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Abstract: The aims of this work were to determine the color change and physical–mechanical
properties of polystyrene glulam from three tropical wood species. Wood laminas were cut from logs
harvested from a young plantation forest of manii (Maesopsis eminii), mangium (Acacia mangium),
and rubber-wood (Hevea brasiliensis). The laminas were impregnated with monomer styrene that
was polymerized using potassium peroxy-disulfate as a catalyst and heat. Three-layer glulam was
constructed from the polystyrene laminas, using isocyanate glue and cold press. For comparison
purposes, three-layer untreated glulam and solid wood samples were prepared. The results showed
that the color change of polystyrene glulam was very small compared with untreated glulam.
Polystyrene glulam had the highest density, while the density of untreated glulam did not differ from
that of the solid wood. The moisture content of all products was matched to the environment, and
fulfilled the Japanese standard. Compared with both types of glulams, solid wood had lower values
for modulus of rupture (MOR), modulus of elasticity (MOE), and hardness, but higher shear strength.
Meanwhile, polystyrene glulam had lower values for MOR and MOE, equal shear strength and wood
failure, and higher hardness than the untreated glulam. All glulams had very little delamination in
the hot water test. Only rubber-wood glulams fulfilled JAS 234-2003 for MOR, MOE, shear strength,
and delamination. To obtain adequate physical–mechanical properties of glulams, medium-density
wood is recommended for glulam manufacturing.

Keywords: color change; glulam properties; polystyrene glulam; tropical wood

1. Introduction

In Indonesia, the supply of logs to the wood industry reached 58 million m3 in 2019,
and about 85% of the supply was from plantation forests [1]. Logs from plantation forests
are mostly cut from young trees that are less than 10 years old. Timber is produced from
small-diameter logs, which predominantly contain sapwood and have a high juvenile wood
content. As a result, the physical–mechanical properties are inferior to those of mature
wood [2]. To obtain larger-dimension timber with better physical–mechanical properties
from plantation forest wood, the manufacture of glued laminated timber (glulam) has
been developed.

Glulam is manufactured with sheets of thin-cut lumber, or laminas, that are glued
together with good-quality adhesive. For better results, the laminas can be arranged so that
a stronger lamina is used in the outer layers, with weaker ones in the inner layers [3]. In
addition, Komariah et al. [3] reported that three- and five-layer mangium (Acacia mangium)
glulams using isocyanate glue could fulfill the Japanese Agricultural Standard (JAS) 234-
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2003 [4] requirements for decorative structural glulam outlined for sugi (Cryptomeria
japonica) wood.

Other researchers found that the density and shear strength of glulams constructed
from pine (Pinus merkusii), jabon (Anthocephalus cadamba), and sengon (Falcataria moluccana)
with mahogany (Swietenia sp.) tannin adhesive were not different from those of solid wood.
Since it has a high density, pine glulam could fulfill the modulus of rupture (MOR) and
modulus of elasticity (MOE) requirements of JAS 234-2003 [5]. In another study, Lestari
et al. [6] made glulam from pine and jabon wood and isocyanate glue, and the results
showed that the mechanical properties of the glulam in terms of MOE, MOR, and shear
strength were higher than those of solid wood from each species; however, the glulam
matched the JAS 234-2003 requirements for MOR and shear strength only.

To produce a higher-density product with better physical–mechanical properties,
monomer styrene can be impregnated into wood and then polymerized with a chemical
catalyst and heat. Stolf and Lahr [7] showed that polystyrene-impregnated Pinus caribaea
wood had enhanced physical–mechanical properties compared with untreated wood. In
another study, polystyrene-impregnated fir (Abies sp.) and aspen (Populus sp.) had better
properties than untreated wood in terms of MOR, MOE, and hardness, as well as higher
density [8].

