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Abstract: Mangrove forests are highly productive ecosystems and play an important role in the
global carbon cycle. We used Shuttle Radar Topography Mission (SRTM) elevation data to estimate
mangrove above-ground biomass (AGB) in Sabah, Malaysian northern Borneo. We developed a
tree-level approach to deal with the substantial temporal discrepancy between the SRTM data and the
mangrove’s field measurements. We predicted the annual growth of diameter at breast height and
adjusted the field measurements to the SRTM data acquisition year to estimate the field AGB. A canopy
height model (CHM) was derived by correcting the SRTM data with ground elevation. Regression
analyses between the estimated AGB and SRTM CHM produced an estimation model (R2: 0.61) with
a root mean square error (RMSE) of 8.24 Mg ha−1 (RMSE%: 5.47). We then quantified the mangrove
forest loss based on supervised classification of multitemporal Landsat images. More than 25,000 ha
of mangrove forest had disappeared between 2000 and 2015. This has resulted in a significant decrease
of about 3.96 million Mg of mangrove AGB in Sabah during the study period. As SRTM elevation
data has a near-global coverage, this approach can be used to map the historical AGB of mangroves,
especially in Southeast Asia, to promote mangrove carbon stock conservation.
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1. Introduction

Globally, deforestation and forest degradation have resulted in a substantial release of greenhouse
gases (GHGs) to the atmosphere, constituting approximately 10% of global emissions [1]. The Reducing
Emissions from Deforestation and Forest Degradation (REDD+) program has been negotiated under
the United Nations Framework Convention on Climate Change (UNFCCC) as a viable option for
reducing greenhouse-gas emissions from the land-use sector [2]. REDD+ provides financial incentives
to assist in the reduction of national carbon emission rates due to deforestation and forest degradation
in developing countries [3,4]. While most of the nations have focused on inland forest ecosystems
especially tropical forests, the role of mangroves in climate change mitigation has gained considerable
interest in recent years [5].
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Mangrove forest is one of the most productive forest ecosystems in terms of its efficiency of carbon
cycling and storage, as well as carbon sequestering [6–8]. Mangrove forests store five times more carbon
per unit area than other forest ecosystems [7], and can store up to three times more carbon per unit
area than other tropical forests [9,10]. However, increasing demand for mangrove products, such as
materials for buildings and fuel, as well as urbanization, has led to the destruction and degradation of
mangrove forests throughout the world [11]. Almost 20% of the world’s mangrove areas disappeared
between 1980 and 2005 [12]. Recently, the global mangrove loss rate has been estimated to range
between 0.16% and 0.39% annually [13]. The deforestation of mangroves causes the release of large
amounts of carbon emissions into the atmosphere [14]. Mangrove forest is one of the three natural
forest classes to be monitored for REDD in Malaysia [15]. About 58.6% of the nation’s mangrove
forests are found in Sabah [16], making this state particularly important in the REDD implementation.
The state’s mangrove forest was estimated at 327,678 ha around early 2000s [17], but changes since
then are not known.

In order to better understand carbon emissions and the ecosystem structure of mangroves, we need
to accurately quantify the ecosystem biomass, extent and change of mangroves by measuring their
horizontal and vertical heterogeneity. Horizontal heterogeneity refers to the aspect of land cover and
its change, whereas vertical heterogeneity is considered in terms of forest height, which is one of the
main determinants of its above-ground biomass (AGB) [18]. Forest cover loss due to land use change
can be monitored using multitemporal land-cover change analyses (e.g., [19,20]). For mangrove’s AGB
or carbon stock estimations, only very few comprehensive assessments of mangrove’s carbon inventory
have been performed to date [9,21]. Field measurements are the most accurate method for estimating
AGB. However, it is expensive, time consuming and difficult to apply to a large area for mangroves,
which often grow in an inter-tidal zone that is extremely difficult to access. Not only overcoming the
problem of accessibility, remote sensing coupling with field measurements is a recommended AGB
estimation approach for REDD+ [22].

Remote sensing has been used to retrieve forest structure and AGB information using large-spatial
scale satellite images over a long-term basis and at a much lower cost [11]. Active remote sensing
systems, such as synthetic aperture radar (SAR) and airborne light detection and ranging (LiDAR),
can penetrate the forest canopy at different depths. These systems are relatively sensitive to forest
component arrangements and can be used to estimate forest structures such as height [23]. SAR has
limited success in estimating AGB, especially for tropical forests with high AGB [24]. Airborne LiDAR
is accurate [25,26] but too expensive to use for a large-area survey. The Shuttle Radar Topography
Mission (SRTM) mission, implemented in 2000, offers free and high-resolution (1-arc second or 30 m)
digital elevation data that cover 80% of the Earth’s land surface between 56◦ S and 60◦ N. However,
the C band radar signal that scatters with all forest components may not reach the ground. The SRTM
data correlates well with the canopy heights of mangrove forests [27,28]. Therefore, the SRTM data is,
in effect, a digital surface model (DSM). Assuming a flat coastal topography, SRTM DSM has been used
to estimate AGB of mangroves in the Everglades National Park [29], Colombia [30], Mozambique [31],
Africa [27], the French Guiana [32] and Indonesia’s Papua province [33]. Mangrove carbon stock was
recently analyzed at a global scale using a combination of SRTM DEM, ICEsat/GLAS and field data [34].
The main sources of regression residuals between the remotely sensed height values and field height
measurement or AGB include the timing of measurements, discrepancies in the spatial scale and
several additional sources of uncertainty [27,30,31,34]. However, none of these studies has dealt with
the large discrepancy between the dates of field measurement and the SRTM data acquisition.

