selected to predict
the spatial distribution of topsoil (D1) AN, AP, AK, and OM contents with a resolution
of 10 × 10 m grid (Figure 4). Table 6 also summarizes the prediction mean and standard
deviation for AN, AP, AK, and OM contents at different soil depths. Mean values of soil
nutrients decreased with the depth of soil. The average values for AN content varied from
133.91 to 159.93 mg·kg−1 with soil depths, AP content ranged from 0.53 to 0.96 mg·kg−1,
AK content changed from 37.78 to 49.94 mg·kg−1, and OM content ranged from 10.05 to
23.17 g·kg−1. The average content of each soil layer showed little difference, indicating
that the soil nutrient surface aggregation was not significant in the model building area.
Moreover, as a whole, the standard deviation of the predicted value was lower than that
of the measured value, indicating that the predicted result was more stable. For a real
analysis of the stability of predictions, we calculate the standard errors (SE) for the 10 maps
produced by the 10 best ANN models obtained from the 10-fold cross-validation. The low
prediction SE map of D1 for AN in Figure 4e further demonstrates the good performance
of the constructed ANN. Figure 4f–i, show a partial enlargement of Figure 4a–d, showing
detailed information and covering the boundary of the coarse-resolution maps. The
boundaries of coarse-resolution maps were faintly visible in the generated maps, indicating
that the coarse-resolution maps had a small impact on the generated map.
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Table 5. Evaluation of model performances calculated from the extra validation area.

Validation Accuracy Extra Validation Accuracy–Building
Accuracy *

Soil Depths GF-1
Variables RMSE R2 ROA ± 5%

(%) RMSE R2 ROA ± 5%
(%)

AN_D1 5 280.02 0.64 64 65.77 −0.25 −26
AN_D2 5 334.51 0.61 55 70.91 −0.27 −33
AN_D3 6 508.60 0.51 47 89.57 −0.34 −40
AN_D4 5 649.67 0.53 58 105.08 −0.28 −27
AN_D5 5 515.43 0.57 46 92.26 −0.27 −38
AP_D1 4 0.60 0.60 62 0.15 −0.27 −20
AP_D2 7 0.33 0.53 51 0.14 −0.33 −29
AP_D3 7 0.25 0.36 44 0.11 −0.37 −31
AP_D4 6 0.20 0.32 36 0.08 −0.39 −38
AP_D5 6 0.24 0.37 38 0.14 −0.38 −39
AK_D1 6 180.20 0.51 50 35.50 −0.32 −31
AK_D2 5 171.32 0.44 35 44.49 −0.38 −44
AK_D3 7 185.40 0.38 44 57.50 −0.43 −32
AK_D4 7 163.67 0.46 53 47.24 −0.37 −24
AK_D5 7 170.92 0.37 38 50.62 −0.44 −37
OM_D1 6 26.33 0.57 52 4.35 −0.32 −30
OM_D2 6 12.93 0.63 48 2.73 −0.23 −34
OM_D3 6 10.69 0.55 51 1.02 −0.29 −24
OM_D4 4 12.84 0.38 34 2.53 −0.42 −38
OM_D5 5 11.30 0.43 47 1.70 −0.37 −27

Notes: D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen; AP: available phosphorus;
AK: available potassium; OM: organic matter. The RMSE unit of AN, AP, and AK were mg kg−1, OM was g kg−1. * Building accuracies
were calculated based on 260 soil profiles data points from Luoding (model building area). Validation accuracies were calculated based on
125 soil profiles data points from Xinxing (extra validating area).

Table 6. Statistics of the predicted values for each soil layer.

Predicted Value Predicted Value–Measured Value

Soil Depths Mean SD Mean SD

AN_D1 159.93 10.93 −2.93 −21.87
AN_D2 153.46 8.20 1.06 −24.21
AN_D3 150.15 14.59 −1.35 −23.38
AN_D4 139.54 14.34 4.91 −20.47
AN_D5 133.91 18.18 2.10 −12.12
AP_D1 0.96 0.92 −0.19 −0.73
AP_D2 0.64 0.65 −0.09 −0.34
AP_D3 0.65 0.73 0.03 −0.02
AP_D4 0.57 0.58 0.01 −0.04
AP_D5 0.53 0.56 0.02 0.02
AK_D1 49.94 27.09 −1.20 −1.22
AK_D2 43.07 27.06 0.53 −1.05
AK_D3 39.68 24.74 0.84 −0.53
AK_D4 39.18 24.39 1.43 0.76
AK_D5 37.78 22.2 1.37 0.38
OM_D1 23.17 11.69 −1.00 −1.75
OM_D2 16.25 8.21 −0.54 −0.19
OM_D3 13.05 7.00 −0.66 −0.33
OM_D4 11.7 7.56 −0.36 0.37
OM_D5 10.05 6.16 −0.35 −0.44