Some research on tropical woods has shown that polystyrene impregnation of pine
(P. merkusii), rubber-wood (Hevea brasiliensis), and sengon increased MOR, MOE, and
hardness [9]. Polystyrene impregnation of randu (Ceiba pentandra) and angsana (Ptero-
carpus indicus) wood enhanced the density, dimensional stability, hardness, MOE, MOR,
and compression parallel to the grain [10]. In another research study, polystyrene im-
pregnation of five types of Indonesian wood, including sengon, manii (Maesopsis eminii),
pine (P. merkusii), duabanga (Duabanga moluccana), and maniani (Flindersia pimenteliana),
were shown to improve the physical-mechanical properties of the wood [11]. Polystyrene
impregnation of kecapi (Sandoricum koetjape) and durian (Durio zibethinus) improved the
physical–mechanical properties of both types of wood and yielded better insulator proper-
ties compared with untreated wood [12].

Polystyrene can also be used as a wood adhesive. Liptáková et al. [13] reported
that the adhesion of polystyrene to wood was due to the effect of dispersion forces (60%)
and polar forces (40%). It was also possible to use polystyrene in bonding veneers, with
low-pressure preheating being a necessary step to obtain better final shear strength of the
wood–thermoplastic joints [14]. In another research study, polystyrene was used as the
adhesive in manufacturing laminated veneer lumber that had suitable mechanical proper-
ties comparable to those of lumber made using thermosetting resins. However, increasing
the amount of polystyrene reduced both the density and the mechanical properties of the
finished product [15].

Treatment with certain chemical compounds can change the wood color. Discoloration
of four tropical wood species occurred after furfurylation, with treated wood samples
being darker in color than untreated wood [16]. For mangium and sengon wood samples
that were exposed to smoke produced from the pyrolysis of salam (Syzygium polyanthum)
wood, the wood color was different from that of untreated wood and the discoloration of
sengon was greater than for mangium [17]. For ThermoWood, after thermal modification
the wood became less bright, but had more red and yellow colors [18].

The above results show that small-diameter logs can be used to manufacture glulam
with larger dimensions and better physical–mechanical properties than untreated timber.
Polystyrene impregnation can also enhance the physical–mechanical properties of wood.
The possibility exists that small-diameter logs can be manufactured into glulam using
polystyrene-impregnated laminas to obtained better physical–mechanical properties. Re-
garding to the previous research studies, the polystyrene-impregnated laminas would have
better physical–mechanical properties, and if the laminas were manufactured for glulam, it
could be assumed that the glulam would also have better physical–mechanical properties.
On the other matters, the color of polystyrene was transparent, and we assumed that the
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impregnation of polystyrene to laminas would result in no change of the color of the lami-
nas. The aims of this work were to determine the color changes and physical–mechanical
properties of polystyrene glulam constructed from three tropical wood species, including
manii, mangium, and rubber-wood.

2. Materials and Methods
2.1. Materials

Logs of manii (Maesopsis eminii), mangium (Acacia mangium), and rubber-wood (Hevea
brasiliensis) with a diameter less than 20 cm were harvested from a plantation forest that
was less than ten years old in Bogor, Indonesia, with coordinate of 6.463◦ to 6.519◦ SL and
106.419◦ to 106.477◦ EL. The micro-climate in 2020 of that area in terms of average tempera-
ture was 26.4 ± 0.8 ◦C, relative humidity of 83.7 ± 5.6%, solar radiation of 5.2 ± 3.0 h/d,
and rain fall of 4082 mm/y, and this area is classified to A type of rainfall regarding the
Schmidt–Ferguson classification [19].

The logs were cut into flat-sawn laminas with a size of 1.7 cm by 6 cm by 50 or 80 cm
in thickness, width, and length, respectively. The 50-cm length of laminas were prepared
for the density, moisture content (MC), shear strength, hardness, and delamination tests of
glulam, while the 80-cm laminas were for modulus of elasticity (MOE) and modulus of
rupture (MOR) tests of glulam. After cutting, the laminas were kiln-dried to reach about
12% moisture content (MC). The MOE of each lamina was estimated using a nondestructive
testing system with a wood-grading machine (Panter MPK-5) [20]. The laminas were then
classified according to their MOE values. The laminas with higher MOE values were used
for outer layers in three-layer glulam manufacturing, while those with lower values were
used for the inner layer. Both untreated lamina and polystyrene-impregnated lamina were
prepared and used to create untreated glulam (control) and polystyrene glulam.

