
Article

The Development and Use of Isoscapes to Determine
the Geographical Origin of Quercus spp. in the
United States

Charles J. Watkinson 1,* , Peter Gasson 2 , Gareth O. Rees 1 and Markus Boner 3

1 Agroisolab UK Ltd., Greets House Road, Welburn YO60 7EP, UK; gareth.rees@agroisolab.com
2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK; P.Gasson@kew.org
3 Agroisolab GmbH, Prof.-Rehm-Str. 6, D-52428 Jülich, Germany; m.boner@agroisolab.de
* Correspondence: charlie.watkinson@agroisolab.com

Received: 5 June 2020; Accepted: 29 July 2020; Published: 7 August 2020
����������
�������

Abstract: The stable isotope ratios of oxygen, hydrogen, carbon and sulfur from extracted wood of
87 samples of oaks from the United States were analysed. Relationships with climate variables and
the stable isotope ratios of the 69 training dataset samples were investigated to a monthly resolution
using long-term monthly mean climate data from NASA and the University of East Anglia’s
Climate Research Unit, in conjunction with forecast data for hydrogen and oxygen isotope ratios in
precipitation. These relationships were used to construct model isoscapes for oxygen, hydrogen,
carbon and sulfur for US oak with the aim of using them to forecast isotopic patterns in areas that were
not sampled and predict values in samples not used to construct the models. The leading predictors
for isoscape generation were oxygen isotope ratios in January precipitation for oak oxygen isotope
ratios, hydrogen isotope ratios in July precipitation for oak hydrogen isotope ratios, water vapour
in April for carbon isotope ratios, and reflected shortwave radiation in March in combination with
sulfate concentration in May for oak sulfur isotopes. The generated isoscapes can be used to show
regions an unknown sample may have originated from with a resolution dependent on the rarity of
the stable isotope signature within the United States. The models were assessed using the data of
18 samples of georeferenced oak. The assessment found that 100% of oxygen, 94% of hydrogen, 78%
of carbon, and 94% of sulfur isotope ratios in the 18 test dataset samples fell within two standard
deviations of the isoscape models. Using the results of the isoscapes in combination found that there
were 4/18 test samples which did not fall within two standard deviations of the four models, this is
largely attributed to the lower predictive power of the carbon isoscape model in conjunction with
high local variability in carbon isotope ratios in both the test and training data. The method by which
this geographic origin method has been developed will be useful to combat illegal logging and to
validate legal supply chains for the purpose of good practice due diligence.

Keywords: isoscapes; timber forensics; stable isotope ratio mass spectrometry; geographic origin;
oak; EUTR; Lacey Act; Illegal Logging Prohibition Act

1. Introduction

Oak is one of the most traded timbers around the globe. Over 50 million cubic metres of oak
have been exported from China every year since 2006 [1]. Though oaks are not typically considered
to be threatened, the rampant trade in oak coupled with the ubiquity and high demand of oak
furniture has caused significant deforestation in areas of the Amur Basin (China and Russia) [1] and
the Carpathian Mountains. In China, this deforestation has led to the introduction of the National
Forest Protection Program in 2016 to regulate logging in natural forests. As Chinese oak becomes less
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available, more manufacturers are turning to using US oak in their products as they can be relatively
more confident of its sustainability and legality. Even so, as manufacturing sectors in Asia, where
anti-illegal logging laws still have much room for improvement, continue to produce the majority of
oak products, such as furniture and flooring, it is helpful to construct a tool to be able to verify the
origin claims to ensure that the Lacey Act [2] of the United States, European Union Timber Regulation
(EUTR, Regulation (EU) No 995/2010) [3], or Australian Illegal Logging Prohibition Act (ILPA) [4]
are not violated. All aforementioned laws place emphasis on operators to carry out due diligence to
ensure the declared origin and species of timber imports are correct and legal. This project focusses on
creating a tool to aid enforcement to verify the geographical origin of oak. This analytical tool can be
used to mitigate the risk of false origin declarations.