Notes: D1: 0–20 cm; D2: 20–40 cm; D3: 40–60 cm; D4: 60–80 cm; D5: 80–100 cm. AN: alkali-hydro-nitrogen; AP: available phosphorus; AK:
available potassium; OM: organic matter. The unit of AN, AP, and AK were mg kg−1, OM was g kg−1.
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standard error map of the D1 layer of AN. (f–i) represent a highlighted area in (a–d), respectively, 
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Figure 4. The spatial distribution of the D1 layer of AN (a), AP (b), AK (c), and OM (d). (e) is the
standard error map of the D1 layer of AN. (f–i) represent a highlighted area in (a–d), respectively,
showing detailed information and covering the boundary of the coarse-resolution maps.

4. Discussion
4.1. Assessment of Prediction Models

Soil nutrients affect the healthy growth of trees and the stability of ecosystems and
are an important indicator for evaluating soil quality. The integration of remote sensing
variables in forest soil nutrient prediction is the trend in this field. In this study, when nine
GF-1 derived remote sensing variables were added to the terrain-hydrology ANNs, there
was a good improvement in the model prediction accuracy, which was consistent with the
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reports of Wang et al. [46] and Zhou et al. [26]. They believed that the total variable model
was more successful than the terrain-hydrology model in predicting soil properties.

We conclude that these variables had good performance in mapping soil nutrient
content, the nonlinear modality of responses, and the complex interaction between input
variables. Compared with similar studies, our model has superior predictive performance.
Wang et al. [18] found that the RF model, combined with all variables (including topography,
climate, and remote sensing images), had the best prediction performance (R2 = 0.71) for soil
nitrogen. Odebiri et al. [27] used Landsat 8 to predict SOC and the ANN model accuracy
was 0.77 (R2) in commercial forests. Most of the studies used Landsat series satellite images
with 30 m resolution to produce soil maps [31,42,47,48]. We used 8 m resolution remote
sensing images to produce higher resolution forest soil nutrient maps. Highly accurate
spatial distribution models of forest soil nutrients facilitate forestry management decisions.

By comparing Tables 2 and 3, we found that the scale of uplift was more significant in
the topsoil (0–40 cm) and lower in the deep soil (40–100 cm). This was consistent with the
results of Kempen et al. [49], Minasny et al. [12], and Liu et al. [50], who all reported that
the performance of three-dimensional mapping methods decreased with depth. The results
of remote sensing ANNs (model C) further demonstrated that the prediction accuracies
of remote sensing variables decreased rapidly with soil depth. This may be due to the
reduced mapping ability of auxiliary environmental variables. Most of the ancillary data
used could not effectively capture the soil nutrient variation in these layers (40–100 cm).
Their uncertainty increased with depth, increasing the model’s prediction uncertainty in
deep soil depths. In the deep soil layers (D3, D4, and D5), the remote sensing variables
made little difference in the prediction of AK, AN, AP, and OM. In the surface soil layers
(D1 and D2), there was a poor prediction performance for AK, and the model accuracy
only improved by 8 and 6% (R2), respectively. It may be that the selected remote sensing
variables were less sensitive to AK. However, the prediction accuracies of terrain-hydrology
(Model A) had no significant difference at different soil depths, which is consistent with
the findings of Zhao et al. and Ding et al. [17,21]. The predictive power of DEM-derived
terrain-hydrology data is similar for different soil layers.