In this study, we examined the estimation of mangrove AGB in Sabah, Malaysia using SRTM DSM
with and without ground elevation correction. We addressed the time gap between the SRTM and
field data by developing a tree-level diameter at breast height (DBH) prediction model to adjust the
DBH measurements to the SRTM data acquisition year and estimated the field AGB. We quantified
the mangrove AGB loss in Sabah between 2000 and 2015 using Landsat images and the predicted
mangrove AGB map of 2000.
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2. Materials and Methods

2.1. Study Area

Sabah, located in the northern part of Borneo Island, is the second-largest state of Malaysia
(73,904 km2) (Figure 1). It has an annual mean temperature of 27 ◦C and an annual mean rainfall of
2788 mm. Sabah has a long coastline of about 4328 km, mainly covered by mangrove forests, many of
which are legally gazetted as ‘Class I Protection Forest Reserve, Class V Mangrove Forest Reserves
or Class VI Amenity Forest Reserve’ under the Sabah Forest Enactment (1968) [17]. Including water
bodies, the total area of these reserves was about 340,000 ha in 2015 [35].
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2.2. Field Inventory and AGB Data

Field measurements of mangrove forests focused on the West Coast of Sabah. Twenty-eight square
plots (20 m × 20 m) were randomly sampled in 2018. We measured the diameter at breast height
(DBH) and height (H) of trees larger than 5 cm DBH using a DBH tape and the TruPulse 360 Laser
Rangefinder (Laser Technology Inc., Centennial, CO, USA), respectively. Measuring the height of
mangrove trees inside the forest is difficult. We took three measurements from different directions
and averaged them to obtain the height value. The plot coordinates were determined by a Differential
Global Navigation Satellite System (GNSS) (JAVAD GNSS Triumph-1) (JAVAD GNSS Inc., San Jose, CA,
USA). In addition, we obtained forty-two plots (10 m × 10 m) that were established using a transect
line method in 2016 from another research project. We used the first and last plots in a transect line
if the plots are separated more than 3 pixels or 90 m apart. Otherwise, plots from the same transect
were averaged and treated as a single plot. Two of the 2016 plots that overlapped with the 2018 plots
were excluded. In total, forty plots were available to this study for calculate field AGB. While both
DBH and H were measured for the 2018 plots, these were measured in eighteen out of the 2016 plots.
Only DBH was measured in the remaining plots. The plot locations were recorded using a handheld
GNSS receiver (GARMIN GPSMAP 60 CSx) (Garmin Ltd., Olathe, KS, USA), averaged for two hours
(up to 5 m horizontal accuracy). These field plots covered a distance of 235 km in the West Coast of
Sabah in four districts i.e., Tuaran, Kota Marudu, Kota Belud and Kudat districts (Figure 1).

Overall, 3222 trees were measured in these forty plots. The dominant mangrove species were
Rhizophora apiculata and Avicennia alba. Nonetheless, species information was only collected for some
plots. AGB is generally predicted by DBH and/or height in an allometry and can be improved by
including wood density information [36]. Without complete species information, the choice of AGB
allometry was limited in this study. We used the allometric equation of Saenger and Snedaker [15]
because it is a global stand height-AGB allometric equation that was calculated using 43 field data
sets distributed globally. It has been widely applied with the SRTM data to estimate mangrove AGB
(e.g., [28–31,34]) (Equation (2)).

AGB =10.8H + 34.9 (1)

where AGB is the above-ground biomass in Mg ha−1 and H is the tree height in meters. Equation (2)
was used to estimate the field AGB in 2000. The field AGB 2000 was regressed against variables derived
from the SRTM data in a least-squares regression analysis to develop an AGB estimation model for the
mangroves of Sabah.

Since the SRTM data was acquired in year 2000, and the field data were collected in 2016 and 2018,
we adjusted the tree measurements to year 2000 for their intermediate growth by using the method
proposed by Clark et al. [37]. We collected two additional plots of DBH data measured in 2004 and
2006 by the Sabah Forestry Department. This data was used together with our DBH data from 2016 and
2018 to derive a model for relating annual DBH increase and DBH at tree level for mangroves of Sabah
(Table 1 and Figure 2). DBH value of each tree was iteratively adjusted using the following model:

DBHyear−1 = DBHyear − [0.787 × ln
(
DBHyear

)
− 1.404] (2)

where DBHyear is the DBH of the actual measurement year and DBHyear−1 is the DBH of the previous
year in cm. The DBH values were adjusted from the year in which it was measured until 2000,
when the SRTM data was acquired. With the adjusted DBH values, we then estimated the tree height
by establishing a DBH-height relationship based on mangrove trees that had both DBH and height
measurements. Table 2 and Figure 3 show the regression between DBH and height for the mangrove
trees, which had a coefficient of determination of 0.58 (n = 2760).
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Table 1. Regression Statistics of Diameter at Breast Height (DBH) Increment Estimation Model.