A secondary aim of this project was to build a physical collection of timber that is available for any
researcher to access. The development of reference libraries of timber is the foremost limiting factor in
the advancement of timber tracking tools. Many projects have focused on few participants obtaining
reference samples [5–7] with no long-term ongoing sampling planned, or sampling plans have been
broad, but instructions were not followed well by samplers such as in the ITTO project [8]. In this
project, FSC and the US Forest Service co-ordinated the collection of reference samples using their
considerable networks. The USA has been an ideal staging ground for future projects as collecting
timber samples is largely non-controversial, there is an abundance of experts thanks to the US Forest
Service and FSC, and the country is of relatively similar size to some of the countries that may need
to be protected from illegal logging in future projects. If this project proves successful, there is an
ambition to use FSC staff to collect samples of timber on a much wider and more regular basis for
placement into the wood collection (xylarium) at the Royal Botanic Gardens, Kew.

Stable isotope analysis is a highly suitable tool to verify the origin of timber and has been
demonstrated as an effective method to track the origin of timber [5–7]. It has an extensive history of
use in legal cases in the food industry as demonstrated in Camin et al. [9] and is recommended by
EUTR [3] and is therefore a valuable forensic tool. The success of the tool can be attributed to the fact
that stable isotopes follow predictable patterns that are the direct product of geographically dependent
processes such as the water cycle [10]. This means that relatively few samples are needed to map a
country/region [11] giving it an advantage over other technologies such as population genetics and
trace elements which often require greater sampling. The trade-off with the low sampling can be
lower geographic resolution, though this can be remedied to an extent by modelling data [12–14] using
related geographic variables and relevant statistics such as regression or kriging. This paper assesses
the spatial variability of oxygen, hydrogen, carbon and sulfur isotope ratios of oak in the US, puts
forward some models for isoscapes (isotope maps) based on regression and assesses their effectiveness
at predicting stable isotope ratios in oaks.

2. Materials

Sixty-nine samples of various oak species (Quercus spp.) were collected from 13 US states
comprising the training dataset. GPS co-ordinates of the samples were taken in the field using devices
available to samplers including smartphones and Garmins. Notes were made about the diameter of
the tree the samples were taken from along with the date of sampling and species of oak the collector
identified in a sample pro forma (Tables 1 and 2); up to three leaf samples per tree were taken from
34 of the samples and placed in silica gel to use if future DNA extraction is deemed necessary and as
herbarium vouchers. In total, 47 of the 69 samples were cross-sections cut from recently felled trees
which were taken from the felled-end of the tree in some cases and at the crown end of the tree in others.
Cross-sections were between 2 to 4 cm thick (Figure 1). Of the 69 samples, 22 were obtained from living
trees using an increment bore. Samples varied in size with cores ranging from 10–18 cm by 0.5 cm
and cross sections varying from 13–86 cm in width. These 69 samples comprised the training dataset
for the isoscape models. An additional 18 samples were collected during the period of July 2017 to
March 2019 from known locations in the USA in accordance with the same standards as the 69 training
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dataset samples (Figure 2). These 18 samples comprise the test dataset and were used to assess how
effective the models were at predicting stable isotope ratios of oaks. The selection criterion for stable
isotope analyses was that the sample must contain at least eight annual growth rings, this was to gain a
robust mean value across the whole sample and mitigate the effects of atypical years of growth on the
overall stable isotope ratios of the sample. For analysis, no delineation was made between heartwood
or sapwood.

Table 1. Species/variety/type of oak of the 69 training dataset samples as recorded by collectors.

Recorded Variety Quantity Sampled

Chestnut oak 2

Quercus alba 55

Quercus falcata v. pagodaefolia 1

Quercus garryana 2

Quercus michauxii 1

Quercus rubra 2

Quercus rubra/garryana 1

Quercus suber 2

Red oak 1

White oak 2

Table 2. Quantity of samples collected in each state.

State. Quantity of Samples

California 6

Kentucky 24

Maine 4

Maryland 3

Mississippi 3

New York 3

Ohio 1

Pennsylvania 6

Tennessee 4

Virginia 1

Washington 3

West Virginia 2

Wisconsin 9
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Figure 2. Locations of the training and test dataset samples in the United States. The green area
represents a combination of the species distribution maps for Quercus spp. created by Little [15–18] and
digitized by Thompson et al. [19].