The laminas were weighed and then vacuumed at 0.80 bars for 30 min in a tank. For
the impregnation process, potassium peroxy-disulfate was added as a catalyst to monomer
styrene (0.01:1 v/v), and the solution was introduced into the tank as the vacuum was
released. Afterward, a pressure of 9.81 bars was applied for another 30 min. After the
impregnation process, each lamina was wrapped with aluminum foil (to prevent the
polystyrene solution to come out during the polymerization process; this did not make the
apparatus dirty), and placed in an oven at 60 ◦C for 24 h [9,11]. The foil was then removed,
and each lamina specimen was weighed to calculate the weight percent gain (WPG). The
WPG was determined through weighing the wood specimen before treatment at oven
dried condition (W1), and then the oven dried weight of specimen was also determined
after impregnation with polystyrene (W2). The WPG was calculated using the following
Equation (1):

WPG (%) = (W2 − W1)/W1 × 100 (1)

Conditioning of the specimens was conducted at room temperature for 2 weeks. In
addition, a Scanning Electron Microscope (SEM, Zeiss–Evo 50) was used to determine the
morphology prior and after impregnation of manii wood with polystyrene. The specimens
were extracted from laminas with the dimension of 5 mm × 5 mm (cross section) and 5-mm
longitudinal direction.

Three-layer glulam was manufactured by using the laminas with a higher MOE in the
face and back layers, while the lamina with the lower MOE was used for the core layer. The
laminas were places with a longitudinal fiber orientation along the length of the glulam.
Isocyanate glue was spread at 280 g/m2 in a single glue line [3], and the laminas were then
cold-pressed with a specific pressure of 0.98 MPa for 3 h, followed by conditioning at room
temperature for 2 weeks in the Forest Products Research and Development Centre, Bogor,
Indonesia. A water-based polymer isocyanate adhesive was provided by PT Polychemie
Asia Pacific Permai, Jakarta, Indonesia. The resin (PI–127 T) was a milky white viscous
liquid with solid content of 40–44%, viscosity at 23 ◦C was 5,000–15,000 cps, and pH was
6.5–8.5. For the hardener (H–3M), the appearance was dark brown, viscous liquid (viscosity
at 23 ◦C) was 150–250 cps, and solid content was 98%.
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For comparison purposes, solid wood samples were also prepared. Six replications of
the test specimens were manufactured for each treatment combination of wood species
and wood product.

2.2. Discoloration of Polystyrene Glulam

The colors of the untreated glulam and polystyrene glulam were determined according
to the CIELab method of measuring L* (lightness), a* (red to green), and b* (blue to yellow)
values [21], using a scanner machine (CanoScan 4400F) and the Adobe Photoshop CS5
application. The color change of wood specimens was calculated by referring to CIELab,
while classification was according to Hunter Lab [22] and Hrčková et al. [23].

2.3. Physical and Mechanical Tests

Physical–mechanical properties, including density, MC, MOE, MOR, shear strength,
hardness, and delamination in hot water, were measured according to the Japanese Agri-
cultural Standard (JAS) 234-2003 [4].

2.3.1. Density and MC

The specimen for density and MC was 5 cm × 5 cm × 5 cm in length, width, and
thickness, respectively. The density of specimen was determined through measuring the
volume of specimen at air dry condition (V1, m3), and oven dry weight (W1, kg), and the
wood density was calculated by the following Equation (2):

Wood density (kg/m3) = W1/V1 (2)

Moisture content (MC) was determined with the oven dry weight method. The air dry
specimen was weighed as initial weight (W2, kg), and then put in the oven at a temperature
of 103 ± 2 ◦C until constant weight as oven dry weight (W1, kg). The MC was calculated
by the following Equation (3):

MC (%) = (W2 − W1)/W1 × 100 (3)

2.3.2. MOE and MOR Tests

MOE and MOR were obtained with bending tests using a Shimadzu Universal Testing
Machine (UH-100A Series). Testing was done through a single point load on the span of
a sample with a distance of 70 cm between the points of support of the test piece. The
loading orientation was perpendicular to the tangential face of the solid wood and the
lamina face of the glulam test specimens, with a loading speed of 3.5 mm/min. The MOE
and MOR were calculated by the following Equations (4) and (5).