4.2. Effect of Remote Sensing Data on Predicting Soil Nutrients

Given the close relationship between soil and vegetation conditions, many studies
have used remote sensing variables that reflect vegetation conditions as auxiliary variables
to predict soil nutrients Vegetation is the main source of soil nutrients, as it controls the
amounts of AN, AP, AK, and OM entering the soil [51]. Its effects on soil biophysical
processes and, in turn, the distribution of plant communities, are affected by soil nutri-
ents [22,26]. Different vegetation statuses have different reflection capabilities in the visible
light range. They have been recorded by the sensor forming different spectral curves,
showing different DN values in remote sensing images. Analyzing and interpreting of
vegetation conditions recorded on remote sensing images can reflect soil nutrients in a
certain sense. Kim and Grunwald [52] demonstrated that remote sensing variables closely
related to vegetation could represent the spatial variability and quantity of SOC. The results
from model C showed that the remote sensing variables performances close to or better
than the terrain-hydrology variables in the topsoil layer (D1). Judging from the optimal
Model B in Table 3, the most critical remote sensing band for predicting soil nutrients was
the G band in Table 3. Yang et al. [48] believed that the G band was an influential variable
to characterize vegetation density and biomass, so it was an important predictor of soil
nutrients [53]. To measure absorption characteristics, some scholars focus on vegetation
indices that are more beneficial than individual bands because they minimize the effects
of interfering external factors such as sun, viewpoint, and lighting conditions. The use of
vegetation indices can help us to understand some plant conditions, including vegetation
land cover, biomass, crop production, and plant health [47]. In Table 3, NDVI showed
the most robust predictive ability in predicting AN and AK. Based on AN (D1) in the
Model A, by adding only NDVI the RMSE was reduced 48.01 mg kg−1, R2 and ROA ± 5%
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increased 3 and 10%, respectively. The finding indicated that NDVI could significantly
improve the accuracy of AN in topsoil (D1). That was consistent with previous studies.
Dematte et al. [54] believed that NDVI plays a vital role in describing soil nitrogen index
spatial patterns. In this study, forest types were the most important predictor for OM. The
primary source of soil nutrients is vegetation litter. The denser the vegetation, the more
litter there is [55]. However, the characteristics of plant litter are also important reasons.
The decomposition rate of coniferous species leaf litter is slow, which leads to low nutrient
content, but the leaf litter of broad-leaved trees decomposes easily, so the nutrient content is
higher [56]. Furthermore, some deciduous broad-leaved forests have seasonal defoliation,
leading to increased nutrient content in the soil. In Guangdong Province, Liu et al. [57]
found a significant relationship between forest species and OM content, which is consistent
with this study that forest type is the most important predictor of OM. Different forest
types have different litter properties and climatic conditions, which in turn lead to spatial
differences in soil nutrients. Based on our current study results, G, NDVI, and forest types
were the best remote sensing predictors in soil mapping. These indicators were most
sensitive to alteration in vegetation cover, vegetation pigment contents, and leaf water.
They have been successfully used to evaluate vegetation cover status, predict soil nutrients
and soil salinity, etc. [58,59]. Therefore, spectral reflection and vegetation indices can be
introduced as indirect indicators to understand the status of soil nutrients.

4.3. Effect of Terrain-Hydrology Data on Predicting Soil Nutrients

Pouladi et al. [60] believed that when the sampling points were dense enough, there
was no need to introduce other environmental variables into the model. Our research
showed that terrain variables played a key role in predicting soil nutrients, and terrain vari-
ables alone could explain soil nutrients 66–79% (R2) spatial distribution, as seen in Table 3.
Moreover, from the perspective of the improved scale of the Model B, the remote sensing
variables had a better prediction effect at the topsoil (D1 and D2) than deep soil depths (D3,
D4, and D5) and model C also showed that remote sensing variables performed poorly
in deep soil. Therefore, terrain variables are necessary to predict the spatial distribution
of deep soil nutrients, especially in forest areas with large undulating terrain. According
to Mosleh et al. [61], terrain attributes are very useful auxiliary variables to predict soil
properties in the areas where other soil-forming factors are almost homogeneous. As
one of the five soil-forming factors, topography can affect water temperature conditions
and the distribution of soil-forming materials. According to the optimal combination
of variables screened by the Model A, the representative topographic and hydrological
variable for predicting AN content was SDR, which directly explained 55% (ROA ± 5%) of
the total variation. SDR reflected sediment transport efficiency in the watershed, where
the sediment is severely washed and the AN content is low. PSR, the total amount of
solar radiation, was the most important terrain variable for AP accumulation. It mainly
affected the growth of vegetation and then affected the source and decomposition rate of
soil nutrients. The slope was a strong determinant of AK and OM content. The larger the
slope, the weaker the human influence, which provided a favorable environment for AK
and OM aggregation. These terrain-hydrology variables determined the distribution of
light, heat, and water, affecting the distribution of land vegetation types and the migration
and transformation of soil nutrients [62]. Studies have also proved the importance of
terrain variables. Li et al. [63] explored the role of Sentinel series satellites in predicting soil
nutrients and believed that terrain-hydrology variables were irreplaceable.