3. Methods

It is considered that isotopic fractionation from secondary metabolites in heartwood and the
presence of functioning metabolic compounds such as proteins and starches in sapwood may have some
effects on the overall isotopic composition of a sample. In the field of dendrochronology, this is typically
accounted for by focusing only on a pure substance such as alpha cellulose. Agroisolab established a
different measurement method [6] that is geared towards maximising the geographic information that
can be extracted from a sample of timber and mitigating against the issue of exchangeable hydrogen
rather than focusing on alpha cellulose. The reason for this is that methods such as those posed by
Loader et al. [20] or Brendell et al. [21] involve the use of acids in the presence of water which may
increase the risk of exchanging hydrogen with hydrogen in the cellulose. The method used in this
project has minimal risk of exchangeable hydrogen, removes polar and non-polar contaminants and
enables the measurement of sulfur isotope ratios in the same preparation which would not be available
in an alpha cellulose preparation. Finally, as this method has been standard for Agroisolab since the
mid-2000s, it should permit the generated data to be comparable with samples of timber historically
analysed by Agroisolab. The trade-off of using this method is that measurements are not directly
comparable to data from studies where alpha cellulose has been isolated for analysis and that there may
be some influence of non-cellulose compounds on the isotope ratios that are measured. Nevertheless,
the influence of non-cellulose compounds was internally assessed by comparing the hydrogen isotope
data extracted using the Boner [6] method to non-exchangeable hydrogen isotope data derived from
the same samples using a method described by Cheung [22].

Samples were initially dried at 103 ◦C before grinding/drilling. Cross sections were drilled using a
7 mm drill bit to the depth of 10–13 cm from the bark to the core. Increment bore samples were coarsely
ground using a cutting mill (Retsch SM100–Haan, Germany). All materials were subsequently milled
into a fine powder using a ball-mill (Retsch MM220–Haan, Germany). The powder was extracted in a
soxhlet apparatus over 6 h with non-polar (Dichloromethane) and polar (methanol) solvents which
were then dried in a laboratory-type drying cabinet for at least 1 h. Finally, the samples were stored in
air-tight sample vials and weighed for analysis.

To avoid equilibration or humidity effects in the oxygen and hydrogen analysis, the weighed-in
samples were equilibrated overnight in desiccators with a defined humidity of 10.6%. Afterwards the
samples were vacuum dried for at least 2 h.

4. Measurement:

Three-point calibration was used to ensure the robustness of the measurements. Samples were
compared at the beginning, end, and between each measurement run to a laboratory internal reference
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standard. Measurements are also reported relative to an internationally defined standard; for hydrogen
and oxygen isotope ratio analysis, Vienna Standard Mean Ocean Water (VSMOW) is used. For carbon
isotope ratio analysis, Pee Dee Belemnite (PDB) is used. For sulfur isotope ratio analysis Canyon
Diablo Troilite (CDT) is used. Measurements are expressed in delta notation in accordance with the
following Equation (1):

δ =
(heavy isotope/light isotope)Sample − (heavy isotope/light isotope)Standard

(heavy isotope/light isotope)Standard
× 1000 (1)

Measurements are reported in permille (%�) and were made in accordance with processes outlined
in Boner et al. [6].

18O/16O and D/H measurement: The high-temperature application uses HT-PyrOH with a
covalently bonded silicon carbide tube (patented by Agroisolab GmbH, Julich, Germany) filled with
glassy carbon chips and coal powder. The working temperature for pyrolysis is typically >1530 ◦C.
To gain a higher precision the isotopes are measured in a master/slave configuration with two Isotope
Ratio Mass Spectrometers (IRMS) (Isoprime, Elementar, Cheadle, UK). Each IRMS only measures one
isotope ratio; D/H or 18O/16O. This configuration provides excellent stability because the magnetic
field and accelerating voltage remain constant on each IRMS.

13C/12C measurement: Elemental Analysis (EA3000, Eurovector, Milano, Italy) in combination
with IRMS (Nu Horizon, NU-Instruments—Wrexham, Wales). The working temperatures are 1021 ◦C
for oxidation and 600 ◦C for reduction. Reduction is carried out in the presence of copper.