MOE (kg/cm2 converted to GPa) = (∆P × L3)/(4 × ∆Y × b × h3) (4)

MOR (kg/cm2 converted to MPa) = (3 × P × L)/(2 × b × h2) (5)

where ∆P is the difference between the upper and lower loading limits in the proportional
limit region (kg), ∆Y is the deflection with respect to ∆P (cm), L is span (cm), b is the
width of the glulam (cm), h is the thickness of the glulam (cm), and P is the maximum
loading (kg).

The strength class of Indonesian wood was class I to V, from the strongest to the
weakest woods, respectively, as shown in Table 1 [24].
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Table 1. Strength classification of Indonesian wood.

Strength Class Specific Gravity MOR (MPa)

I >0.90 >107.9
II 0.60–0.90 71.1–107.9
III 0.40–0.60 49.0–71.1
IV 0.30–0.40 35.3–49.0
V <0.30 <35.3

2.3.3. Shear Strength

The shear strength of glue line parallel to the grain direction was determined. The
two glue lines of the three laminations were tested. The specimen for shear strength was
5 cm × 5 cm × 5 cm in length, width, and thickness, respectively. The shear strength was
calculated as follows (Equation (6)):

Shear strength (kg/cm2 converted to MPa) = Rupture load (kg)/Area of bonding layer (cm2) (6)

2.3.4. Hardness

The specimen for hardness was 5 cm × 5 cm × 5 cm in length, width, and thickness,
respectively, according to American Standard Testing and Materials ASTM D 143-94 [25].
Hardness was determined through the Janka test which was done using a 1.128 ± 0.005-cm
diameter of hemispherical steel ball in order to determine the required load until the
ball had penetrated to one half its diameter or 0.564 cm upon test specimen surface, as
determined by the tightening of the collar against the specimen. The projected area of
the ball on the test specimen was 1 cm2. Side hardness was determined if the loading
orientation was perpendicular to tangential face of the test specimen. The hardness was
calculated by the following Equation (7):

Hardness (kg/cm2 converted to MPa) = (Load required of Hemispherical steel ball penetrated to the wood (kg))/
(Area of hemispherical steel ball (cm2))

(7)

2.3.5. Delamination in hot water

The hot water delamination test was carried out by soaking test specimens by boiling
the test specimen in water (100 ◦C) for 4 h, then soaking it in water at room temperature
for 1 h before placing it in an oven at 70 ± 3 ◦C for 18 h. The specimen for delamination
was 5 cm × 5 cm × 5 cm in length, width, and thickness, respectively. The delaminating
ratio was calculated by the following Equation (8):

Delamination ratio (%) = ((Sum of delaminated lengths of two cross-sections)/
(Sum of gluing lengths of two cross-sections)) × 100

(8)

2.4. Analysis of the Data

The data were analyzed in a completely randomized block design using two factors,
wood species and wood product. The wood species as a block factor consisted of three
levels, namely manii, mangium, and rubber-wood, while the factor of the wood product
also consisted of three levels, namely solid wood, untreated glulam, and polystyrene
glulam. Duncan’s multi-range test was done for further analysis when the main factor was
significantly different at p ≤ 0.05.

