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Abstract: The United Nation’s Decade on Ecosystem Restoration 2021–2030 aims to halt ecosystem
degradation to achieve Sustainable Development Goals (SDGs) by 2030. In Malaysia, the concept
of sustainable forest management (SFM) has been practiced since 1901. In this study, we evaluated
the genetic diversity of the native dipterocarp timber tree Shorea acuminata in a rehabilitated area
at Kenaboi Forest Reserve (Kenaboi FR). The rehabilitated area was formerly a degraded forest
managed with the taungya restoration system for 50 years. All trees with diameter at breast height
(DBH) of 5 cm and over were measured, tagged and identified in a one-hectare study plot. A total of
132 inner bark samples were collected for DNA extraction. Four SSR markers (Sle280, Sle392, Sle475
and Sle566) and two EST-SSR markers (SleE07 and SleE16) were used to analyse 95 good-quality
DNA samples. Genetic diversity parameters including maternal contribution were determined for
75 samples. The genetic diversity of big trees (He = 0.656 ± 0.19) and small trees (He = 0.652 ± 0.17)
were high and both were in genetic equilibrium, with Fis values of the big trees being 0.035 and
small trees being 0.164. Clustering analysis based on Jaccard’s similarity values (at 95% confidence
level) confirmed that big trees in the Kenaboi FR rehabilitated area had originated from genetically
diverse seed trees of the Sungai Menyala Forest Reserve which were used as the planting stock
for the taungya restoration system. Maternal contribution showed that the allele contribution of
the small trees came from the planted S. acuminata trees within the study area. The high genetic
diversity of small trees in this study provides strong evidence that the existing big trees would be
suitable for a genetically diverse seed collection to rehabilitate other degraded forests. Sustainable
forest management must emphasise genetic diversity in order to ensure the resilience of rehabilitated
forest ecosystems.

Keywords: rehabilitation; taungya restoration system; Shorea acuminata; microsatellite markers

1. Introduction

Forests around the world benefit humanity via a wide variety of functioning ecosys-
tems that provide and regulate services such as mitigating climate change and water cycle
and erosion control. Forest also provides cultural ecosystem services that people gain
from their interaction with forest environmental spaces via activities such as tourism and
recreation [1–3]. For Malaysia, the forest is not only an ecosystem service provider but it is
also significant as an economic contributor. For example, the Malaysian timber industry
is the third-ranked industry after palm oil and rubber in the primary commodities sector.
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According to the Malaysian Timber Industry Board (MTIB), the Malaysian timber and
timber-related products will achieve RM23 billion for timber export in 2021 [4].

Meanwhile, deforestation and forest degradation keep accelerating and sweeping the
world’s forest cover. For instance, the world population was estimated to reach 9.7 billion
in 2050 and 11.2 billion in 2100 [5]. Five years prior to 2020, it was shown that the total area
of tropical forests disappeared at a rate of 9.28 million hectares per year and only 25–30%
of all existing tropical forests are old-growth forests [6,7]. In addition to conversion into
agricultural land uses, deforestation is also a result of commodity-driven deforestation
(27%), followed by logging activities (26%) and wildfire (23%) [8].

By recognising this situation, sustainable forest management is the best concept in
balancing the environmental, social and economic objectives that are related to forests
while meeting the needs of the present and future generations. Forest restoration and
increase in forest areas are needed to meet the SDGs such as economic growth, poverty
reduction and global environmental improvement.

Rehabilitation is one of the best silviculture practices in sustainable forest management.
The important key to successful rehabilitation is the regeneration of the planting stocks in
the degraded forest areas with high genetic diversity. Genetic diversity is an essential basis
for the adaptation and resilience of tree species to environmental stress and change [9]. The
effort on rehabilitating degraded areas is worthless if the planted trees have a low genetic
diversity. According to Kettle [10], the establishment of plantations is increasing, but the
genetic quality of the planting stocks has received little research attention. As a result, the
rehabilitation areas will lose biodiversity, and the trees are not well adapted to such areas.
No study has yet evaluated the genetic variation in restored tree populations [11]. The
information about the genetic diversity of trees in the rehabilitated areas can be used as an
indicator of long-term restoration success. Unfortunately, such studies are scarce [12–14].