Model DBH Increment = 0.787ln(DBH) − 1.404

No of Samples (n) 347
R 0.67
R2 0.44

Constant Variable Coefficients

B −1.404 0.787
SE 0.228 0.090
t −6.159 8.723

Sig. 0.000 * 0.000 *

Notes: B, regression coefficient; SE, standard error; t, Student’s t statistic; Sig., significance value. * Significant at the
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Compared to the plot-level approach in [37], considerable variations in DBH increment can be observed
at tree level, but the annual rate is clearly dependent on the tree DBH.

Table 2. Regression Statistics of the Height Estimation Model.

Model Height = 3.100(DBH)0.623

No of Samples (n) 2760
R 0.76
R2 0.58

Constant Variable Coefficients

B 3.100 0.623
SE 0.075 0.010
t 41.176 61.991

Sig. 0.000 * 0.000 *

Notes: B, regression coefficient; SE, standard error; t, Student’s t statistic; Sig., significance value. * Significant at the
0.001 level.
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2.3. Land Cover Classification of Multi-Temporal Landsat Images

A supervised classification approach was used to map the mangrove forests of Sabah in years
2000 and 2015. The coastlines of Sabah are covered by eight Landsat scenes (Scene’s path/row no:
116/56; 116/57; 117/55; 117/56; 117/57; 118/55; 118/56; 118/57). However, we had to download more
than thirty images from the United States Geological Survey website [38] for the same year to identify
additional images with low cloud cover. For each scene, cloud-covered pixels in the best-quality image
were masked out and filled with pixel values of other images within the same year. This was followed
by converting the pixel’s digital numbers to top-of-atmosphere reflectance and atmospheric correction,
using the dark object subtraction method. Supervised classification was conducted using the maximum
likelihood algorithm, which classifies each pixel to a land cover class based on the class’s probability.
Training areas for the classification were randomly collected on the high-resolution images in Google
Earth and also with the help of a handheld Global Navigation Satellite System receiver during the
field works. The classification resulted in seven land cover classes (water, mangrove, forest, plantation,
agriculture, grassland and bare land). These classes were grouped to mangrove and non-mangrove
to assess the classification accuracy in the error matrix and reported as percentage of correctness.
The accuracy measures included the producer’s accuracy, user’s accuracy, overall accuracy and the
kappa coefficient. The mangrove areas were extracted from the land cover classifications for further
analysis of AGB changes.

2.4. Canopy Height Models from the SRTM Data

A total of 13 tiles of SRTM DSM (30 m resolution) that cover the entire state of Sabah were
downloaded from the USGS website [39] and merged to form a raster mosaic. The SRTM DSM
of the mangroves was extracted using the mangrove cover from the land cover classification 2000.
These SRTM DSM values were used as a canopy height model for the coastal mangroves (CHMmg),
because the topographic elevation values right below the mangrove forests are very close to the sea
level and the radar height estimate is roughly the canopy height of mangroves [29,31]. We then
examined whether correction of the CHM with a simulated digital terrain model (DTM) can improve
the AGB estimation model for mangroves. The corrected CHM for mangroves (Corrected CHMmg) was
derived as follows:

Corrected CHMmg = SRTM DSMmg −DTMmg (3)
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As the elevation of coastal areas typically increases from the coastline towards inland areas,
the DTMmg was generated by establishing the relationship between distance from the coastline and
elevation above mean sea level (Table 3 and Figure 4). The linear regression model thus derived was
based on six coastal profiles obtained from the Sabah Shoreline Management Plan [40] as follows:

DTMmg = 0.019D + 0.343 (4)

where DTMmg is the ground elevation in meters a.s.l. for mangrove cover and D is the distance from
coastline in meters. D was generated as a raster (30 m × 30 m) by calculating the Euclidian distance
from the Sabah coastline vector. We only generated the DTMmg for pixels less than 200 m from the
coastline based on the coastal profiles. Beyond 200 m from the coastline, the SRTM DSM values were
subtracted with the maximum value of DTMmg i.e., 4.1627 m based on Equation (4).

Table 3. Regression Statistics of the Digital Terrain Model (DTM) Estimation Model.

Model DTMmg = 0.019 (D) + 0.343

No of Samples (n) 362
R 0.73
R2 0.54

Constant Variable Coefficients

B 0.343 0.019
SE 0.089 0.001
t 3.870 20.482

Sig. 0.000 * 0.000 *

Notes: B, regression coefficient; SE, standard error; t, Student’s t statistic; Sig., significance value. * Significant at the
0.001 level.
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2.5. AGB Prediction Models

We extracted the pixel values from both CHMmg and Corrected CHMmg and calculated the average
for each plot. The estimated field AGB was linearly regressed against the CHMmg and Corrected
CHMmg. Natural-log transformation was also applied to the independent or dependent variable
because height is known to have nonlinear relationship with AGB [41,42]. The best estimation models
were selected based on R-Squared (R2), the root mean square error (RMSE) and the relative RMSE
(RMSE%). RMSE was calculated with leave-one-out cross-validation to avoid overfitting of the model.
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3. Results

3.1. Mangrove Forest Distribution

The land cover classification had an overall accuracy of 96.98% and 93.92% with kappa coefficients
of 0.94 and 0.87 for years 2000 and 2015, respectively (Table 4). Reference data was obtained from
Google Earth historical images to compare with the classified land cover classes (331 points for year
2000 and 329 points for year 2015). The overall mangrove area based on both classifications (2000 and
2015) generated mangrove areas of 294,207.75 ha and 268,631.91 ha, respectively. The changes of
mangrove areas in Sabah were determined by subtracting the classified mangrove areas of 2000 and
2015. Figure 5 shows the increase, decrease and unchanged mangrove areas between 2000 and 2015.
Although 58,262.85 ha of mangrove had disappeared, there was an increase of the forest cover of
32,687.01 ha in that fifteen years. About 235,944.9 ha of mangrove area remained unchanged.