3. Results and Discussion
3.1. Discoloration of Polystyrene Glulam

The test specimens of each wood species and wood product are shown in Figure 1.
The color characteristics are presented in a histogram of L*, a*, and b* values of untreated
and polystyrene glulam in Figure 2.
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The lowest L* value belonged to mangium wood, indicating that the wood had a
darker color than others. Rubber-wood had the highest a* value, which indicated that it
had more red compared with the other woods. Manii had more blue than the other woods,
as indicated by it having the lowest b* value. Nevertheless, according to the t-test, the
color characteristics of each wood and wood product were not statistically different. After
impregnation with polystyrene, the color change (∆E) of manii, mangium, and rubber-
wood was 1.6, 1.9, and 1.8, respectively, and according to Hunter Lab [22], these values
indicated a very small color change (∆E < 2.0). The color change of polystyrene glulam was
in line with the findings reported by Nurhanifah et al. [26], who made sengon polystyrene
glulam. The small color changes were explained by polystyrene being transparent and not
having any effect on changing the color.

3.2. Physical Properties

The density and MC of solid wood, untreated glulam, and polystyrene glulam of each
wood species are shown in Figure 3. The results of the analysis of variance of physical
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properties are presented in Table 2, and further analysis from Duncan’s multi-range test is
described in Table 3.
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Table 2. Variance analysis summary of physical properties.

Parameter Density Weight % Gain Moisture Content

Wood species ** ** **
Wood product ** na **

na, not available. ** Highly significance difference (p ≤ 0.01).

Table 3. Duncan’s multi-range test of physical properties.

Parameter
Wood Species Wood Product

Manii Mangium Rubber-
Wood Solid Wood Untreated

Glulam
Polystyrene

Glulam

Density 439 a 637 b 656 b 550 c 562 c 625 d
Weight % gain 16.9 a 16.1 a 12.3 b na na na

Moisture content 12.0 a 11.1 b 10.8 b 12.1 c 11.2 d 10.6 d

na, not available. Values with the same letter within a row are not significantly different.

Based on the results presented in Table 2, wood species and wood products had a
highly significant effect on sample density. Manii, a low-density wood, had the lowest
density. It was different from the other two wood species, which were not different
from each other; mangium and rubber-wood are both considered to be medium-density
wood [27]. As shown in Table 3, the densities of solid wood and untreated glulam were



Forests 2021, 12, 1420 8 of 14

not different, which indicated that the glue line and the pressing process did not affect the
density of untreated glulam. Furthermore, both densities were significantly different from
polystyrene glulam, which had the highest density. The increased density of polystyrene
glulam compared with the other samples could be due to each lamina being impregnated
with polystyrene prior to the manufacture of the glulam. The impregnation caused the
lamina to have a certain amount of polymer loading and weight percent gain. The density
increment of polystyrene glulam reached 10.7% compared with untreated glulam.

Based on the results of SEM (Figure 4), the surface morphology of polystyrene impreg-
nated manii wood had shown that some pores were occupied by polystyrene (Figure 4b)
while the pores in the untreated wood were still empty (Figure 4a). This result was sim-
ilar to the findings by Stolf and Lahr [7], who reported that polystyrene penetrated and
subsequently polymerized inside the wood anatomical structure.
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Polymer loading is expressed as the weight percent gain for manii, mangium, and
rubber-wood: 16.9 ± 2.9%, 16.1 ± 1.8%, and 12.3 ± 2.3%, respectively. Budiman et al. [11]
impregnated polystyrene into manii wood with the density of 370 kg/m3 and obtained
a polymer loading of 6.2%, which was 63% lower than our result. In contrast, Hadjib [9]
used rubber-wood with a density of 510 kg/m3 and got polymer loading of 26.9%, or more
than twice our result. As shown in Table 1, wood species had a highly significant effect
on weight percent gain due to polystyrene impregnation. Rubber-wood had the lowest
weight percent gain because it had the highest wood density. The higher density wood
had smaller voids that could be filled by the polystyrene. This result was in line with the
findings of other researchers who reported that wood with a higher density had a lower
weight percent gain of polystyrene polymer loading [9].

Table 2 shows that wood species and product type had a highly significant effect
on MC. The MC values were similar to each other, and all test specimens had an MC
similar to the ambient moisture content in Bogor, in the range of 10%–18% [28]. The MC of
polystyrene glulam was the lowest because polystyrene is a hydrophobic agent that can
reduce the moisture adsorbed to the glulam. The MC of polystyrene glulam decreased by
0.6% compared with the untreated glulam. Furthermore, the MC of all glulams fulfilled
the JAS 234-2003 standard, which requires a maximum MC of 15%.

