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Abstract: Wood-based panels covered by melamine-impregnated paper are widely used in floors
and furniture, due to its good surface texture, hardness, wear resistance, and waterproof function.
However, there are still some problems, such as formaldehyde release from the impregnated resin,
non-wood touch, and complex preparation processes. Therefore, this study designed glycidyl
methacrylate (GMA) and ethyleneglycol dimethacrylate (EGDMA), combined with maleic anhydride
(MAN) as a reactive catalyst, to build an active monomers system. It was first impregnated into poplar
veneers, and then in-situ polymerized within the veneer using a hot pressing process, which realized
the gluing of the veneer onto the wood-based panel substrate, synchronously. Such treatment aims to
obtain wood-based panel composites decorated by the modified veneer, with real solid wood touch
feeling, satisfied surface properties, and environment friendly glue bonding. The results indicated that
the optimized reaction ratio of the active monomers (GMA:EGDMA) was 2:1 (molar ratio), and the
maleic anhydride addition accounted for 6 wt.% of the total monomers. Under the optimized hot
pressing condition, the modified veneer closely bonded to the wood-based panel substrate without
obvious interfacial gaps. The hardness, abrasion resistance, modulus of rupture, and water resistance
of the composites were significantly improved. Such results indicate that the treatment realized the
perfect merging of solid wood touch feeling, environment friendly feature, and excellent properties
of the composite. It was highly expected to replace the traditional melamine-impregnated paper to
decorate wood-based panels, and could be potentially applied as surface decorating materials in
wide areas of desktop, floor, cupboard, wardrobe, and so on.

Keywords: wood veneer; active monomer; impregnation; in-situ polymerization; veneer decorated
wood-based panel composite; hot pressing; glue bonding

1. Introduction

Wood is widely used in construction, home residence, transportation, and other fields because
of its advantages, such as light weight, high strength, beautiful texture, cheap and easy availability,
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environment friendly feature, and renewability, which are all favorite among people [1–4]. In recent
years, with the economic development and improvement of people’s life quality, human demand
for wood has increased. However, the supply of high-quality wood has become increasingly scarce;
and thus the contradiction between wood supply and demand has become increasingly prominent [5,6].
Therefore, people turn to explore low-quality and fast-growing wood species and wood processing
residues, for preparing various wood-based panels to meet the urgent needs of people for wood [7–11].
However, the surfaces of the traditional wood-based panels have some common disadvantages, such as
non-texture, lower abrasion resistance and hardness, and strong water absorption capacity, which make
them difficult to be directly used as wooden panel materials for floor, desktop board, cabinet panel,
etc. [12–14]. Therefore, melamine-impregnated paper is usually employed to glue on the panels’
surface, to overcome the above drawbacks of the wood-based panels [15,16]. This method makes
the panels that are widely used as decorating materials in floor, furniture, wooden doors, cabinets,
and bath cabinets, which not only improves the application value of the wood-based panels, but also
broadens its application fields [17,18]. Such melamine-impregnated, paper-decorated, wood-based
panels are now one of the most popular wood-based materials in the market.

However, there are still some shortcomings in the technology of paper decorating wood-based
panels, such as, the product surface is non-real wood touch, and the melamine glue to impregnate
paper releases formaldehyde, and the preparing process of the wood product is complex [19–21].
Although decorative veneer applied on the surface of the wood-based panels improves their real
wood texture, the following coating treatment decreases their real wood touch, and complicates
the preparation processes [22,23]. Therefore, this study proposed the following structural design—
non-formaldehyde active monomers are impregnated into the veneer, and glue bonds the veneer and the
wood-based panels to form a veneer-decorated panel composite. The active monomers were designed
to simultaneously realize the in-situ polymerization and glue bonding, via one hot pressing process.
This method aimed to improve the strength, abrasion resistance, hardness, water resistance of the veneer
surface, and to also convey real wood touch to the wood-based panels, without any formaldehyde
release, which is simple, environment friendly and practical, and thus, is expected to overcome the
above three disadvantages of the paper decorated wood-based panels [24–26]. It potentially provides a
new way for low-quality wood to realize high-value utilization, and extends the panel types to provide
another choice for household materials.

