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Abstract: Research Highlights: In this study, we present the use of time-lapse photos as a way to
estimate the height of the load on the forwarders. This approach, using nonprofessional outdoor
cameras, is a cheap and time-effective solution for continuous load height measurements, and it offers
at least the same accuracy as a gauge measurement. This method represents another approach to the
automation of time studies in forestry. Background and Objectives: Time studies require information
about the load on the forwarders. Until now, this information was obtained either by using a gauge
measure, sampling of the load, or averaging the load from large area datasets. More accurate methods
like laser scanning are costly and fragile. During time study preparations, we suggested a robust
system of measuring the load height and tested it against the commonly used gauge measuring
technique. Materials and Methods: Two cameras took pictures of the load; these photos were processed
for camera lens distortion and rectified into the cartesian coordinate system, and the height of the
load was calculated. These values were then tested against gauge measured values using paired t-test.
Results: Straight line distance calculated from the images and the gauge-measured distance did not
show a significant difference (p-value 0.9354). Calculated vertical distance was, however, significantly
different from the calculated straight-line distance (p-value of 0.0015), suggesting possible bias of
the gauge measured distance. The root mean square error (RMSE) of the rectification process was,
on average, 0.42 cm. Conclusions: The proposed method was verified to correspond with the gauge
measure method; however, our research raised the question of the gauge method reliability, as the
taken measurements are not perfectly vertical, and for the correct load estimation, the vertical distance
is needed. We, therefore, conclude that for this photogrammetry method, the vertical, rather than
straight-line, distance should be used. The presented solution can be used for long-term data collection
without interrupting the whole forwarding process for taking the load measurement. The longer data
processing in office enables researchers to spend less time in the field taking hand measurements.
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1. Introduction

In forestry, timber production is, in most cases, the primary source of income. As such, cost
optimization and creating time standards are crucial for planning and logistics [1,2]. Maximum
utilization of the machines is necessary for profitable logging operations [3]. The cut-to-Length (CTL)
method is frequently used, and in the Czech Republic, this method is used for approximately 29–38% of
the total annual timber production [2]. In the European perspective, the use of CTL and subsequent use
of harvesters and forwarders varies [4]. Forwarders can also be deployed separately from harvesters
to extract timber after motor-manual felling [5].

As such, there are several studies regarding the productivity of forwarders. Either they are a
detailed modelling of the forwarding cycles [3,6–9], or other, less detailed, follow-up studies [10,11],
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all use the volume of the loaded timber. Except for the entirely experimental forwarder cycles, the
specific volume of the loaded assortments is unclear, and there are several approaches to deal with this
issue in general, such as

• Woodpile-like measuring of the load with load area width, assortment length, and the height of
the load [12];

• Average log estimation based on the sampling of the load and counting number of the logs in the
load [13–15];

• Mean load calculated from the number of the forwarding cycles and total volume of the extracted
timber, or mean log volumes; their count; and their assortment categories [14,16].

Each method has its downsides. The woodpile method relies on the conversion coefficient to
convert the space volume to the solid wood volume, which often is an issue [17], not to mention
the possible errors in gauge measuring the height. Log sampling influences the work elements; the
woodpile method requires a researcher to be present at the roadside landings during the shift, which is
highly time consuming [18]. The mean values of load for larger areas cannot describe specific cycles
with enough accuracy, nor can they describe load-specific assortment composition [19].

Another method is the weight measurement of each load. When the measurements are to be taken
on the site and not at the mill, there are two options. One is measuring forwarder axle loads or the
load on the crane [20]. This method, however, depends heavily on proper wood density estimation for
the loads, and multi-species loads are an issue.

Modern technologies, such as laser scanning and photogrammetry, have already found their way
into forestry. Laser scanning has proved to be somewhat limited to the mill location [21,22], and the cost
of the deployment of such a technology could be severely much than the use of the photogrammetry [23].
Recent studies have used ground photogrammetry methods for 3D reconstructions of the whole
stand [24], tree [25–27], or stem parts [28], and for deriving, for example, individual tree height, diameter,
and horizontal crown projection. In the timber production operations, an estimation of truckload using
the unmanned aerial vehicle (UAV) has been presented [29]. Several mobile applications for roadside
woodpile measuring exist.