Table 4. Classification Accuracy for Mangrove 2000 and 2015.

(a) 2000 Groundtruths
Line Total User’s Accuracy (%)

Mangrove Non Mangrove

Classification
Mangrove 136 1 137 99.27

Non Mangrove 9 185 194 95.36
Column Total 145 186 331

Producer’s Accuracy (%) 93.79 99.46

Overall Accuracy = 96.98%; Overall Kappa = 0.94

(b) 2015 Groundtruths
Line Total User’s Accuracy (%)

Mangrove Non Mangrove

Classification
Mangrove 114 4 118 96.61

Non Mangrove 16 195 211 92.42
Column Total 130 199 329

Producer’s Accuracy (%) 87.69 97.99

Overall Accuracy = 93.92%; Overall Kappa = 0.87
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3.2. AGB Estimation

Table 5 shows the descriptive statistics of the field measurements of mangrove forest variables
at plot-level and their estimated values in year 2000. The field measurements had average DBH
and height of 11.89 cm and 14.30 m, respectively. Estimation of the mangrove forest variables using
the adjustment approach produced average DBH and height of 7.08 cm and 10.45 m, respectively.
The AGB of individual trees within the plot was aggregated to generate the plot-level AGB (Mg ha−1).
The measured field AGB had an average of 196.88 Mg ha−1, whereas the estimated field AGB in 2000
was 150.63 Mg ha−1.

Table 5. Summary of the Observed and Estimated Field Variables Mangrove Forest in the Study Area.

DBH (cm) Height (m) AGB (Mg ha−1)

Average
Observed 11.89 14.30 196.88

Estimated 7.08 10.45 150.63

Minimum
Observed 5.0 2.65 135.61

Estimated 5.95 9.41 138.52

Maximum
Observed 49 30.95 291.31

Estimated 25.98 23.58 204.54

Standard Deviation
Observed 5.44 4.43 32.58

Estimated 1.55 1.28 11.66

All forty plots were used in the regression analyses between the CHMs and the field AGB 2000.
The results (Table 6) showed that the models with Ln AGB as the dependent variable and CHM
as the independent variable had the highest R2 (0.60) for corrected and R2 (0.61) for uncorrected
CHMs. The model with the uncorrected CHM as predictor had a RMSE of 8.24 Mg ha−1, or 5.47%
of the average AGB (relative RMSE or RMSE%), and was slightly lower than the corrected CHM
(RMSE = 8.39 Mg ha−1; RMSE% = 5.56%). Figure 6 shows the scatter-plot of AGB estimated from field
data versus AGB predicted using the corrected CHM for the year 2000. The model was employed
to produce a mangrove AGB map of Sabah for 2000. Sabah’s mangrove forest was estimated at
294,207.75 ha in 2000 with a total of 43,615,501.35 Mg of AGB. A total of 25,575.84 ha of mangrove
forest had disappeared between 2000 and 2015 (1705.56 ha year−1). By multiplying the mangrove 2015
map with the AGB 2000 map, the mangrove AGB of 2015 was estimated at 39,652,659.26 Mg. This has
translated into a significant decrease of more than 3.96 million Mg of mangrove AGB (or 1.98 million Mg
of carbon with 0.5 conversion) in Sabah during the study period.

Table 6. Summary of Above-Ground Biomass (AGB) Estimation Models Using Corrected and
Uncorrected Shuttle Radar Topography Mission (SRTM) Canopy Height Models (CHMs).

Variables R R2 Model Equation RMSE Mg ha−1 % RMSE

Corrected
AGB – CHM 0.76 0.57 AGB = 2.51(CHM) + 128.28 8.59 5.70

AGB – Ln CHM 0.68 0.46 AGB = 20.07(Ln CHM) + 108.24 9.36 6.21
Ln AGB – CHM 0.77 0.60 Ln AGB = 0.02(CHM) + 4.87 8.38 5.56

Uncorrected
AGB – CHM 0.77 0.59 AGB = 2.38(CHM) + 123.92 8.47 5.62

AGB – Ln CHM 0.69 0.47 AGB = 23.78(Ln CHM) + 94.47 9.26 6.15
Ln AGB – CHM 0.78 0.61 Ln AGB = 0.01(CHM) + 4.85 8.24 5.47
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4. Discussion

4.1. Mangrove AGB Estimation Using Remotely Sensed Data

Mangrove AGB is conventionally examined based on field inventory despite the difficulties of
accessing mangrove forests. We estimated AGB of mangrove forests of Sabah using field data and a
published allometric equation. The observed AGB was about 196.88 Mg ha−1 while the estimated AGB
was lower at 150.63 ha−1. These values fall within the range of average mangrove AGB in Malaysia.
A study in Matang area, Peninsular Malaysia reported that the average AGB in Matang, which is
dominated by Rhizophora apiculata species, was 185.30 Mg ha−1 [43]. In Sabah, the mangrove average
AGB can be as low as 98.40 Mg ha−1 in the Kota Marudu district [44] and as high as 319 Mg ha−1

for the mangrove’s average AGB in the Sandakan district [45]. In the Lawas district of Sarawak,
the neighboring state of Sabah, the mangrove average AGB is 116.79 Mg ha−1 [46]. The differences of
AGB values in these different studies might be attributed to various factors, such as stem density and
growth rate, as well as the disturbance history [46].