34S/32S measurement: Elemental Analyser (EA3000, Eurovector, Milano, Italy) with IRMS
(Isoprime, Cheadle, UK). A one tube combustion (oxidation and reduction in one tube) is used
to solve issues caused by SO3. Combustion water is directly trapped with magnesium perchlorate at
the end of the tube. The working temperature is 1000 ◦C.

5. Statistical Analysis

Latitude and longitude information was obtained from the sample pro formas (field records).
Most collectors recorded this information in decimal degrees. Where collectors recorded latitude and
longitude in degrees/minutes/seconds format, google maps was used to convert this information into
decimal degrees. A CSV (Comma Separated Values) file of the data was created and uploaded into
QGIS 2.12.3-Lyon (QGIS Development Team, 2012. QGIS Geographic Information System. Open Source
Geospatial Foundation) and a shapefile with the co-ordinate reference system WGS 84 EPSG:4326 was
saved. Inverse distance weighting (IDW) to the power 2 maps were created using SAGA GIS 2.1.2
(Departments for Physical Geography, Hamburg and Göttingen, Germany). Inverse distance weighting
was selected to obtain a gross overview of geographic trends in the data. Distance weighting to the
power 2 gives a greater weight to a mapped value over a given distance than a lower order function and
is useful at representing spatial data without over exaggerating any given point’s influence. Though
IDW does not give information about how predictable data are, it is a fair representation of the raw
data of the samples on a map that has not been manipulated in any overt way.

SAGA GIS 2.1.2 was also used to create variograms of the isotope data for each parameter.
Variograms can be used to gauge the spatial prediction quality of data. Variograms assess the variance
of the data with respect over a nominal distance. The aim of using this statistical measure was to
gauge whether the parameters followed a predictable geographic trend and whether there was enough
variation in the data to allow for geographic discrimination. The distance over which the variogram
assessed the data was 44.5 degrees with a lag distance of 0.5 degrees. In total, 59 of the 69 samples fit
the distance range of variogram assessment. Ten samples were not included due to the lag distance
size of 0.5 degrees. This was done so the variogram assessed the broader spatial predictability of the
data across the lower 48 States rather than the local variance over shorter distances.
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5.1. Linear Regressions—Model Building

Understanding the variables that influence or are related to particular isotope patterns is crucial
especially in the field of geographic provenancing using stable isotope ratios. With current technology,
it is not feasible to collect geotagged reference samples from every tree in existence, therefore there
is always a level of prediction used in stable isotope provenancing. Understanding what influences
isotope ratios should allow for statistical models to fill in the gaps where reference samples have
not been taken with a greater level of accuracy than not having any data at all. This may eventually
alleviate the burden of collecting reference samples in locations that are of political sensitivity to an
extent provided there is enough data to generate a robust model. However, other researchers have
created isoscapes using similar tools such as co-kriging [14,23]. These types of models are suggested to
be advantageous as they can be multi-variate; they can incorporate data from multiple co-variates.
Co-kriging models generate a variable confidence interval across a mapped region typically assuming
that uncertainty increases with distance from a sample point. This is a useful function in many
circumstances, however, the application put forth in this report requires a single value for uncertainty
as the functions used to query the models look for values that fall within range defined by a set
confidence interval.

5.2. Climatic Parameter Selection

Oxygen in cellulose originates from two primary sources, water and carbon dioxide [24]. Hydrogen
in cellulose comes from water via photosynthesis. Isotope-based studies in oaks have shown this
water to be groundwater [25] in some cases, though if other water sources are available to a tree it is
reasonable that they can be used too. Global monthly grids for oxygen isotope ratios in precipitation
were produced by Bowen and Revenaugh [12] to 20′ resolution. The oxygen grids were loaded
into QGIS 2.12.3-Lyon along with the data shapefile. Using the point sampling tool (Borys Jurgiel,
version 0.5.1) data were extracted from the monthly hydrogen and oxygen isotope grids at the same
location as the reference samples. Linear regressions were performed in Microsoft Excel 2016 (Microsoft
Corporation, Redmond, WA, USA) and fit was assessed by R2 and visual inspection of the scatter plots.