3.3. Mechanical Properties

Strength-tested specimens of rubber-wood polystyrene glulam are shown in Figure 5,
mechanical properties of each wood species and wood product are presented in Table 4, a
summary of the analysis of variance is presented in Table 5, and the results of the Duncan’s
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multi-range test are shown in Table 6. According to Table 5, the MOR was affected by
wood species and wood product factors. Manii had the lowest MOR, given that it had the
lowest density, and the other two wood species had higher values for MOR and density.
These findings were in accordance with the report by Viet et al. [29], who noted that acacia
wood, which has a higher density than other wood species, had a higher MOR. Mangium
had a higher MOR than rubber-wood because some of the wood had heart-wood, but
rubber-wood dominantly consists of sapwood, and consequently, mangium had a higher
MOR than rubber-wood.
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Table 4. Mechanical properties of each wood species and wood product.

Wood Species Wood Product 1 MOR (MPa)
Strength
Class 2 MOE (GPa) Shear Strength

(MPa)
Wood Failure

(%)
Hardness

(MPa)

Manii Solid wood 42.7 (3.3) IV 4.5 (0.4) 6.2 (1.1) - 22.8 (2.4)
Untreated glulam 61.7 (4.9) III 6.8 (0.4) 4.3 (0.5) 73 (31) 25.6 (2.2)

PS Glulam 48.6 (3.2) IV 5.7 (0.5) 3.9 (0.5) 48 (34) 32.2 (3.3)

Mangium Solid wood 79.4 (8.4) II 10.5 (1.5) 5.1 (1.2) - 49.8 (5.6)
Untreated glulam 102.1 (9.0) II 12.1 (1.1) 4.9 (2.2) 28 (26) 64.0 (6.2)

PS Glulam 81.6 (7.6) II 11.3 (0.6) 4.7 (1.6) 13 (5) 66.3 (3.6)

Rubber-wood
Solid wood 50.5 (8.6) III 6.1 (0.6) 8.0 (1.1) - 56.0 (4.4)

Untreated glulam 72.7 (4.4) II 8.3 (0.4) 6.8 (2.1) 25 (14) 57.1 (6.1)
PS Glulam 64.9 (8.7) III 7.5 (0.9) 6.2 (2.3) 55 (27) 64.9 (6.3)

JAS 234-2003 Min. 28.8 Min. 7.2 Min 5.2

1 PS = Polystyrene. 2 Strength class according to Indonesian standard [24].

Table 5. Summary of the analysis of variance of mechanical properties.

Parameter MOR MOE Shear Strength Wood Failure Hardness Delamination

Wood species ** ** ** ** ** ns
Wood

product ** ** ** ns ** ns

ns = not significantly different. ** Highly significant difference (p ≤ 0.01).

Table 6. Duncan’s multi-range test of mechanical properties.

Parameter
Wood Species Wood Product

Manii Mangium Rubber-
Wood

Solid
Wood

Untreated
Glulam

Polystyrene
Glulam

MOR 51.0 a 87.8 b 62.7 c 57.6 d 78.8 f 65.0 e
Strength class III II III III II III

MOE 5.7 a 11.3 c 7.3 b 7.1 d 9.0 f 8.1 e
Shear strength 2.7 a 6.0 b 6.3 b 6.5 d 5.3 c 4.9 c
Wood failure 61 b 21 a 40 ab - 40 c 39 c

Hardness 26.9 a 60.0 b 59.3 b 42.9 c 48.9 d 54.4 e

Values with the same letter in a row are not significantly different.

As shown in Table 6, the wood products differed, with solid wood having the smallest
MOR. Untreated glulam and polystyrene glulam had a higher MOR than solid wood,
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because the glulams were manufactured by placing laminas with the higher MOE in
the face and back layers and the lamina with the lower MOE in the core layer. Use
of the technique demonstrates that the lamina of the face layer could support a higher
compression force and the back layer a higher tensile stress, with the assumption that the
load was applied in the face layer.