In recent years, mangrove AGB estimation over a spatially large area has focused on the correlation
between mangrove canopy heights and remotely sensed height measurements, especially when using
SRTM DSM or GLAS data. The approach generally involves the calibration of SRTM DSM values into
canopy heights (e.g., [31,33]) or ICESat/GLAS generated heights (e.g., [27,34]), which are then used in
AGB allometry. By calibrating SRTM DSM into tree height measurements using field data collected
in 2005, mangrove AGB in Mozambique was estimated with a RMSE of 44 Mg ha−1 [31]. Aslan et
al. [33] used the same approach to calibrate SRTM DSM to tree height measurements taken in 2013 but
the RMSE, at 147.98 Mg ha−1, was considerably higher. In Colombia, mangrove AGB was estimated
based on the linear relationship between ICEsat height estimates and SRTM elevation. The regression
residual calculated using field data collected in 2005 was 17.3 Mg ha−1 [30]. In the case of Africa,
applying the relative height of GLAS height measurements as canopy height to estimate mangrove
AGB resulted in an RMSE of 65.4 Mg ha−1. It was calculated indirectly based on the RMSE of canopy
height estimated with SRTM DSM [27]. This approach was later improved and used to estimate the
global mangrove above-ground carbon stock with field data collected within 15 years after the SRTM
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data were obtained [34]. The time gap between field data and SRTM DSM data is one of the main
error sources of AGB estimation using SRTM DSM [34]. The AGB growth during the gap could be
substantial, even for mangroves that have a relatively slow growth rate.

There is a predictive relationship between annual AGB increment and AGB for tropical forest
ecosystems [42]. A similar approach was employed to adjust the field AGB of different years
to year 2000 and successfully estimate AGB of lowland mixed dipterocarp forests in Northern
Borneo [47]. The iterative adjustment reduced the DBH and thus the number of trees in our field
data. Nevertheless, only 250 trees or 7.6% of the total measured trees (3222 trees) were reduced after
applying the adjustment. Based on our data, the mangrove AGB growth rate in Sabah was averagely
2.2 Mg ha−1 year−1. The AGB in 2000 might be underestimated as we did not consider any tree
mortality that might have occurred before the field data collection. Without taking into consideration
the time gap between the field measurements and SRTM CHM, the RMSE of mangrove AGB estimation
in Sabah was 19.70 Mg ha−1 [48]. In this study, uncorrected SRTM DSM using a simulated DTM
produced the best model for the AGB estimation in Sabah (RMSE 8.24 Mg ha−1). It is clearly shown
that accounting for time gaps between field survey and digital elevation data leads to significant
improvement in AGB prediction accuracy. The time-gap issue should therefore be addressed in future
AGB studies. Nevertheless, the difference between corrected and uncorrected SRTM data is relatively
small in comparison to the elevation errors reported for the global SRTM data, it is sufficient to assume
a flat topography for mangrove AGB estimation using SRTM DSM as CHM [34].

With the recent advancement in remote sensing technology, digital elevation datasets have become
increasingly available. These datasets have similar or higher spatial resolution, such as the ALOS
PALSAR, and TanDEM-X data can be used as CHM for mangroves. Digital elevation data can also be
generated using digital aerial photographs with the structure from motion technique. The use of these
datasets for estimating AGB should be further examined in future.

4.2. Mangrove AGB Loss and Its Implications for REDD+ in Sabah, Malaysia

To map the mangrove forest changes between 2000 and 2015, we derived the mangrove forest
areas based on supervised classification of Landsat image. Comparison of the classified mangrove
forest area with existing statistics is not straightforward. Based on our classification, Sabah’s mangrove
forest was estimated at 294,207.75 ha in 2000, compared to the estimate of 327,678 ha around the early
2000s given by Jakobsen et al. [17]. The overall accuracy (96.98%) and kappa coefficient (0.94) of our
classification were high, while no accuracy was reported in Jakobsen et al. [17]. Based on the global
mangrove dataset of the USGS, there were 284,952.27 ha of mangroves in Sabah in 2011. Our study
found that the mangrove forest cover was 268,631.91 ha in 2015. Apart from mangrove deforestation,
the differences in the mangrove area between other studies and our results could be due to the use of
different satellite images and different cloud cover percentage, which needs to be removed. Gap filling
can be conducted to fill in the removed areas, but is limited to available images. Moreover, the detection
of mangrove areas that are partially submerged in the coastal waters may be restricted by the spatial
resolution of the Landsat image [49].