Previous studies reported that acrylic monomers could polymerize in situ to reinforce wood.
However, the monomers are normally easy to evaporate, even under ambient conditions, and the
resultant polymers within wood are normally thermoplastic, which could cause thermoplastic flow
under hot-pressing conditions, and thus, are incapable of adapting to the gluing process [27,28].
Given the structural analysis of the designed active monomers, both glycidyl methacrylate (GMA) and
ethyleneglycol dimethacrylate (EGDMA) have C=C bonds, which could theoretically form polymer
networks to reinforce veneer via the free radical copolymerization [29,30]. Additionally, GMA has
an epoxy group, which could theoretically react with the hydroxyl groups on wood components,
via the epoxy ring opening reaction, especially under the catalysis of acid condition, derived from the
potential reaction of maleic anhydride (MAN) and the hydroxyl group. Therefore, this study designed
GMA and EGDMA as the active monomers, and MAN as the catalyst, to build a reaction system to
modify the wood veneer. In terms of the bonding strength of the national standard GB/T 15104-2006
“Decorative Veneer Wood-Based Panel”, we mainly studied the optimized preparation craft of the
modified veneer-decorated wood-based panel composites, including the reaction ratio of the active
monomers, the catalyst content, and the hot pressing conditions (temperature, pressure, and time).
Furthermore, the surface abrasion resistance, surface hardness, water resistance, and bending strength
of the composites were tested and evaluated. The results show that the modified veneer has the potential
to replace the melamine-impregnated paper and decorate the wood-based panel for new composites.
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2. Experimental Materials and Methods

2.1. Experimental Materials

GMA (Nanjing Jiulong Chemical Industry Co., Ltd., Nanjing, China), EGDMA (Yantai Yuntai
Chemical Industry Co. Ltd., Yantai, China), MAN (Shanghai Chemical Reagent Factory, Shanghai
China) and 2,2’-azobisisobutyronitrile (AIBN) (Shanghai Chemical Reagent Factory, Shanghai China)
are directly used without purification. The deionized (DI) water is self-made. The vacuum/pressure
equipment is self-made.

Poplar wood (Populus ussuriensis Kom) veneers, with size of 1200 mm × 600 mm × 2 mm
(Length ×Width × Height), were brought from the Maoershan plantation in the Heilongjiang province
of China. Wood samples with different sizes for property evaluation were cut from the above wood
veneers and oven-dried at 105 ◦C for 24 h, and then stored for further use. The even density of the
wood samples after oven-dried treatment was 0.33 ± 0.03 g/cm3. All samples showed no defects,
such as knots and nodules.

Medium-density fiberboard (MDF) with a size of 300 mm × 300 mm × 18 mm (Length ×Width ×
Height), a density of 0.68 g/cm3, and a particleboard with a size of 300 mm × 300 mm × 16 mm and
a density of 0.72 g/cm3, and plywood with a size of 300 mm × 300 mm × 9 mm (Length ×Width ×
Height) were all produced by the NanCha Artificial Board Factory (Yichun, China).

2.2. Experimental Methods

2.2.1. Sample Preparation Methods

The active monomers with different formula (see Section 3.1.2), and AIBN accounting for 1 wt.%
of the total mass of the monomer solution, were mixed and stirred at 300 rpm to form a uniform
solution under room condition; and then the solution was immersed into the poplar veneers (300 mm
× 300 mm × 2 mm) under the conditions of pressure of −0.08 MPa for 10 min, followed by pressure of
0.8 MPa for 10 min. After pressure relief, the excess liquid on the surface of the veneers were wiped
off by filter papers, and then put on the three wood-based panels (MDF, particleboard, and plywood)
for hot pressing, according to the designed formula with different hot pressing parameters, including
temperature, pressure, and time (see Section 3.1.2). The aimed veneered, wood-based panel composites
were finally derived after that, and sawed into different sizes for property evaluation.

2.2.2. Characterization and Property Evaluation of the Composites

(1) SEM characterization: Slice samples with a size of 0.3 cm × 0.6 cm × 0.3 cm (R × T × L) were cut
from the profile side of the composites using a blade, and then fixed onto the loading platform
with adhesive tape, sprayed by vacuum-gold-sputtering instrument; and the bonding interface
between the veneer and the panel were further observed by the scanning electron microscope
(ESEM, QUANTA2000, FEI Inc., Hillsboro, OR, USA), under conditions of high vacuum mode,
a working voltage of 12.5 kV, and a beam spot of 5.0.