According to Pelit and Emiroglu [8], the polystyrene-impregnated fir (Abies born-
muelleriana) and aspen (Populus tremula) wood had higher MOR values than untreated
wood. Other studies indicated that polystyrene manii and rubber-wood had higher MOR
values than solid wood [9,11]. Table 6 shows that polystyrene glulam had a 17.4% lower
MOR compared with untreated glulam, despite polystyrene lamina having a higher MOR
than untreated lamina. However, polystyrene glulam may have had a lower MOR than
untreated glulam because the polystyrene on the lamina surface could interfere with the
development of a proper glue-line, which would be a weak point in getting maximum
strength. To obtain a better adhesion in polystyrene glulam, the hot press application for
curing adhesive may provide better results. The MOR of manii polystyrene wood reported
by Budiman et al. [11] was equal to that of manii polystyrene glulam in our study, and the
development of manii polystyrene glulam could be considered more in the future.

Based on the strength class of Indonesian wood [24], solid woods of manii, mangium,
and rubber-wood were in strength classes IV, II, and III, respectively. The untreated glulams
of manii and rubber-wood were enhanced one class from the solid wood of the respective
species, but even though the MOR of mangium increased, the untreated glulam remained
in the same strength class as the solid wood. For the polystyrene glulam, the strength class
of all wood products had the same class as each type of solid wood; even though they were
different, the increment did not enhance the strength class. With regard to the JAS 234-2003
criteria, all wood products fulfilled the standard for MOR requirements.

The MOE was affected by the wood species and wood product factors. Manii had
the lowest MOE, given that it had the lowest density wood, followed by rubber-wood
and mangium, which had higher MOE values and densities. These findings were in line
with the study by Viet et al. [29], who reported that acacia wood with a higher density
had a higher MOE. The MOE of solid wood was the lowest value among wood products,
followed by polystyrene glulam and untreated glulam. The MOE of polystyrene glulam
was 9.8% lower than untreated glulam, likely because the polystyrene on lamina surfaces
reduced their glue-ability and resulted in a weaker glue-line. With regard to the JAS
234-2003 standard, all wood products of mangium and both types of rubber-wood glulams
fulfilled the MOE requirements.

Shear strength was affected by wood species and wood product factors. Rubber-
wood, which had the highest density, had the highest shear strength. In terms of wood
products, both types of glulam had a lower shear strength than solid wood; this finding
indicated that the glue-line of glulam was weaker than the natural adhesion in the solid
wood. Improvement of the glue-line could be attained by using hot press instead of cold
press in the glulam manufacturing process. The shear strength of the two types of glulam
was not significantly different, although polystyrene filled the wood anatomical structure
(as shown in Figure 4), such as the vessels and tracheids, then caused the cell walls and
other structures (such as ray) to become very dense [30]. In other words, polystyrene
impregnated in the lamina was not a significant obstacle in producing lamina that was as
good as the untreated glulam in terms of shear strength. The shear strength result was in
line with the study by Nurhanifah et al. [26], who mentioned that untreated glulam was
not significantly different from polystyrene glulam. All rubber-wood products had a shear
strength of more than 5.2 MPa, and these rubber-wood products fulfilled the requirements
of JAS 234-2003.

Wood failures were determined for glulams (untreated glulam and polystyrene glu-
lam) only. The failure of solid wood is not reported because it had a 100% failure for all
tested specimens. According to the analysis of variance, the wood failure was affected by
wood species only. The highest wood failure (61%) was manii. Although it had a fairly
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good adhesion quality, it was a low-density wood and had low strength. The shear strength
of manii was the lowest value even though the glue line was fairly good. Rubber-wood
and mangium had wood failures that were lower than that of manii. Both wood species
had a higher density, and thus they had a higher shear strength than manii, because higher
density wood can release force at a higher level. For untreated glulam and polystyrene
glulam, wood failure did not differ, indicating a similar adhesion quality. In other words,
polystyrene impregnated in the lamina did not significantly disrupt the adhesion process,
and the same adhesion quality resulted.