The changes in mangrove forest cover reported in this study were based on the available Landsat
images with low cloud and haze conditions. Most of the mangroves are found along the North to East
coasts of Sabah (Figure 2). Overall, the mangrove area had decreased more than 25,000 ha within the
15-year study period. At a rate of 1705.56 ha per year (0.58% per year), losses are notably higher than
the recent estimated global rate of mangrove loss, which ranges between 0.16% and 0.39% annually [13].
The deforestation rate might have been off-set by natural mangrove AGB colonization and small-scale
mangrove replanting projects between 2011 and 2014 in the districts of Sandakan, Beluran, Beaufort
and Kunak [50]. This study only considered the AGB changes due to deforestation, so the mangrove
AGB changes were based on the estimated AGB and mangrove cover changes between 2000 and 2015.
Overall, the mangrove AGB had decreased from 43,615,501.35 Mg in 2000 to 39,652,659.26 Mg in 2015.
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This means a significant decrease of more than 3.96 million Mg of mangrove AGB (or 1.98 million Mg
Carbon with 0.5 conversion) at an annual rate of 264,189.47 Mg per year.

As the amendment of Sabah’s Forest Enactment 1968 to include REDD+ was passed in the state’s
assembly and came into force in January 2019, the state government of Sabah clearly needs to adopt an
effective strategy to conserve mangroves of Sabah. Recently, capacity building activities supported by
a European Union fund have improved the Measurement, Reporting and Verification capacity of the
state government. In addition, an above-ground carbon density map at 30 m resolution was developed
for the forests except mangrove [51]. Mangrove is one of the five forest classes in the national forest
reference emission level for REDD+ [15]. The AGB map of this study provides a baseline on the spatial
distribution of mangrove AGB at sub-national level in 2000. Moreover, the mangrove AGB change
map can be used to guide management decisions at policy or state level. For example, establishing
new protection forest reserves or reclassifying existing reserves to protection forest reserves (Class I)
at the threatened areas are an immediate and effective solution. Alternatively, the intensification of
mangrove forest rehabilitation should also be carried out.

5. Conclusions

As mangrove areas in Sabah comprises of more than half of the total area of mangrove in Malaysia,
baseline information on the mangrove area and its AGB is important to the mechanism of Reduce
Emissions from Deforestation and Forest Degradation-Plus (REDD+) at sub-national, as well as
national levels. In this study, we developed a predictive model to adjust field DBH measurements for
determining the field AGB in 2000, when SRTM data was acquired. The historical mangrove AGB map
in 2000 was produced by developing an AGB estimation model using the predicted field AGB and
SRTM DSM corrected for ground elevation. Mangrove deforestation in Sabah between 2000 and 2015
was also quantified using multitemporal Landsat images. Although the mangrove deforestation rate
was lower than the global rate, the total reduction of mangrove AGB or carbon stock was significant.
The adjustment approach developed in this study can be applied to other regions covered by SRTM
DSM to map the historical mangrove AGB in 2000.

Author Contributions: M.-H.P., K.U.K. and S.T. framed the research questions and designed the study. M.-H.P.,
N.A.B. and J.T. designed the field data collection, which was carried out by C.J.W. and D.J. Remotely sensed data
processing and analysis were conducted by C.J.W. and D.J. C.J.W. prepared the first draft while M.-H.P., K.U.K.
and S.T. reviewed and revised the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Ministry of Higher Education (Project: NRGS0005), Ministry of Science,
Technology and Innovation (Sciencefund: 04-01-10-SF0223) and Universiti Malaysia Sabah, Malaysia.

Acknowledgments: The authors would like to thank generous assistance and cooperation of various parties
involved in this study. We would like to thank Sabah Forestry Department for research permission. Special thanks
go to Nur Athirah Mohd Kamal, Nur Izzati Mohd Hanafiah, Jim Liew Jun Fei, Keiko Ioki and Wilson Wong for
helping the field works.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.;
Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved
by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [CrossRef]

2. UN-REDD. The UN-REDD Programme Strategy 2011–2015; UN-REDD: Geneva, Switzerland, 2011.
3. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks:

Making REDD a reality. Environ. Res. Lett. 2007, 2, 1–3. [CrossRef]
4. UNFCCC. Executive Board Annual Report 2014: Clean Development Mechanism; United Nations Framework

Convention on Climate Change: Luxembourg, 2014.
5. Dahdouh-Guebas, F. World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds).

Hum. Ecol. 2011, 39, 107–109. [CrossRef]

http://dx.doi.org/10.1038/nclimate1354
http://dx.doi.org/10.1088/1748-9326/2/4/045023
http://dx.doi.org/10.1007/s10745-010-9366-7


Forests 2020, 11, 1018 13 of 15

6. Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Soil C quantities of mangrove forests, their competing
land uses, and their spatial distribution in the coast of Honda Bay, Philippines. Geoderma 2017, 293, 82–90.
[CrossRef]

7. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among
the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]

8. Pham, L.T.H.; Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an
object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 2017,
128, 86–97. [CrossRef]

9. Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem carbon stocks of Micronesian
mangrove forests. Wetlands 2011, 31, 343–352. [CrossRef]

10. Stringer, C.E.; Trettin, C.C.; Zarnoch, S.J.; Tang, W. Carbon stocks of mangroves within the Zambezi River
Delta, Mozambique. For. Ecol. Manag. 2015, 354, 139–148. [CrossRef]

11. Kanniah, K.D.; Sheikhi, A.; Cracknell, A.P.; Goh, H.C.; Tan, K.P.; Ho, C.S.; Rasli, F.N. Satellite images for
monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia.
Remote Sens. 2015, 7, 14360–14385. [CrossRef]

12. Barros, D.F.; Albernaz, A.L.M. Possible impacts of climate change on wetlands and its biota in the Brazilian
Amazon. Braz. J. Biol. 2014, 74, 810–820. [CrossRef]

13. Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous
mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [CrossRef]

14. Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation
from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240–244. [CrossRef]

15. Ministry of Natural Resources and Environment Malaysia (NRE). Second National Communication to the
UNFCCC; NRE: Putrajaya, Malaysia, 2011.