About 250 acres of Kenaboi Forest Reserve (FR), Negeri Sembilan, Malaysia, is a reha-
bilitated area that has been treated with the taungya restoration system since 1969 [15,16].
The taungya restoration system is an agroforestry practice in Malaysia established since
the 1950s to reduce the cost of rehabilitation of a degraded forest by using farmers who
conducted forest plantations together with cash crops (banana, tapioca, papaya, pineapple,
chili, pumpkin, maize, groundnut, sweet potato, watermelon, yam and ginger). Farmers
gained benefits from the cash crops, while the forestry department obtained free labour
services for forest plantations [17].

Compartment 107 is one of the degraded areas in Kenaboi FR that was treated by the
taungya restoration system. The planting stocks were mainly indigenous species from the
wildings of Shorea spesies taken from Sungai Menyala FR, Port Dickson, Negeri Sembilan.
The planting stocks were Shorea leprosula Miq. (Meranti tembaga), S. parvifolia Dyer Ssp.
parvifolia (Meranti sarang punai) and S. acuminata Dyer (Meranti rambai daun). Today,
taungya is no longer practised in Malaysia after the new economic policies preferred a
variety of industries that were more attractive than cash crop plantations in generating
higher income with better assurance [17,18]. A previous study showed that compartment
107 was successfully rehabilitated with great potential for timber production of Shorea
species [16]. Fatma et al. [19] found that the wildings of Shorea trees from Sungai Menyala
FR were suitable planting stocks because the compartment was not only successfully
rehabilitated but had established a forest structure similar to the primary forest. Fifty years
of taungya restoration system showed that the highest tree density in compartment 107,
Kenaboi FR was S. acuminata with 33.42% out of all trees in the compartment. However,
the sustainability of the tree density relies on genetic diversity of the trees.

As mentioned earlier, genetic diversity is vital to ensure the success of the rehabilitation
in the restored forest areas. In addition, the information on the genetic diversity can be
used to evaluate the effectiveness of the taungya restoration system in compartment 107,
Kenaboi FR. Low genetic diversity can threaten the long-term viability of the restored forests. If
regeneration and spatial distributions of trees are indicators of a successful forest rehabilitation
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in a short term time frame, then genetic diversity is a prediction and proof of the successful
adaptation of planting stocks in the rehabilitated area in the long term time frame.

In this study, the genetic diversity of the S. acuminata in compartment 107, Kenaboi
FR, was evaluated using six microsatellite markers developed for S. leprosula. We assumed
that the small trees are mostly the regenerated trees from seeds of the reproductively active
big S. acuminata trees in the study plot. Genetic relatedness between the big and small
trees of S. acuminata was determined and discussed. Maternal contribution was used to
determine the allele contributions of small S. acuminata trees in compartment 107, Kenaboi
FR. We hope that the results of the study will be useful to improve the policy on silviculture
practices for sustainable forest management.

2. Materials and Methods
2.1. Study Plot and Sample Collection

This study was conducted in compartment 107, Kenaboi FR (300–600 m a.s.l), in the
district of Jelebu, Negeri Sembilan, Malaysia (Figure 1). The district lies between latitude
2◦ 57′ N and longitude 102◦ 04′ E. Five subplots with dimensions of 20 m × 100 m each
in compartment 107, Kenaboi FR, were established. The inner bark tissues were sampled
from S. acuminata trees because the height of the trees made accessibility to the leaves more
difficult than the inner barks. The inner barks were wrapped in wet tissues and sealed in
labelled plastic bags before being brought to the laboratory. The diameter at breast height
(DBH) for each S. acuminata trees in one-hectare study plot of compartment 107, Kenaboi
FR, was also recorded. In this study, the trees with a diameter of 30 cm DBH and above
(≥30 cm) were considered as big S. acuminata trees, and the trees with diameters below
30 cm DBH (<30 cm) were small S. acuminata trees.
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2.2. DNA Extraction and Microsatellite Analysis

A total of 132 inner barks of S. acuminata were extracted by using the modified
cetyltrimethylammonium bromide (CTAB) method [20]. About 3–5 g of inner bark tissues
was ground by using a grinder (Millser IFM 66D, Iwatani, Japan). The samples were
genotyped using seven microsatellite loci consisting of four SSR loci (Sle280, Sle392, Sle475
and Sle566 [21]) and three EST-SSR loci (SleE02, SleE07 and SleE16 [22]), all of which were
developed for S. leprosula (Table 1).

Table 1. Characteristics of four SSR loci and three EST-SSR loci developed from Shorea leprosula.