Carbon in cellulose originates from CO2 via photosynthesis. Stomatal conductance and water
stress in plants are often cited as rate limiters which may cause carbon isotope fractionation within
leaves [26–28]. Pollutants and vapour pressure have also been documented as variables that can
influence stomatal conductance [26]. It should be noted that trees are complex plants and variables that
affect carbon ratios in leaves may not perfectly mirror carbon ratios in timber cellulose as metabolic
fractionation may occur in the production of celluloses and lignins [29–31] and physical fractionations
may occur through moving sugars throughout the tree from photosynthesis to storage. Monthly
global grids were downloaded from various sources for various years. The predictor variables were
rainfall, precipitation, vapour pressure, water vapour, outgoing longwave radiation, tropospheric CO2

concentration, tropospheric ozone, sulfur dioxide, tropospheric NO2 and tropospheric CO. Two grids
were selected that are similar “precipitation” and “rainfall”, these grids have different geographic
resolution and cover different parts of the globe. Resolutions of the predictor variable grids ranged
from 0.1 × 0.1 degrees to 2 × 2.5 degrees. To minimise the effects of extreme climates in certain years,
long-term average grids were produced by summing the monthly grids (e.g., every grid for January 2006
to 2016) and dividing by the quantity of monthly grids used. Please refer to the supplementary materials
for more details on the data sources and spatial resolution of the data (Tables S1 and S2). Using the
point sampling tool (Borys Jurgiel, version 0.5.1) data were extracted from the monthly grids at the same
location as the reference samples. Linear regressions were performed in Microsoft Excel 2016 (Microsoft
Corporation, Redmond, WA, USA) and fit was assessed by R2. Significance of each parameter in the
multiple regression was assessed by the P value, where P values exceeded 0.05 the introduction of the
parameter into the multiple regression was deemed not significant. If the introduction of a secondary
or tertiary parameter improved the corrected R2 of the multi-variate model beyond that of any single
linear regression, this information was used to construct an isoscape incorporating information from
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those parameters using the equation to predict from multiple regressions Y = Constant + (B1 × (X1)) +

(B2 × (X2)) + . . . BnXn. Where Y is the predicted outcome (in this case the forecast isotope ratio in oak),
the constant is the intercept, B1 to Bn are the predictor variable regression coefficients, and X1 to Xn
are the predictor variables (in this case the grids of climate or environmental variables).

Sulfur in timber has been cited to originate from several sources including soil, atmospheric
deposition (emissions and volcanoes), and appears to be related to proximity to the sea [32]. Commonly,
sulfur isotope ratios are measured to assess the source of sulfur in a material [33,34]. Factors that may
influence sulfur ratios within timber may be related to a tree’s ability to uptake sulfur via transpiration
and accessibility of sulfur in the soil via erosion or atmospheric deposition. Monthly global grids
were downloaded from various sources for various years. The predictor variables were rainfall,
precipitation, water vapour, cloud water content, plant canopy surface water, tropospheric nitrogen
dioxide, tropospheric sulfate column mass density, and reflected shortwave radiation. To minimise
the effects of extreme climates in certain years, long-term mean grids were produced by summing the
monthly grids (e.g., every grid for January 2004 to 2018) and dividing by the quantity of monthly grids
used. Using the point sampling tool (Borys Jurgiel, version 0.5.1) data were extracted from the monthly
grids at the same location as the reference samples. Linear regressions were performed in Microsoft
Excel 2016 (Microsoft Corporation, Redmond, WA, USA) and fit was assessed by R2.

5.3. Model Assessment

The models were assessed in two ways. First, the proportion of training dataset samples (n = 69)
that fell within the 95% confidence interval of all four isoscape models was checked along with how
far away the nearest predicted region was in the event samples were not within this range. Secondly,
the proportion of test dataset samples (n = 18) that fell within the 95% confidence intervals of the
models individually, and in combination of the four models was assessed. Where samples did not
fall within the confidence interval range of the models, the distance to the nearest region where the
samples did match the confidence interval criteria was noted.