16. Food and Agriculture Organization of the United Nations (FAO). Brief on National Forest Inventory (NFI):
Malaysia; FAO: Rome, Italy, 2007.

17. Jakobsen, F.; Hartstein, N.; Frachisse, J.; Golingi, T. Sabah shoreline management plan (Borneo, Malaysia):
Ecosystems and pollution. Ocean. Coast. Manag. 2007, 50, 84–102. [CrossRef]

18. Saenger, P.; Snedaker, S.C. Pantropical trends in mangrove above-ground biomass and annual litterfall.
Oecologia 1993, 96, 293–299. [CrossRef] [PubMed]

19. Kamlun, K.U.; Arndt, R.B.; Phua, M.H. Monitoring deforestation in Malaysia between 1985 and 2013: Insight
from South-Western Sabah and its protected peat swamp area. Land Use Policy 2016, 57, 418–430. [CrossRef]

20. Phua, M.H.; Tsuyuki, S.; Lee, J.S.; Ghani, M. Simultaneous detection of burned areas of multiple fires in the
tropics using multisensor remote sensing data. Int. J. Remote Sens. 2012, 33, 4312–4333. [CrossRef]

21. Rahman, M.M.; Khan, M.N.I.; Hoque, A.F.; Ahmed, I. Carbon stocks in the Sundurbans mangrove forest:
Spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 2015, 23, 269–283. [CrossRef]

22. Tokola, T. Remote sensing concepts and their applicability in REDD+ monitoring. Curr. For. Rep. 2015, 1,
252–260. [CrossRef]

23. Saatchi, S.S. Synergism of optical and radar data for forest structure and biomass. Ambiencia Guarapuava
2010, 6, 151–166.

24. Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of
combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [CrossRef]

25. Ioki, K.; Tsuyuki, S.; Hirata, Y.; Phua, M.H.; Wong, W.V.C.; Ling, Z.Y.; Saito, H.; Takao, G. Estimating
above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using
airborne LiDAR. For. Ecol. Manag. 2014, 328, 335–341. [CrossRef]

26. Phua, M.H.; Hue, S.W.; Ioki, K.; Hashim, M.; Bidin, K.; Musta, B.; Suleiman, M.; Yap, S.W.; Maycock, C.R.
Estimating logged-over lowland rainforest aboveground biomass in Sabah, Malaysia using airborne LiDAR
data. Terr. Atmos. Ocean. Sci. 2016, 27, 481–489. [CrossRef]

27. Fatoyinbo, T.E.; Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J.
Remote Sens. 2013, 34, 668–681. [CrossRef]

28. Lagomasino, D.; Fatoyinbo, T.; Lee, S.K.; Feliciano, E.; Trettin, C.; Simard, M. A comparison of mangrove
canopy height using multiple independent measurements from land, air, and space. Remote Sens. 2016, 8, 327.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.geoderma.2017.01.025
http://dx.doi.org/10.1038/ngeo1123
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.013
http://dx.doi.org/10.1007/s13157-011-0148-9
http://dx.doi.org/10.1016/j.foreco.2015.06.027
http://dx.doi.org/10.3390/rs71114360
http://dx.doi.org/10.1590/1519-6984.04013
http://dx.doi.org/10.1111/geb.12449
http://dx.doi.org/10.1038/s41558-018-0090-4
http://dx.doi.org/10.1016/j.ocecoaman.2006.03.013
http://dx.doi.org/10.1007/BF00317496
http://www.ncbi.nlm.nih.gov/pubmed/28313641
http://dx.doi.org/10.1016/j.landusepol.2016.06.011
http://dx.doi.org/10.1080/01431161.2011.643460
http://dx.doi.org/10.1007/s11273-014-9379-x
http://dx.doi.org/10.1007/s40725-015-0026-4
http://dx.doi.org/10.1016/j.rse.2011.01.008
http://dx.doi.org/10.1016/j.foreco.2014.06.003
http://dx.doi.org/10.3319/TAO.2016.01.06.02(ISRS)
http://dx.doi.org/10.1080/01431161.2012.712224
http://dx.doi.org/10.3390/rs8040327
http://www.ncbi.nlm.nih.gov/pubmed/29629207


Forests 2020, 11, 1018 14 of 15

29. Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruis, P.L.; Castaneda-Moya, E.; Twilley, R.R.;
Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM
elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [CrossRef]

30. Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castaneda-Moya, E.; Twilley, R.R. A systematic
method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation
data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia.
Remote Sens. Environ. 2008, 112, 2131–2144. [CrossRef]

31. Fatoyinbo, T.E.; Simard, M.; Washington-Allen, R.A.; Shugart, H.H. Landscape-scale extent, height, biomass,
and carbon estimation of Mozambique’s mangrove forests with Landsat ETM + and Shuttle Radar Topography
Mission elevation data. J. Geophys. Res. Biogeosci. 2008, 113, 1–13. [CrossRef]