Wood species and wood products affected hardness significantly. Manii, which had
the lowest density, had the lowest hardness, while the other two species had much higher
hardness, likely owing to their higher density. This outcome was in line with a report
by Blaskova et al. [31], who indicated that a higher wood density had a higher hardness.
According to Table 6, the hardness of mangium and rubber-wood were not significantly
different, and they were both classified as medium-density wood.

With regard to wood products, solid wood had the lowest hardness, followed by
untreated glulam and polystyrene glulam, which differed from each other. The untreated
glulam was manufactured by placing the laminas with a higher MOE in the outer layers;
with this technique, the strength of untreated glulam could be higher than the strength of
its solid wood. If polystyrene glulam is examined, the polystyrene impregnation on the
lamina could increase its hardness [8]. Consequently, the polystyrene glulam would have a
higher hardness than the untreated glulam.

3.4. Delamination in Hot Water

The delamination test is used to assess the bonding quality of glulam. Specimens of
impregnated polystyrene rubber-wood after delamination tests in hot water are presented
in Figure 6, delamination values of glulam after treatment in hot water are shown in
Figure 7, and the analysis of variance is summarized in Table 5. With regard to the analysis
of variance, delamination was not affected by wood species or by wood products. All
glulam specimens had a very good adhesion performance indicated by very low (less than
4%) delamination, and they fulfilled the JAS 234-2003 standard, which requires a maximum
delamination in hot water of 10%.
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From the discussion above, glulam can be seen to have had higher MOR, MOE, and
hardness, but lower shear strength than its solid wood. Polystyrene glulam had lower MOR
and MOE values than its untreated glulam, but it had a higher hardness value compared
with untreated glulam. Both types of glulam were not significantly different in terms of
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shear strength and delamination in hot water. To get better adhesion in polystyrene glulam,
hot-press could be applied for the adhesive curing process.
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Regarding the wood density for glulam manufacturing, at least a medium-density
wood should be utilized, which would be more likely to produce a glulam that fulfills
mechanical properties requirements. A lower wood density could be utilized for the inner
part of the glulam, because this part would get a smaller compression force and tensile
stress when the glulam is loaded [3].

With regard to the MOR, MOE, shear strength, and delamination in hot water require-
ments of JAS 234-2003, only rubber-wood glulams (untreated and polystyrene glulam)
fulfilled the standard. Mangium glulams failed in MOE, and manii glulams failed in MOE
and shear strength.

4. Conclusions

Based on our results, the color change of polystyrene glulam is very small (∆E less
than 2.0) compared with untreated glulam. In the physical properties, manii (Maesopsis
eminii) wood belongs to low-density wood, while mangium (Acacia mangium) and rubber-
wood (Hevea brasiliensis) belong to medium-density wood. With regard to the wood
product, polystyrene glulam had the highest density, while untreated glulam was not
significantly different from solid wood density. The MC of all wood products fulfilled the
JAS 234-2003 standard, and they reflected the ambient moisture content in the area. In
terms of mechanical properties, manii wood had the lowest MOR, MOE, shear strength,
and hardness. Mangium wood had higher MOR and MOE values, equal hardness, and
lower shear strength than rubber-wood. Concerning the wood product, solid wood had
lower values for MOR, MOE, and hardness, but higher shear strength than the glulams
(untreated and polystyrene glulam), while polystyrene glulam had lower MOR and MOE
values, equal shear strength and wood failure, and higher hardness than untreated glulam.
All the sample specimens of glulam had very good adhesion, which was indicated by the
delamination in hot water being only 1.1%. With regard to the MOR, MOE, shear strength,
and delamination in hot water requirements of JAS 234-2003, only rubber-wood glulams
(untreated and polystyrene glulam) fulfilled the standard. Mangium glulams could not
fulfill the MOE requirement, and manii glulams could not fulfill the requirements for MOE
and shear strength. To attain adequate physical and mechanical properties of glulam,
medium-density wood is recommended for glulam manufacturing.
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