6. Results

6.1. Oxygen Isotope Ratios—18O/16O

The oxygen isotope ratios of the oak samples show a strong north/south trend with enriched
oxygen isotope ratios of up to 26%� in states that are geographically in the southern part of the USA
such as California and Mississippi and depleted ratios as low as 23.2%� in geographically northern
states such as New York and Washington (Figure 3 and Table 3). The value range, 6.5%�, offers
potentially a moderate degree of discrimination within the United States. The geographic trends are
expected as precipitation isotope ratios show similar patterns to oxygen isotope ratios [12] and oaks
assimilate water from precipitation into carbohydrates (e.g., sugars, cellulose). The trend is predictable
as evidenced by the high variogram determination of 52.35% (Table 4). As the oxygen in cellulose
originates from CO2 and H2O, it is expected to show different geographic patterns to D/H ratios.

Overall, the best parameter for forecasting oxygen isotope ratios in US oak is the forecast oxygen
isotope ratios in January precipitation [12] with an R2 of 0.47 (Figure 4). Multiple regression assessment
of January, February and December (or other combinations of months that were attempted) oxygen
isotope precipitation grids to predict oxygen isotope composition in the 69 training dataset samples
was not helpful or significant at improving the model as the P value of the secondary or tertiary
predictors always exceeded 0.05. The 95% confidence interval for the oxygen isotope ratio model
is +/−1.8%�, this value is high in relation to the work carried out by Gori et al. [14] where their 95%
confidence interval ranged from +/−0.5%� to +/−1.53%� depending on the year and distance from the
sample sites, however, it appears to be comparable to the maximum range of isotope ratios that may
occur within a single oak tree ring which is given as 0.5–1.5%� in Robertson et al. [35].
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Table 3. Stable isotope ratios of the 69 training dataset sample by State. Vienna Standard Mean Ocean
Water (VSMOW); Pee Dee Belemnite (PDB); Canyon Diablo Troilite (CDT).

State Quantity
of Samples

18O/16O vs. VSMOW
(%�)

D/H vs. VSMOW
(%�)

13C/12C vs. PDB (%�) 34S/32S vs. CDT (%�)

Mean σ Range Mean σ Range Mean σ Range Mean σ Range

California 6 26.8 0.8 2.4 −98.5 6.6 14.0 −26.5 0.6 1.5 7.1 1.3 3.5
Kentucky 24 24.8 0.5 1.9 −85.7 6.6 25.6 −27.2 0.6 2.3 0.1 1.6 5.3

Maine 4 24.0 0.4 0.9 −96.9 1.7 3.7 −27.0 0.7 1.6 3.4 0.3 0.6
Maryland 3 24.2 0.5 1 −83.8 4.6 8.8 −26.3 1.2 2.4 0.7 0.3 0.5

Mississippi 3 26.4 0.7 1.2 −74.4 6.4 11.6 −28.8 0.7 1.4 2.4 0.7 1.2
New York 3 23.1 0.3 0.6 −101.1 1.3 2.5 −26.5 1.0 1.8 1.5 0.4 0.8

Ohio 1 23.8 −96.3 −26.5 −0.1
Pennsylvania 6 23.5 0.4 1 −93.7 2.0 5.9 −26.6 0.5 1.5 1.3 0.8 1.7

Tennessee 4 25.1 0.4 0.8 −81.0 3.1 7.6 −27.3 0.6 1.4 1.0 3.0 6.6
Virginia 1 23.4 −82.5 −27.3 0.9

Washington 3 21.9 0.5 0.9 −132.9 1.7 3.2 −25.7 0.4 0.8 4.0 0.3 0.5
West Virginia 2 25.1 0.2 −93.6 2.9 −26.0 1.5 0.2 1.3

Wisconsin 9 23.6 0.5 1.5 −92.0 1.9 5.9 −27.2 0.8 2.4 1.8 0.4 1.2

Table 4. Results of variogram analysis of the 69 oak samples across the United States. * Degrees of the
Earth’s surface based on WGS 84 projection. At the equator, 1 degree is approximately 111 km.

Parameter Variogram
Determination (%)

Samples in
Fitting Range

Lag Distance
(Degrees *)

Fitting Range
(Degrees *)

18O/16O 52.35 59 0.5 44.55

D/H 41.98 59 0.5 32.08
13C/12C 2.18 59 0.5 44.55
34S/32S 28.5 59 0.5 44.55
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6.2. Hydrogen Isotope Ratios—D/H

The hydrogen isotope ratios of the oak samples show a different pattern to the oxygen ratios with
elements of north/south and east/west trends (Figure 3B). The minimum value was −134.8%� and
the maximum value was −70.2%� (range = 64.6%�) which should also afford a degree of in-country
discrimination. The geographic pattern is predictable, with a variogram determination of 41.98%, this
indicates that there are few unexpected ratios across the United States.