(2) The bonding strength of the composites was evaluated according to the standard of “Surface
Decorated Wood-Based Panels” (GB/T 15104-2006). The surfaces of the samples, with a profile
size of 50 mm × 50 mm, were glued by thermoplastic adhesive onto two steel plates, and the
bonding strength between the veneer and the wood-based panel was measured by the universal
testing machine (AG-10TA, Shimadzu Corporation, Japan). Three parallel tests were conducted
to evaluate the bonding strength.

(3) The hardness, abrasion resistance, modulus of rupture (MOR), and modulus of elasticity (MOE)
were determined by the standard of “Test Methods of Evaluating the Properties of Wood-based
Panels and Surface Decorated Wood-Based Panels” (GB/T 17657-2013). The samples for hardness
evaluation were cut into a size of 50 mm × 50 mm × 20 mm (R × T × L). The samples for abrasion
resistance evaluation were cut into a size of 100 mm × 100 mm × 20 mm (R × T × L). The samples
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for MOR and MOE evaluation were cut into a size of 20 mm × 20 mm × 300 mm (R × T × L).
Three parallel tests were conducted to evaluate each of the above property.

Noting that the veneer was just 2 mm in thickness—thinner than the standard demand of
indentation depth of 5 mm for hardness evaluation—the study tested the pressure value when the
indentation depth was 1 mm, which was converted into the standard value with a demand of 5 mm
depth for hardness evaluation.

The abrasion resistance was evaluated by measuring height loss of the veneer-decorated
wood-based panel composite after its surface was abraded by the grinding wheel of the abrasion
testing machine (MMG-5A, Jinan Tianchen Testing Machine Manufacturing Co., Ltd., Jinan, China),
for 1000 rotations.

The MOR and MOE were evaluated by the three-point bending method, according to the GB/T
17657-2013 [31,32]. In brief, the sample was put on two support points of the hot press (Harbin Dongda
Artificial Board Machinery Manufacturing Co., Ltd., Harbin, China) with a full range of 100 tons and a
hot-pressing area of 420 mm × 420 mm. Then, the fixed loading was applied onto the middle of the
sample, which made the sample bent. The MOR and MOE values were finally obtained when the
sample became disrupt at the middle.

Water resistant test: The end-matched sample size was 20 mm × 20 mm × 2 mm (R × L × T).
The samples were immersed in distilled water for different durations, and the corresponding weights
of the samples, before and after water absorption were also tested. The water resistance was evaluated
based on the reduction in water absorptivity (RWA). Five samples were tested for the mean value.

The RWA was calculated as follows:

RWA (%) = 100 × (WAu −WAt)/WAu (1)

where WAt and WAu is the water absorptivity of the treated and untreated wood, respectively. The WA
was defined as follows:

WA (%) = 100 × (W1 −W0)/W0 (2)

where W1 and W0 are the samples’ weight after and before immersion, respectively.

3. Experimental Results and Discussion

3.1. Optimization of the Active Monomer System Based on the Bonding Strength

Simultaneously realizing the in-situ polymerization and glue bonding by the active monomers is
the key to realize the structural design of the composite. Therefore, this study attempted to determine
the optimal reaction ratio of the active, hot pressing process conditions and catalyst content, in terms
of taking the surface bonding strength of veneer composite as an index, so as to lay a foundation for
the subsequent evaluation of the comprehensive performance of the target material.

3.1.1. Optimization of the Monomers Ratio of GMA and EGDMA

The literature reports that reaction of the epoxy group and hydroxyl group could occur in
the temperature range of 110–130 ◦C [29,30,33–39]. Considering the hot pressing conditions of the
melamine-impregnated paper, glue-bonding wood-based panels, this study preliminary designed a
hot pressing temperature of 130 ◦C, a pressure of 0.8 MPa, and a duration of 15 min, and explored
the monomer reaction ratios in terms of the bonding strength between veneer and wood-based panel.
Three traditional wood-based panels (particleboard, fiberboard, and plywood) were employed for the
experiment study. The results are shown in Figure 1.
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Figure 1. Optimization of the monomers reaction ratio of the three wood-based panel composites:
(a) The veneer-decorated particleboard composite; (b) the veneer-decorated fiberboard composite; (c)
and the veneer-decorated plywood composite.