Loci Accession No. Primer Sequence (5′-3′) Repeat Allele Size
Range (bp)

Annealing
Temp. (◦C)

Sle280 AJ616880 F: GCAACTAAAATGGACCAGA
R: GAGTAAGGTGGCAGATATAGAG (CT)7 107–137 52

Sle 392 AJ616886 F: ATGTCCTTGAAGATGTAAAGTGGGTG
R: AATAATGGAAGTGAGACGAGGCTG (GA)11 161–231 55

Sle 475 AJ616888 F: AGCGAAACCCTTGTGGAGA
R: GAGACTACGGTGGCGACGA (GA)10 129–139 50

Sle 566 AJ616890 F: TGAGTAACAAGTAATGAGGG
R: GCAGAGATTGAAACAGAAG (GA)13 59–104 52

SleE02 DC649188 F: GGAGGAGAGAAACGAAG
R: GTTTGAGGTAGTGAATAACGAGC (AGC)9 142–160 45

SleE07 DC649404 F: AGAAGAATATGGGTACGACTG
R: GTTTGAATCAACTGGCACCTCTAT (GAA)7 175–190 45

SleE16 DC651058 F: TCGTCAACCTCCGTAGTCC
R: GTTTGCGCAATAAATAGAGCAATCA (CT)12 184–192 45

Microsatellite amplification was performed in a 10 µL reaction volume containing
10 ng DNA, 50 mM KCl, 20 mM Tris–HCl (pH 8.0), 1.5 mM MgCl2 and 0.2 µM of each
primer; 0.2 mM of each dNTP; and 0.5 U of Taq DNA polymerase (Bioline, Heidelberg,
Germany). The PCR was carried out in a PCR MasterCycler® (Eppendorf, Germany). For
SSR loci, an initial denaturing step at 94 ◦C for 3 min was carried out, followed by 35 cycles
each at 94 ◦C for 1 min, 52–55 ◦C for 30 s and 72 ◦C for 45 s. A final extension step at 72 ◦C
for 30 min was performed after the 35 cycles. For EST-SSR loci, an initial denaturing step at
94 ◦C for 3 min was conducted, followed by 40 cycles each at 94 ◦C for 1 min, 45 ◦C for
30 s and 72 ◦C for 30 s. A final extension step at 72 ◦C for 7 min was performed after the
40 cycles.

Genotyping was performed using the ABI PRISM® 3100 Genetic Analyzer (Applied
Biosystem/Hitachi, Foster City, CA, USA), and the ABI PRISM® GeneScan software was
used to score allele sizes. The total volume of PCR reaction was 25 µL with the same
PCR protocol and programme, but the annealing temperature was adjusted accordingly
to each primer. Only forward primers of SSR and EST-SSR were selected for fluorescent
labelling either with ROX, FAM, TAMRA or HEX. The PCR amplifications were conducted
by using microplate 96 well Half Skirt PCR (Axygen, Glendale, AZ, USA) and then sealed
by using Microseal ‘A’ (BIO-RAD, Hercules, CA, USA). Thus, the analysis was only limited
to 95 PCR reactions of S. acuminata derived from 45 small and 50 big S. acuminata trees
which were selected for the analysis. The fragment analysis was carried out by preparing
the amplifications into two panels in order to avoid overlapping alleles of same size from
different loci (Table 2).
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Table 2. Two panels consisting of seven microsatellite loci in fragment analysis.

Panel Loci Allele Size Fluorescent Peak Colour

Panel 1 Sle280 107–137 TAMRA Yellow
Sle392 161–231 TAMRA Yellow
Sle566 59–104 FAM Blue

Panel 2 Sle475 129–139 FAM Blue
SleE02 142–160 TAMRA Yellow
SleE07 175–190 ROX Red
SleE16 184–192 HEX Green

2.3. Data Analysis

The level of genetic diversity in compartment 107, Kenaboi FR, was estimated for
polymorphic information content (PIC), observed heterozygosity, expected heterozygosity,
Hardy-Weinberg equilibrium and frequency of null allele with the assistance of CERVUS
3.0 [23]. The genetic relatedness of S. acuminata trees in compartment 107, Kenaboi FR, was
determined by using PAST3 Version 3.22 [24]. The genotype data from seven microsatellite
loci were used to estimate similarity index in matrix form (n × n). Jaccard’s similarity
coefficient was employed to build a dendrogram based on unweighted pair group method
with arithmetic means (UPGMA).