All R2 values for monthly D/H isotope ratios in precipitation and D/H ratios in oak are quite high
with the exception of January. This stands in contrast to oxygen isotope ratios where the highest R2

value was in January. The highest R2 value for hydrogen isotope ratios is in July (R2 = 0.7, Figure 5).
The 95% confidence interval for the created hydrogen isotope ratio model is +/−13.28%�. Again,
this is higher than the values given for the models generated by Gori et al. [14] where their values
for the 95% confidence interval ranged from +/−5.28%� to +/−7.07%� depending on the year and
distance from the sample sites, but also appears to be consistent with the findings of the maximum
circumferential variance of hydrogen isotope ratios in a single oak tree ring which is given as 5–20%�

in Robertson et al. [35].
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6.3. Carbon Isotope Ratios—13C/12C

The carbon isotopes of the samples range from −25.3%� in Northern regions such as Washington
to around −29.5%� in Mississippi (value range = 4.3%�). However, there is not such a clear north–south
trend as demonstrated in Kentucky where the carbon ratios vary from −26.3 to −28.6%�, nearly the
full range available across all the 69 reference samples. The narrow range in combination with the
randomness of the values is well summarised by the low variogram determination of only 2.18%.

The best predictor of carbon isotope ratios of the climate/environmental variables that were
assessed was water vapour pressure in April with an R2 of 0.32 (Figure 6). The carbon isotope ratio
model (Figure 7C) has a 95% confidence interval of +/−1.4%�. This value is relatively high, reflecting
the uncertainty due to local variance seen in Kentucky. However, it is comparable to the maximum
range of circumferential variance in a single tree ring which is given as 1–3%� in Leavitt [11].
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6.4. Sulfur Isotope Ratios—34S/32S (or δ34S)

The sulfur isotope ratios of the oak samples follow a predictable pattern as indicated by the
relatively high variogram determination of 28.5%. The lowest values are in Kentucky and Tennessee
around −3%� whereas the most enriched values are in California at +8.6%�. The range of values that
exist across the reference samples (12%�) in conjunction with the fact there are not so many randomly
different values across the United States suggests that sulfur isotope ratios should offer a degree of
regional discrimination if more samples can be obtained.

Multiple regressions were performed to assess if the contribution of other parameters may improve
the sulfur isotope ratio model. Combining Reflected Shortwave Radiation (RSWR) in March and
precipitation in July a model with an R2 of 0.69 was produced (adjusted R2 0.68). This is not a large
improvement on simply using RSWR alone (R2 = 0.66), though both parameters had P values below
0.05, therefore the multiple regression was significant. A further multiple regression was performed
using RSWR in March and SO4 concentration in March which produced an R2 of 0.72 (adjusted R2 0.71).

6.5. Assessment of the Reliability of the Models

Of the 69 samples, 80% fall within the 95% confidence intervals of all four isoscapes. The remaining
14 samples show results between 18.56 km and 841 km away from the closest highlighted region.
This error is demonstrated well in Figure 8C where the location of the sample is some distance away
from the nearest region that fits with the 95% confidence interval of all the four models. Nevertheless,
it should be stated that Figure 8C is able to show that regions in the same state (Washington) have
signatures that are within the 95% confidence interval of the four models. Only four of the 14 samples
have highlighted regions over 100 km away from their sampled location. In roughly half of the
14 outlier samples, the cause was sulfur isotope ratios that did not fit the sulfur isoscape model.
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Figure 8. Examples of isoscape results. (A). BLUE, regions in the USA that are consistent with the
95% confidence interval of the modelled isoscapes for 18O/16O, D/H, 13C/12C, and 34S/32S of sample 32.
Area = ~1.3 M km2. The sample was taken from Balltown, Kentucky (B). BLUE, regions in the USA that
are consistent with the 95% confidence interval of the modelled isoscapes for 18O/16O, D/H, 13C/12C,
and 34S/32S of sample 33. Area = ~2.0 M km2. The sample was taken from Balltown, Kentucky
(C). BLUE, regions in the USA that are consistent with the 95% confidence interval of the modelled
isoscapes for 18O/16O, D/H, 13C/12C, and 34S/32S of sample 14. Area =~380,000 km2. The sample was
taken near Naches, Washington State (D). BLUE, regions in the USA that are consistent with the 95%
confidence interval of the modelled isoscapes for 18O/16O, D/H, 13C/12C, and 34S/32S of sample 57.
Area = ~226,000 km2. The sample was taken from the Eddy Arboretum, Institute of Forest Genetics
near Sacramento, California.