It can be seen from Figure 1a that when the molar ratio of GMA:EGDMA was 1:1, the bonding
strength of the veneer-decorated particleboard composite was 0.35 MPa, which was less than the
standard value of 0.40 MPa; while its bonding strength was higher than the standard value when the
molar ratio of GMA:EGDMA was greater than or equal to 2:1, and the bonding strength increased
with the ratio. Similar trends also appeared in two other wood-based panel composites (Figure 1b,c).
The only difference was that the bonding strength of both composites was, respectively, higher than
the standard value even when their monomers ratio was 1:1.

Considering the molecular structure of the monomers, the above results could be explained
as follows. The epoxy equivalent (the proportion of epoxy groups in the total molecular weight of
monomers) increases with the molar ratio of GMA:EGDMA, which theoretically increases the probability
of the chemical reaction of the monomers and wood hydroxyl groups. Thus, the corresponding bonding
strength between the veneer and the wood panel increased with the monomers ratio. However, the three
wood-based panels presented different surface roughness, which had a significant impact on the
surface bonding strength. In total, the rougher the surface of the substrate, the smaller the contact area
between the veneer and the wood panel, lower the bonding strength. Generally, the surface roughness
of the three kinds of wood-based panel are ranked as follows—particle board > medium density board
> plywood, thus, their corresponding composites present increased bonding strength at the same
monomers ratio.

It is noteworthy that the bonding strength of the veneer-decorated particleboard composite was
lower than the standard value when the monomers ratio was less than 2:1. In order to easily compare
the bonding strengths of the three kinds of composites, and considering the cost of the monomers
(GMA is more expensive than EGDMA), we determined the monomer ratio of 2:1 (GMA:EGDMA) as
the basic condition for the subsequent exploration of the hot pressing process.

3.1.2. Optimization of the Hot Pressing Conditions of the Three Kinds of Composites

The above monomers with a determined molar ratio of 2:1 (GMA:EGDMA), and additional AIBN,
which accounts for 1 wt.% of the total mass of the monomers, were impregnated into the veneer by
the vacuum-pressure processes; after that, the veneer was put on the wood-based panels, followed
by the hot pressing treatment, during which the monomers realized the in-situ polymerization and
glue bonding. Thus, we finally obtained the modified veneer-decorated wood-based panel composites.
The optimal hot pressing conditions were determined by testing the bonding strength of the composites.

The above experimental process was listed as follows—configuration of the optimized monomers
solution→ impregnating veneer→ lay-up of veneer and panel→ hot pressing→ aimed composite→
testing of the bonding strength.

According to the reaction-active temperature range of GMA, combined with the conventional
hot pressing pressure and the time of melamine-impregnated paper, the experiment was designed
into an orthogonal test with three factors and three levels, as follows—hot pressing temperature at
three levels—110 ◦C, 120 ◦C, and 130 ◦C; hot pressing pressure at three levels—0.5 MPa, 0.65 MPa,
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and 0.8 MPa; and hot pressing time at three levels—9 min, 12 min and 15 min. The results are shown
in Figure 2.
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(a) The veneer-decorated particleboard composite; (b) the veneer-decorated fiberboard composite; and
(c) the veneer-decorated plywood composite.

Figure 2a indicated that for the veneer-decorated particleboard composite, the bonding strength
from formula 6 (130 ◦C, 0.65 MPa and 9 min) was the highest, while the value of formula 5 (120 ◦C,
0.5 MPa and 15 min) was the lowest; only formula 6 and formula 2 derived effective results that were
higher than the standard value of 0.4 MPa. Depending on the range analysis of factor significance,
we got a descending order of three factors as hot pressing temperature > hot pressing pressure = hot
pressing time. Based on the above analysis, the optimized parameters determined were a hot-pressing
temperature of 130 ◦C, and a hot-pressing pressure of 0.50 MPa, and a hot-pressing duration of 9 min.