32. Fayad, I.; Baghdadi, N.; Guitet, S.; Bailly, J.S.; Herault, B.; Gond, V.; El Hajj, M.; Minh, D.H.T. Aboveground
biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental
data. Int. J. Appl. Earth. Obs. Geoinf. 2016, 52, 502–514. [CrossRef]

33. Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of
coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data.
Remote Sens. Environ. 2016, 183, 65–81. [CrossRef]

34. Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Thomas, N.;
Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone
frequency. Nat. Geosci. 2019, 12, 40–45. [CrossRef]

35. Sabah Forestry Department. Sabah Forestry Department Annual Report 2015; SFD: Sandakan, Malaysia, 2016.
36. Chave, J.; Rejou-Mechain, M.; Burquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.;

Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of
tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [CrossRef] [PubMed]

37. Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J.; Holland, E. Net primary
production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 2011, 11,
371–384. [CrossRef]

38. U.S. Geological Survey. Available online: http://glovis.usgs.gov (accessed on 5 February 2018).
39. U.S. Geological Survey. Available online: http://earthexplorer.usgs.gov (accessed on 7 November 2017).
40. DHI Water and Environment. Sabah Shoreline Management Plan; DHI Water and Environment: Kota Kinabalu,

Malaysia, 2005.
41. Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the

above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2019, 257, 1684–1694.
[CrossRef]

42. Yamakura, T.; Hagihara, A.; Sukardjo, S.; Ogawa, H. Aboveground biomass of tropical rain forest stands in
Indonesian Borneo. Vegetatio 1986, 68, 71–82. [CrossRef]

43. Gong, W.K.; Ong, J.E. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar. Coast.
Shelf Sci. 1990, 31, 519–530. [CrossRef]

44. Faridah-Hanum, I.; Kudus, K.A.; Saari, N.S. Plant diversity and biomass of Marudu Bay mangroves in
Malaysia. Pak. J. Bot. 2012, 44, 151–156.

45. Tangah, J.; Nilus, R.; Sugau, J.B.; Titin, J.; Paul, V.; Yahya, F.; Suis, M.A.F.; Chung, A.Y.C. The establishment of
long term ecological research plots in the Sepilok mangroves. Sepilok Bull. 2018, 27, 1–22.

46. Chandra, I.A.; Seca, G.; Hena, M.K.A. Aboveground biomass production of Rhizophora apiculata blume in
Sarawak mangrove forest. Am. J. Agric. Biol. Sci. 2011, 6, 469–474.

47. Langner, A.; Samejima, H.; Ong, R.C.; Titin, J.; Kitayama, K. Integration of carbon conservation into
sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian
Borneo. Int. J. Appl. Earth. Obs. Geoinf. 2012, 18, 305–312. [CrossRef]

48. Wong, C.J.; Besar, N.A.; James, D.; Phua, M.H. Estimating mangrove above-ground biomass in Sabah using
SRTM DSM, Landsat and field data. J. Korean For. Soc. 2020, in press.

49. Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove
forest land cover change along the Kenya coastline using Landsat imagery. Ocean. Coast. Manag. 2013, 83,
19–24. [CrossRef]

http://dx.doi.org/10.14358/PERS.72.3.299
http://dx.doi.org/10.1016/j.rse.2007.10.012
http://dx.doi.org/10.1029/2007JG000551
http://dx.doi.org/10.1016/j.jag.2016.07.015
http://dx.doi.org/10.1016/j.rse.2016.04.026
http://dx.doi.org/10.1038/s41561-018-0279-1
http://dx.doi.org/10.1111/gcb.12629
http://www.ncbi.nlm.nih.gov/pubmed/24817483
http://dx.doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
http://glovis.usgs.gov
http://earthexplorer.usgs.gov
http://dx.doi.org/10.1016/j.foreco.2009.01.027
http://dx.doi.org/10.1007/BF00045057
http://dx.doi.org/10.1016/0272-7714(90)90010-O
http://dx.doi.org/10.1016/j.jag.2012.02.006
http://dx.doi.org/10.1016/j.ocecoaman.2011.12.004


Forests 2020, 11, 1018 15 of 15

50. Tangah, J.; Bajau, F.E.; Jilimin, W.; Baba, S.; Chan, H.T.; Kesuka, M. Rehabilitation of Mangrove in Sabah-The
SFD-ISME Collaboration (2011–2014); Sabah Forestry Department: Kota Kinabalu, Malaysia, 2015.

51. Asner, G.P.; Brodrick, P.G.; Philipson, C.; Vaughn, N.R.; Martin, R.E.; Knapp, D.E.; Heckler, J.; Evans, L.J.;
Jucker, T.; Goossens, B.; et al. Mapped aboveground carbon stocks to advance forest conservation and
recovery in Malaysian Borneo. Biol. Conserv. 2018, 217, 289–310. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.biocon.2017.10.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Field Inventory and AGB Data 
	Land Cover Classification of Multi-Temporal Landsat Images 
	Canopy Height Models from the SRTM Data 
	AGB Prediction Models 

	Results 
	Mangrove Forest Distribution 
	AGB Estimation 

	Discussion 
	Mangrove AGB Estimation Using Remotely Sensed Data 
	Mangrove AGB Loss and Its Implications for REDD+ in Sabah, Malaysia 

	Conclusions 
	References