In the preparation stage of our time study research, we explored the possibilities of other measuring
methods. The primary goals were a minimal interruption to the forwarder operations and results
comparable to the most widely used woodpile-like measuring, using level staff for height estimation.
Given the fact that timber should be relatively faced against the protective mesh on the forwarder, we
opted for cost-effective 2D photogrammetry. Without any Structure from Motion (SfM), or stereoscopic
images (as the view is partially obstructed by the forwarder), the data processing was less time
consuming and camera requirements were lower.

As such, we present a simple workflow using just 2D photogrammetry information for use in
forestry operations and verify its viability.

2. Materials and Methods

For this study, a John Deere 1110D forwarder was used during sanitary felling on the grounds
of School Forestry Enterprise administrated by the Czech University of Life Sciences Prague.
Forwarded timber was mostly Norwegian spruce (Picea abies L.), with the occurrence of the scots pine
(Pinus sylvestris L.).

2.1. Manual Measurements

The protective cover mesh of the load area was measured, as well as the load space profile.
Because timber should be placed against the mesh, this served as a reference grid for further corrections
and reference of the taken photos. Manual measurements were done at the roadside when forwarder
stopped near the woodpile to unload the timber. The height of the load was measured on each side
of the load near the mesh using Telefix measuring gauge with horns on both sides to get measured
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heights without any significant errors due to bad line of sight. This method attempted to suppress
possible reader errors, as we observed such errors when using only simple levelling staff.

2.2. Cameras and Images Processing

In the forwarder, two LAMAX X10.1 cameras were installed, containing Sony IMX117 sensor with
12 Mega-pixel resolution (4000 × 3000 pixels) and sensor dimensions of 6.2 mm × 4.65 mm (1.55 µm
per one pixel). Cameras were set up with time-lapse photo setting set for 3 s. We found out during the
design of the experiment that use of time-lapse photos is better than a time-lapse video, as the images
are sharper and therefore offer more detail. Image resolution was 0.87 mm per pixel (given the average
distance from cameras to the load area being 2 m). Cameras were for this initial stage placed in the
cabin, as seen in Figure 1, and powered directly by the machine power outlet. This proved to be an
issue, as any interruption in the problematic 12 V car connector, which is a common problem, caused
cameras to shut down. For prolonged recording with better resilience to connector disconnection, the
power bank should be incorporated to serve as a buffer power supply. Because we did not use any
stereographic methods, the alignment of the cameras was not crucial, and simple suction cup mounts
could be used.
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Figure 1. Placement of the cameras in the cabin.

Camera images needed to be corrected for the lens distortion. For this purpose, several images
of the calibration pattern—22 × 15 checkboard with 16.19 mm squares—were taken. Calibration
and undistortion were made in GML Camera Calibration (PTC Inc.). There are many calibration
techniques described; this particular method was chosen because of its ease of use for our purpose.
For both cameras, re-projection errors were between 2.07 and 1.37 px. Given that the distance from
cameras to the load was about 2 m, this resulted in a re-projection error below 2 mm in the plane of the
measured load.

Because the protective mesh had been measured, we therefore could plot the control points in the
photos against expected cartesian coordinates to scale the images up and verify successful undistortion
of the image in the area of interest represented by load area so it could be used to take the measurements.
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This procedure was done in ESRI ArcMap (ESRI, Redlands, CA, USA) using georeferencing of the
image. 4 × 4 point grid of the protective mesh was used to check for the root mean square error (RMSE)
of the rectification process.

Rectification of the photos against the cartesian coordinates is shown in Figure 2. The 2nd
polynomial transformation showed the best results with the lowest RMSE. The RMSE for each
observation in absolute RMSE form is presented in Table 1. Equation (1) presents the calculations of
RMSE described by [30], where n is the number of observations, ŷ is mean error, and y is the error of
the current control point.