Shaharuddin et al. [16] has predicted that the average diameter is 21.21 cm, and the
mean annual increment is 1.06 cm per year for S. acuminata in Kenaboi FR over the 20 years
period of the taungya restoration system. Now, the planted S. acuminata is almost 50 years
old, and this study has found that the biggest S. acuminata tree in compartment 107, Kenaboi
FR, is 60.3 cm DBH [19], supporting Shaharuddin et al. [16].

Maternal contribution between big and small S. acuminata trees in compartment 107,
Kenaboi FR, was estimated by comparing genotype data from four SSR loci and three
EST-SSR loci. Alleles at each locus for small S. acuminata trees were compared with that of
the big S. acuminata trees. The big trees which did not share any alleles at each locus were
excluded as candidate parents.

The seed trees will contribute the allele for small trees. According to Appanah and
Rasol [25], the small dipterocarps trees are able to produce a fruit at 22 cm DBH. However,
the study identified that only one out 22 dipterocarps trees produced fruit at the DBH
size from 20 to < 30 cm DBH, which is lower compared to the dipterocarps trees that are
30–125 cm DBH and 11 out of 37 dipterocarps trees are fruiting trees. Therefore, in this
study, the paternity study was conducted for big S. acuminata trees at three percentages
of the biggest diameter size (DBH) trees, i.e., 10% of the biggest S. acuminata trees, 20% of
the biggest S. acuminata trees and 30% of the biggest S. acuminata trees. Here, we assumed
the biggest trees were the planted trees from the taungya restoration system. On the other
hand, small trees of S. acuminata are the trees below 30 cm DBH, and they are mostly
regenerated trees that were produced by the big S. acuminata trees in compartment 107,
Kenaboi FR.

3. Results

A total of 123 genomic DNA were extracted from 132 inner barks of S. acuminata in
compartment 107, Kenaboi FR. Nine of the inner barks were not of good quality due to
poor handling in the field. About 48 genomic DNA were from small S. acuminata trees,
whereas 75 genomic DNA were from big S. acuminata trees.

Out of the seven primers used, six primers were found to be polymorphic in the ABI
PRISM® GeneScan software. The primers were four SSR loci and two EST-SSR loci. Only
one primer showed monomorphic locus, which is SleE02. PCR was successfully amplified
for 41 small S. acuminata trees and for 34 big S. acuminata trees with the mean of alleles
being 6.7 and at 6.5 alleles. respectively (Table 3). SleE16 is the most efficient primer to
detect polymorphism with the highest PIC, which is 0.813 for big S. acuminata and 0.786 for



Forests 2021, 12, 1344 6 of 12

small S. acuminata trees. The lowest PIC is locus Sle280 with 0.309 for big S. acuminata and
0.293 for small S. acuminata trees.

Table 3. Four microsatellite SSR primers and two microsatellite EST-SSR primers developed for S. leprosula and transferability
to 75 S. acuminata in compartment 107, Kenaboi FR: expected heterozygosity (He); observed heterozygosity (Ho); inbreeding
coefficient (Fis); polymorphic information content (PIC); Hardy–Weinberg (HW); not significant (NS). Figures in the brackets
are the estimated standard errors of the mean for genetic diversity parameters.

Locus Number of
Alleles

Allele Size
Range (bp) He Ho Fis PIC Null Allele

Frequency HW

Big tree n = 34
Sle280 4 111–128 0.335 0.324 0.033 0.309 0.05 NS
Sle392 7 175–187 0.784 0.765 0.024 0.738 0.00 NS
Sle475 8 126–187 0.593 0.647 −0.091 0.557 −0.08 NS
Sle566 12 63–114 0.697 0.676 0.030 0.652 0.01 NS
SleE07 5 180–188 0.683 0.794 −0.163 0.606 −0.08 NS
SleE16 9 190–203 0.845 0.529 0.374 0.813 0.23 NS
Mean 6.5 0.656 (±0.180) 0.623 (±0.174) 0.035 (±0.184) 0.613 (±0.178)