Figure 2b indicated that for the veneer-decorated fiberboard composite, the bonding strength
from formula 9 (130 ◦C, 0.5 MPa, and 15 min) was the highest, while the value of formula 7 (110 ◦C,
0.65 MPa, and 9 min) was the lowest; only formula 4, 5, and 7 derived ineffective results that were lower
than the standard value of 0.4 MPa. Depending on the range analysis of factor significance, we got
the descending order of the three factors as hot pressing temperature > hot pressing pressure = hot
pressing time. Based on the above analysis, the optimized parameters determined were a hot-pressing
temperature of 130 ◦C, and a hot-pressing pressure of 0.50 MPa, and a hot-pressing duration of 15 min.

Similar results of the veneer-decorated plywood composite were also derived from Figure 2c,
such that the descending order of the three factors was hot pressing temperature > hot pressing
pressure = hot pressing time; and the optimized hot-pressing temperature, pressure, and time was
120 ◦C, 0.65 MPa, and 15 min, respectively.

In short, the hot-pressing process parameters of the three composites presented the same effect on
the their bonding strength, which was the most significant for temperature, followed by pressure and
time. The optimized hot pressing conditions of the three composites were 130 ◦C, 0.50 MPa, and 9 min,
for the particleboard composite; 130 ◦C, 0.50 MPa, 15 min for the fiberboard composite; and 120 ◦C,
0.65 MPa, 15 min for the plywood composite, respectively.

In this experiment, on the basis of the optimal hot pressing process determined above, maleic
anhydride was selected as the ring-opening catalyst for the epoxy group of GMA and the cross-linking
curing agent for the C=C group of GMA; and its influences on the bonding strength of the composites
were also investigated to determine its optimal dosage. For facilitating comparison among the three
wood-based panel composites, the preferred hot pressing condition was determined as 130 ◦C, 0.65 MPa,
and 15 min.

The preparation process was similar to that of Section 2.2.1. The only difference was the addition
of MAN into the monomers. The MAN content, accounting for the monomers weight, was designed to
be 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, 5 wt.%, and 6 wt.%, respectively. The results of the bonding strength
are shown in Figure 3.
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Figure 3. Optimization of the maleic anhydride (MAN) content of the three wood-based panel
composites—(a) the veneer-decorated particleboard composite; (b) the veneer-decorated fiberboard
composite; and (c) the veneer-decorated plywood composite.

It can be seen that with the increase of MAN content from 1 wt.% to 6 wt.%, the bonding strength
of the veneer-decorated particleboard composite basically presented an increasing trend, indicating
an obvious function of the MAN as the catalyst (Figure 3a). Analyzing from the perspective of the
molecular structure, MAN has a cyclic anhydride group, which could not only occur as an esterification
reaction with a wood hydroxyl group and a GMA epoxy group, but also undergo in-situ polymerization
with the C=C bonds from the monomers; consequently, it can theoretically improve the reaction of
the epoxy group and the wood hydroxyl group, and also reinforce the polymer networks by the
cross-linking reaction of the C=C bonds, which improve the “glue bonding” function of the monomers
system between the veneers and the wood-based panels. Thus, the above result could be easily
understood, such that the bonding strength increased with the MAN addition.

Similar results were also shown in the veneer-decorated fiberboard (Figure 3b) and plywood
(Figure 3c) composite, such that the bonding strength increased with the MAN content and reached a
maximum value at the MAN content of 6 wt.%. It is noteworthy that comparing the bonding strengths
of the three composites, these were ranked in descending order as plywood composite, fiberboard
composite, and particleboard composite, which was consistent with the above results. In short, given
the total results, the optimal MAN content was determined as 6 wt.% of the whole monomers.

3.2. Properties Evaluation and SEM Characterization of the Optimized Composites

3.2.1. Properties Evaluation of the Optimized Composites

The three optimized composites were prepared under the consistent conditions—the monomer
ratio of GMA:EGDMA was 2:1 (molar ratio); and the MAN content was 6 wt.%; and the hot pressing
temperature, pressure, and time was 130 ◦C, 0.65 MPa, and 15 min, respectively. For comparison,
the unmodified veneer-decorated wood-based panel composites were also prepared by white latex
adhesive under room temperature with a pressure of 0.65 MPa for 24 h. The bonding strength, hardness,
abrasion resistance, and MOR of all composites are shown in Table 1.