RMSE =
1
n

n∑
i=1

(ŷ− y)2 (1)
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Table 1. Summary of the image rectification root square mean error (RMSE), measurements, and
calculated distances.

Observation RMSE of the
Image Rectification

Reference-Gauge
Measured Distance

Vertical
Distance

Straight-Line
Distance

# cm cm cm cm

1 0.33 67.2 70.4 75.0

2 0.47 155.4 154.0 154.9

3 0.41 114.7 109.2 110.0

4 0.50 147.1 142.2 145.2

5 0.39 153.9 152.3 153.2

6 0.41 170.7 163.1 163.8

7 0.53 170.9 170.1 170.3

8 0.42 151.6 151.8 152.1

9 0.25 102.4 88.9 89.0

10 0.31 160.1 166.1 166.5

11 0.23 136.2 137.9 139.6

12 0.16 125.8 126.3 127.5

13 0.29 147.1 144.2 147.3

14 0.34 177.2 173.1 177.0

15 0.41 174.9 179.0 179.5

16 1.22 160.9 163.5 163.5

p-value against the reference 0.2406 0.9354

Mean error was calculated as mean of y values, where the y was calculated as a difference of
reference control point (grid distance in the cartesian 2D system of loading place protection mesh)
value and estimated (photo derived placement of the control points in loading place protection mesh)
value. Except for one instance, the RMSE was below 1 cm. Such values of RMSE meant we could use
the images for height estimation.

2.3. Data Processing

Once images were rectified, point shapefile was created, and points were placed on the respective
side of the load indicating the top and the bottom of the load. Their X and Y coordinates were calculated
in the cartesian coordinate system and exported to be later processed with R language [31], where
straight-line distance and vertical distance between top and bottom points were calculated.

In total, 16 measurements of the loads were taken (eight on each side). Given the nature of the
sanitary fellings, with common re-locations, branch collection by the forwarder, and waiting time for the
harvester, this was the maximal achievable load count given the timeframe. Certainly, this downside
will be addressed in future research, with the second version of the cameras rig testing. Datasets of the
reference-gauge measured distance, vertical distance, and straight-line distance were then tested using
a paired t-test with 0.95 confidence level. We tested for a difference between vertical and straight-line
distance datasets with the null hypothesis of mean difference being equal to 0. The second batch
consisted of testing vertical and straight-line distance datasets separately against reference-gauge
measured distance with the null hypothesis of mean difference being equal to 0.
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3. Results

Table 1 shows measured and calculated distances. Two types of distances were calculated:
a vertical distance, which takes into account only difference along the Y-axis, and a straight-line
distance, which represents the gauge measurement more accurately in case the gauge is not perfectly
vertical. In several cases, the difference between vertical and straight-line distances was up to 5 cm.

First, the calculated vertical distance and calculated straight-line distance datasets were tested
against each other, showing there is a significant difference between them: p-value of 0.0015.
This significant difference demonstrates a need for precise vertical measurements for the load volume
estimations where vertical distance is needed.

Another paired t-test, where calculated distances were tested against the gauge measured distances,
showed a difference in the case of the vertical distance. It was not a significant one (p-value of 0.2406),
but given the 95 percent confidence interval of the difference between−4.1727 and 1.0477, it is reasonable
to suggest that vertical distance differs from the gauge measurements and is lower. This assumption
was tested with the alternative hypothesis that the difference is lower than 0. With p-value 0.1203, this
seems to be the case, yet not strongly significant, and it could be just due to a chance.

Comparison of the calculated straight-line distance and the gauge measured distance showed the
difference is close to statistically insignificant with a p-value of 0.9354. Such a result can be interpreted
as a confirmation that the camera-based measurements are up to gauge measurements of the load.