Small tree n = 41
Sle280 3 111–128 0.319 0.268 0.160 0.293 0.06 NS
Sle392 6 175–187 0.773 0.78 −0.009 0.728 −0.01 NS
Sle475 7 126–187 0.533 0.39 0.268 0.505 0.13 NS
Sle566 10 63–114 0.765 0.634 0.171 0.725 0.09 NS
SleE07 5 180–188 0.700 0.561 0.199 0.635 0.11 NS
SleE16 9 190–203 0.820 0.659 0.196 0.786 0.10 NS
Mean 6.7 0.652 (±0.191) 0.549 (±0.188) 0.164 (±0.09) 0.612 (±0.186)

The expected heterozygous (He) was higher than the observed heterozygous (Ho)
for both big and small S. acuminata trees. The expected heterozygous for big S. acumi-
nata is 0.656 and small S. acuminata trees is 0.652, whereas the observed heterozygous
value for big S. acuminata is 0.623 and small S. acuminata trees is 0.549. This comparison
was not significantly different from the Hardy–Weinberg equilibrium at p < 0.01 after
sequential Bonferroni correction via CERVUS. The inbreeding coefficient (Fis) for the 34 big
S. acuminata trees is 0.035 lower than Fis of the 41 small S. acuminata trees, which was 0.164.
All of the six microsatellite loci did not significantly deviate from the Hardy–Weinberg
equilibrium for both big and small S. acuminata trees. Null allele was detected in all loci
except for Sle392 for big S. acuminata with a frequency range of −0.08 to 0.23. The highest
null allele frequency was displayed by locus SleE07, and the lowest null allele frequency
was shown by Sle475. For small S. acuminata trees, the highest null allele frequency was
displayed by locus Sle475 at 0.13, and the lowest was shown by Sle392 at −0.01. According
to Marshall et al. [26], the negative value for null allele frequency can be assumed as no
existence of null allele. The null allele frequency that is below 0.2 can be used in the analysis
of genetic diversity and paternity [27,28]. In this study SleE16 yielded null allele frequency
of 0.23, but the locus SleE16 was not prone as null allele in the previous study [22]. On the
contrary a high frequency of null allele indicates that the primer used has failed to detect
loci in the PCR assay and, thus, cannot be used in genetic diversity and paternity study.

A dendrogram based on UPGMA revealed that 75 individuals of S. acuminata in com-
partment 107, Kenaboi FR, are divided into two main clusters, which are I and II (Figure 2).
In cluster I, about 46% of S. acuminata consisted of big trees and 54% of S. acuminata con-
sisted of small trees, whereas cluster II comprise only a big tree, A11 and two small trees,
which are R4 and R98. The Jaccard’s similarity coefficient ranged from 0 to 0.889. The
highest similarity of 89% was observed, and it was between R52 and R149. No similarity
was observed between A11, A37, A40, A67 and A73, respectively, implying that these
trees are taken from different seed trees with no shared pollen donors in Sungai Menyala
FR. The small tree R4 also does not have similarity with R26, R28, R92 and R148 and also
with two big trees, which are A63 and A80. The highest Jaccard’s similarity coefficient for
regenerated trees is 0.385 for R4 and R98. Therefore, the S. acuminata trees in compartment
107, Kenaboi FR are genetically diverse as illustrated in the dendrogram. Figure 3 shows
the distribution for all S. acuminata trees in compartment 107, Kenaboi FR. The ten big
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S. acuminata trees with DBH 50 cm and above are dispersed in the compartment, and the
trees could be potential seed trees in this rehabilitated area.
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The total exclusion probability (the exclusion probability in the case of both parents
being unknown [26]) over four SSR loci and two EST-SSR loci for S. acuminata is 0.849.
From the maternal contribution, when the percentage of the biggest big tree of S. acuminata
increased, the percentage of allele contribution of small S. acuminata from the planted trees
in the study plot decreased (Table 4). The mean for percentage of allele contribution from
big S. acuminata trees outside of the study plot is 7.8%. The allele contribution of small
S. acuminata from big S. acuminata outside of the study plot was 14%, if the big S. acuminata
is 10% of the biggest trees. The DBH for 10% of the biggest tree was between 52 and 60 cm,
which is a small amount of a big tree, and only eight big S. acuminata trees were in the
study plot. If the big S. acuminata was 20% of the biggest trees, i.e., trees between 46 and
60 cm DBH (15 trees), the allele contribution of small S. acuminata trees was 9.5% from big
S. acuminata outside of the study plot. If the big S. acuminata was 30% of the biggest tree,
i.e., trees between 42 and 60 cm DBH (24 trees), the allele contribution of small S. acuminata
trees comes from the planted trees in the study plot.
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Table 4. Maternal contribution for S. accuminata according to percentage of the biggest tree in compartment 107, Kenaboi FR.
The underlined allele is probably the allele from big S. acuminata in the study plot.