4.4. Spatial Distribution of Soil Properties

Regarding the vertical distribution of AN, AP, AK, and OM, with the increase of
soil depth their content decreased gradually, which is consistent with the research results
of Deng et al. [64] on the subtropical Guangxi mountainous red soil region. The main
reason is that the vegetation litter, soil animals and microorganisms are mainly in the
surface layer of the soil, and the surface soil ventilation, moisture, and heat conditions
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are better than the deep soil, which increases the accumulation of AN, AP, AK, and SOM
in the surface layer. Regarding the horizontal pattern, the spatial distribution of the four
soil nutrients were similar to some remote sensing raster maps (e.g., NDVI map, Green
map, and forest type map). The higher soil nutrient content corresponded to higher
NDVI and green values, mainly in the broad-leaved forest area and mixed forest. In a
way, high-resolution remote sensing data reflect detailed vegetation conditions, which
in turn influence soil nutrient accumulation [65]. The accumulation of soil nutrients is
mainly affected by higher plant litter, soil animals, and microorganisms. The litter of
broad-leaved forest decomposes more easily than that of the coniferous forest. In addition,
Pinus massoniana, Cunninghamia lanceolata and Eucalyptus spp. are the main coniferous
forest species in Luoding City, which are more affected by human forestry activities and
are not conducive to the accumulation of soil nutrients. From the prediction results, the
overall forest soil in Luoding is very rich in AN, deficient in AK and OM, and extremely
deficient in AP. This may be the result of forestry managers focusing on applying nitrogen
fertilizer and not applying enough organic fertilizer. In addition, the study area is a typical
mountainous area with steep slopes and much rainfall. Soil nutrients are easily lost due to
rainfall scouring and transport, which is not conducive to accumulation [20]. Phosphate
and potassium existing in soil were affected by the soil organic matter, so we suggest
increasing the quantities of phosphate and potassium and applying organic fertilizer.
However, because of the diverse spatial distribution of soil nutrients, the fertilization
patterns for different types of forests should be adapted to local conditions. Moreover,
variations in soil nutrients should be caught in time to improve the efficiency of fertilization.
Soil nutrients are the main factor affecting forestry productivity, so we recommend that the
rate of fertilization should be observed in subsequent forest management.

4.5. Uncertainty and Insufficiency in Current Research

In this study, despite the success with remote sensing variables, some aspects are
worthy of special attention. First, there might be sampling and experimental errors in data
collection and laboratory analysis. Second, affected by the terrain and clouds, high altitude
areas often produced shadows in the image segmentation process that led to large reflectiv-
ity errors in satellite image data [66]. Moreover, the variation in land surface characteristics
over time and the acquisition time of remote sensing variables also affected the accuracy.
Thirdly, we used only nine variables, including four wavebands, four vegetation indices
and forest types, and may have omitted better remote sensing variables for modelling
work. In the future we should include more vegetation variables that can reflect vegetation
growth conditions and soil background. Relevant research has shown that the texture
features of images can effectively improve the image classification effect and the model’s
accuracy [67,68]. Therefore, more remote sensing variables, such as texture features of
multi-spectral bands and panchromatic bands, and more variables such as terrain and
climate, should be introduced to test and analyze their applicability in subsequent studies.
Furthermore, future testing and analysis models can be undertaken with new remote
sensing data sources, classification methods, and modelling methods, etc., to improve the
estimation system model, providing strong support for subsequent soil nutrient estimation.

5. Conclusions

Study results showed that full variables ANNs (Model B) are best overall at predicting
soil nutrients in this region. The GF-1 remote sensing satellite can be applied to soil
mapping. However, spatial prediction performed better for the topsoil layers (0–40 cm)
than deep layers (40–100 cm), which showed that the subsoil prediction needs to be
improved using other more effective variables. The remote sensing factors had different
performances for different soil nutrients at 0–40 cm—more useful for AN, AP, and OM,
and less helpful for AK. Herein, NDVI, G, and forest type were the most useful auxiliary
remote sensing data to map soil nutrients. Overall, fine-resolution GF-1 remote sensing
images are useful for many soil and environmental scientists and land managers in China.
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Therefore, it is worth exploring the use of more GF-1 remote sensing satellite data for soil
mapping to promote the further development of forestry and agriculture.
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