Table 1. Comparison of the surface properties of all the veneer-decorated wood-based panel composites [a].

Wood-Based Panels
Properties

Particleboard Composite Fiberboard Composite Plywood Composite

Unmodified
Veneer

Modified
Veneer

Unmodified
Veneer

Modified
Veneer

Unmodified
Veneer

Modified
Veneer

Hardness (N) 833 1125 833 1185 833 1262
Abrasion Resistance (mm) 1.25 0.89 1.25 0.98 1.25 0.91

Bonding Strength (MPa) —
0.73

(Standard
Value ≥ 0.4)

—
0.81

(Standard
Value ≥ 0.4)

—
1.09

(Standard
Value ≥ 0.5)

Modulus of Rupture (MPa) 11.51 13.52 14 16.76 — —
a Each value was obtained from three parallel tests.
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It was observed that the surface hardness of the modified veneer-decorated wood-based panel
composite increased by 35% (particleboard composite), 42% (fiberboard composite), and 51% (fiberboard
composite), compared to the control, respectively; and the abrasion resistance was improved 28%, 22%,
and 27%, respectively. The MOR was 15% (particleboard composite) and 16% (fiberboard composite)
higher than that of the control, respectively; and their bonding strengths were significantly higher
than their standard values. The property differences among the composites presented the same trends
as above.

Figure 4 presents the variation trends of the reduction in water absorptivity (RWA) of the modified
and unmodified wood veneer within a water immersion time of 200 h. The RWA value of the modified
veneer slightly increased from ~4% to ~20%, within the whole immersion time, while that of the
unmodified veneer significantly increased from ~50% to ~130% within the whole time, which indicated
that the modified-veneer obtained significantly improved water resistance.
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In total, the remarkably improved hardness, abrasion resistance, MOR, bonding strength, and water
resistance of the above composites, which were comparable to those of the melamine-impregnated
paper (GB/T 15104-2006), indicated that the modified veneer was preferred to replace the paper to be
applied to decorate the wood-based panels.

3.2.2. SEM Characterization of the Optimized Composites

Figure 5 shows the SEM morphologies of the cross-section of the three composites. It was
clearly found that the bonding interfaces of all three composites were tightly combined without
obvious interfacial gaps, indicating that the active monomers realized glue bonding of the veneer
and the wood-based panels during their in-situ polymerization within veneer, thereby, endowing the
composites with a good bonding strength between the veneer and the panels, which was consistent
with the above research results.
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Figure 5. The digital photos (a,c,e) of the three modified veneer-decorated wood-based panel composites
and their SEM morphologies of the bonding interface (b,d,f). The digital photo (a) of the modified
veneer-decorated particleboard composite and the SEM morphology of the bonding interface (b).
The digital photo (c) of the modified veneer-decorated fiberboard composite and the SEM morphology
of the bonding interface (d). The digital photo (e) of the modified veneer-decorated plywood composite
and the SEM morphology of the bonding interface (f).
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4. Conclusions

In this study, we prepared the modified veneer-decorated wood-based panel composites through
the hot pressing method, via simultaneous in-situ polymerization and glue bonding of the monomers.
The optimized preparing crafts of the composites were determined such that the molar ratio of
glycidyl methacrylate (GMA)—ethyleneglycol dimethacrylate (EGDMA) was 2:1, the amount of maleic
anhydride (MAN) was 6 wt.% (percentage of total monomers weight), and the hot pressing conditions
were temperatures of 130 ◦C, pressure of 0.65 MPa, and duration of 15 min.

Under the optimized preparations, the three derived composites presented an improved hardness
of 35% (particleboard), 42% (MDF), and 51% (plywood); improved abrasion resistance of 28%
(particleboard), 22% (MDF), and 27% (plywood); and improved MOR of 15% (particleboard) and
16% (fiberboard) over the corresponding unmodified veneer-decorated composites, respectively.
Additionally, all three composites obtained good bonding strengths, which were all significantly higher
than the standard demanding values. The water resistance of the modified veneer was also significantly
improved by this method. The SEM observation proved the excellent bonding strength, such that the
interface between the veneers and the panels was closely interacted without obvious gaps.
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