Observed Allele Tree < 30 cm DBH *

Diameter Locus Tree ≥ 30 cm DBH Tree < 30 cm DBH In Study Plot (%) Outside Study
Plot (%)

Biggest 10% SLEE07 A, B, C, D A, B, C, D 100 0
(52–60 cm) SLEE16 A, B, C, D, E, F A, B, C, D, E, F, G 86 14

n = 8 SLE280 A, B, C A, B, C 100 0
SLE392 A, B, C, D, E A, B, C, D, E 100 0
SLE475 A, B, C, D A, B, C, D, E, F, G 57 43
SLE566 A, B, C, D, E A, B, C, D, E, F, G 71 29
Mean 86 14

Biggest 20% SLEE07 A, B, C, D A, B, C, D, 100 0
(46–60 cm) SLEE16 A, B, C, D, E, F A, B, C, D, E, F, G 86 14

n = 15 SLE280 A, B, C A, B, C 100 0
SLE392 A, B, C, D, E A, B, C, D, E 100 0
SLE475 A, B, C, D, E, F A, B, C, D, E, F, G 86 14
SLE566 A, B, C, D, E A, B, C, D, E, F, G 71 29
Mean 90.5 9.5

Biggest 30% SLEE07 A, B, C, D A, B, C, D 100 0

(42–60 cm) SLEE16 A, B, C, D, E, F, G,
H

A, B, C, D, E, F,
G, H 100 0

n = 24 SLE280 A, B, C A, B, C 100 0
SLE392 A, B, C, D, E A, B, C, D, E 100 0
SLE475 A, B, C, D, E, F, G A, B, C, D, E, F, G 100 0
SLE566 A, B, C, D, E, F, G A, B, C, D, E, F, G 100 0
Mean 100 0

* Small S. acuminata trees that received alleles.

4. Discussion

The microsatellite markers that were developed for S. leprosula were applicable to amplify
75 S. acuminata in compartment 107, Kenaboi FR. Other studies mentioned that the markers
are able to resolve the genetic parameters in other Shorea species as well [21,22,29,30]. The
SSR markers are derived from genomic libraries. On the contrary, EST-SSR markers are
the sequence derived from expressed and functional sequences that are present in the
genome [31]. Thus, this study suggests that the transferability of genomic SSRs and EST-
SSRs to closely related species is high due to the conservation of flanking DNA sequences
of SSR motifs between closely related species.

The mean expected heterozygosity (He) detected in big and small tree S. acuminata
was 0.656 and 0.652, respectively. These values are almost similar to that reported in a
previous study on the same species but in a primary forest where the same SSR markers,
i.e., Sle280, Sle392, Sle475 and Sle566, were used, providing a mean expected heterozygosity
of 0.676 [29].

Genetic diversity for big and small trees of S. acuminata was high although the big
trees were wildings from one population in Sungai Menyala FR. This value is considered
high compared to other studies, which are 0.616 [28] and 0.811 [32]. The high genetic
diversity of S. acuminata in the rehabilitated area of Kenaboi FR draws a few possibilities
that need to be understood. The possibilities are either that the Sungai Menyala FR is a
good seed production area for enrichment planting, or because S. acuminata is a desirable
species to be used as a planting stock or the effects of the type of silviculture practices may
influence the genetic diversity of the rehabilitated area.