Additionally, given the substantial differences between the straight-line and vertical distances and
strong evidence that straight-line distances are close to the gauge measured distances, we hypothesize
that the gauge measurements can be biased and are overestimating the height of the load when the
gauge measurements are not perfectly vertical. This possible error could be somewhat mitigated by
using a spirit level, but we experienced issues where horns on the Telefix gauge were not long enough
to grab on the top of the load due to the tapered sides of the load area. Longer horns would not be
practical. In our case, difference up to 5 cm in height can be interpreted, given that assortment length
was 5 m, as a possible calculated volume difference of 0.55 m3. Given the conventional conversion
factor for the solid wood volume of 0.64, this is equal to the difference of 0.352 m3 u.b.

4. Discussion

Methods used in this study were not cutting-edge. Camera calibration software used together
with square checkboard targets was superseded by several other techniques. This one was chosen
for the ease of use for researchers who do not specialize in computer vision. Achieved re-projection
errors (1.37–2.07 px) were more extensive than in other studies, which were focused on the precision of
calibration, for example, 0.2705 px by Poulin-Girard et al. [32]. However, the study of Mokroš et al. [28],
where two types of lenses on digital cameras were compared (a standard lens and fisheye lens),
proposed the usage of fisheye lens with significantly lower error for photogrammetry purposes in
forestry measurements.

Nevertheless, given the distance of about two meters from the load face, this error resulted in a
possible error of 1.19–1.80 mm, which we considered sufficient for the purpose of load measurement.
The one issue we were aware of was the thickness of the mesh, which could have influenced the
calculated distances, as the actual load was several millimeters behind, but the improper facing of the
logs created more severe distortions. For more precise estimations, the 3D stereoscopic system should
be used [33,34]. It certainly is a further research goal.

To our best knowledge, current trends in using photogrammetry methods are aimed at using
UAVs [29]. The nowadays main aim of ground photogrammetry is stem reconstruction for forest
inventory purposes [24,28,35]. Studies aimed at the use of ground-based solutions for estimations of
volume on trucks [36] or piles [37] are sparse.

Use of this technique for load measurements has its limitations. Measurements are done only in
one place and cannot take into account gaps due to the different assortment lengths nor can measure
the second pile of logs.
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Advantages are, however, significant. By using a high vantage point and cameras, the possibility
of measurement error induced by the researcher is lowered. Properly set up cameras can record the
whole shift, without interfering with the work of the forwarder. The data processing time is higher
than with traditional gauge measured height of the load, but there is no need for the researcher to be
present at the roadside while the forwarder is ready to unload. In our study, the forwarder was using
several roadside landings, and taking measurements at all of them proved to be an organizational
challenge. Using this method, data can be collected without interference to the work of the forwarder,
contrary to the load sampling method. This new approach also offers details on the load assembly, as
the time-lapse photos can capture the whole work cycle.

Nevertheless, this study shows a potential for at least the same accuracy as the gauge measurements,
which are still being used and have their downsides [17] with lower chances for researcher errors.
Consumer-grade cameras are already available to many researchers and are not expensive. Timed
photos can also provide basic timeframes for the work cycle during the whole shift. Together with GPS
and CAN-Bus data, this method of load volume estimation can lead to a more automated approach to
the forwarders time studies.

5. Conclusions

The photogrammetry can be used as a more effective method for measuring forwarder loads,
mainly due to its ability to observe the top of the load. Use of photos for estimation of height of
forwarder load showed inaccuracy issues in measurement by gauge measuring—mainly inaccuracy in
estimation of the exact height, which is not always clearly visible from the ground. The photogrammetry
method also saves time. Even though data processing is more time-consuming, researchers in the field
do not need to be present at the roadside landings, or they can record other aspects of the work cycles.

We demonstrated that accuracy levels well within the limitations of the currently used method of
gauge measuring could be relatively easily achieved. Furthermore, the proposed photogrammetric
method enhanced with time-stamped photos can be effectively used in time studies.
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The Use of Harvester Technology in Production Forests; Folia Fore; Lesnická práce s.r.o.: Kostelec nad Černými
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