Zeng and Fisher [33] claimed that the genetic diversity for native tropical oak in Hong
Kong, Quercus bambusifolia, is the highest (0.69) when the sources of seeds for the trees are
from multiple populations rather than the trees which are naturally regenerated in one
rehabilitated forest area. Ang et al. [34] found that the genetic diversity of S. leprosula used
for enrichment planting was low compared to natural regenerated stands. More reduction
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happens if the seedlings were taken from single-species plot compared to mixed-species
plot. The genetic diversity value is not significantly different for enrichment planting of S.
parvifolia either in the permanent forest or other silviculture systems. However, the details
of the planting stocks used in this enrichment planting programme are not described [35].
A reasonable explanation for the high genetic diversity of S. acuminata in the rehabilitated
area of Kenaboi FR is that the planted S. acuminata were taken from different seed trees
in Sungai Menyala FR. Therefore, when the planting stocks were planted in a degraded
area during the taungya system, the area was successfully rehabilitated and contained high
genetic diversity after 50 years. The idea that the planting stocks of S. acuminata were taken
from different seed trees in Sungai Menyala FR was supported by cluster analysis (Figure 2).
The average of similarity index of 0.329 indicates that all 75 S. acuminata trees are highly
diverse. Trees A11, A37, A40, A67 and A73 are the trees that originated from different seed
trees in Sungai Menyala FR. Tree A67 is the biggest S. acuminata tree in compartment 107,
Kenaboi FR; therefore, the tree is the planted tree from the taungya restoration system.
This tree also can be suggested as a potential seed tree in the rehabilitated area in addition
to the other nine big S. acuminata trees, which are A15, A18, A32, A40, A42, A63, A64,
A79 and A91 (Figure 3). The highest similarity observed for small trees of S. acuminata
was between R52 and R149 with DBH of 28 cm and 11 cm, respectively. Tree R52 is
most likely a planted S. acuminata during the taungya restoration system with stunted
growth. According to Shaharuddin et al. [16], the taungya plot was not treated with
proper silvicultural treatment until the study was conducted. Therefore, interspecies and
intraspecies competition could occur and affect the growth of some planted trees, resulting
in some stunted trees. Moreover, a previous study observed that small size dipterocarps
are also able to produce fruits [25], and R149 could be a progeny of R52 with 89% similarity
between each other.

A maternal study discovered that there are allele contributions in small S. acuminata
from the big trees that were not in the one-hectare study plot. There is a probability
that during the early days of the taungya system, the number of big S. acuminata tree
in the study plot was limited. Furthermore, the S. acuminata species is a predominantly
outcrossing species. Thus, mating was between big S. acuminata tree in the study plot and
outside of the study plot due to less big S. acuminata tree in the study plot. Decreased
population size may decrease the effective population size; hence, it may limit mating
opportunities [36]. The results fit the study by Sujii et al. [14] in which the private alleles
in juveniles in the restoration areas were found and claimed as an evidence of gene flow
between restored and neighbouring natural populations. After 50 years, the rehabilitated
area of Kenaboi FR contains high tree density of the big S. acuminata tree, and outcrossing
events may occur between the big trees in the study plot. Thus, all allele contributions of
small S. acuminata trees come from the planted trees in the study plot. Although the allele
contributions of small S. acuminata trees originate within a study plot, the genetic diversity
of the S. acuminata population in the rehabilitated area remains high. This is because the
source of planting stocks used to rehabilitate the forest includes seedlings from different
seed trees in Sungai Menyala FR.

The genetic diversity of future generations in the rehabilitated area depends on the
diversity of remnant seed trees in the study plot and gene flow from neighbouring stands.
According to Shaharudin [37], the residual stocking after harvesting should be at least
32 commercial trees per hectare of different species from the DBH class between 30 and
45 cm. This study found ten highly diverse big S. acuminata trees to produce very highly
diverse seedlings for future enrichment planting program. Hence, more trees of similar
species should be retained after harvesting for successful regeneration of high quality tree
species for future harvest.

Compartment 107 is a successfully rehabilitated area that preserved the high genetic
diversity of important commercial tree species such as S. acuminata. Therefore, the com-
partment should be protected as a seed production area. Furthermore, the compartment is
also the oldest rehabilitated forest area in Malaysia providing very valuable knowledge on
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sustainable forest management. This forest will be best protected by gazetting the area as
one of the High Conservation Value Forest (HCVF) in Malaysia.

5. Conclusions

The taungya restoration system that was practised by the Forestry Department of
Negeri Sembilan, Malaysia, since 1969 has successfully rehabilitated a forest area that was
once a poorly degraded area in Kenaboi FR. The structural function of this forest is now
similar to primary forest, and the genetic diversity of S. acuminata is high. As this species
is recommended for enrichment planting programmes, seed collection should follow the
best practice protocol of collecting from many seed trees. The big trees in compartment
107, Kenaboi FR, and the area where their seed was collected in Sungai Menyala FR should
be marked and protected. Both forests are suggested as ideal seed production areas to
produce good quality planting stock. It is highly recommended that compartment 107,
Kenaboi FR, should be proposed as a protected area and classified as a High Conservation
Value Forest (HCVF).
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