A total of 100% (18/18) of oxygen stable isotope measurements from the test dataset were within the
95% confidence interval range of the modelled oxygen isotope ratios at their location. Of the hydrogen
stable isotope measurements from the test dataset, 94% (17/18) were within the 95% confidence
interval range of the modelled hydrogen isotope ratios at their location. Of the carbon stable isotope
measurements from the test dataset, 78% (14/18) were within the 95% confidence interval range of the
modelled carbon isotope ratios at their location. Of sulfur stable isotope measurements from the test
dataset, 94% (17/18) were within the 95% confidence interval range of the modelled sulfur isotope ratios
at their location. Of test dataset samples, 78% (14/18) satisfied the 95% confidence interval range of all
four isoscape models at their location. The 95% confidence interval range for the hydrogen, carbon
and sulfur isotope ratios for sample 5 of 18 (taken near Roscommon, MI) were not satisfied, the nearest
location where the criteria were satisfied was 600 km away in Wisconsin. This can mostly be attributed
to a D/H isotope ratio that was more depleted than expected. If it were not for the depleted D/H
isotope ratio measurement, the sample would have only been incorrectly assigned to be 54 km away.
Samples 14, 15 and 18 of 18 had carbon stable isotope ratios that were outside of the 95% confidence
interval of the carbon stable isotope ratio isoscape model. Samples 14 and 15 were both collected at
the same site at the same site in near McCoole, MD. Four other samples of oak were collected at this
site, Table 5 shows that there was a 3.5%� range in the 13C/12C stable isotope ratios at this site which
is greater than the 2.8%� range (95% CI) that the 13C/12C isoscape accounts for likely explaining the
incorrectly predicted 13C/12C isotope ratio values for samples 14 and 15. Using the combination of
models, the nearest locations where the 95% confidence intervals for samples 14 and 15 are satisfied
are 45 km and 300 km away, respectively. Sample 18 of 18, collected near White River Junction, VT,
had a 13C/12C isotope ratios that was 0.42%� more enriched than expected at the location according to
the 13C/12C isoscape. The nearest location where the stable isotope ratios of sample 18 fit within the
95% confidence intervals of the isoscape models approximately 100 km away near Middlebury, VT.
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Table 5. Stable isotope ratios of the test dataset samples (n = 18) by State.

State Quantity
of Samples

18O/16O vs. VSMOW
(%�)

D/H vs. VSMOW
(%�)

13C/12C vs. PDB (%�) 34S/32S vs. CDT (%�)

Mean σ Range Mean σ Range Mean σ Range Mean σ Range

Maryland 6 24.3 0.2 0.6 −93.2 2.4 6.9 −26.2 1.3 3.5 0.2 1.0 2.6
Michigan 3 23.5 0.7 1.4 −103.5 9.6 18.4 −26.2 0.8 1.4 1.0 1.1 2.2

New Hampshire 2 23.0 0 −103.0 2.2 −26.9 0.7 2.0 1.3
Ohio 1 23.1 −90.7 −25.9 −2.4

Pennsylvania 2 24.4 0.5 −92.8 0.4 −26.4 1.1 2.3 0.9
Vermont 3 24.3 0.6 1.1 −100.6 7.9 13.8 −25.1 0.4 0.7 2.3 0.2 0.4
Virginia 1 24.8 −95.4 −27.3 3.1

7. Discussion

7.1. Oxygen Isotope Ratios—18O/16O

Oxygen isotopic composition of precipitation in some months has a stronger relationship with the
18O/16O isotope ratios in the 69 training dataset samples than others. Figure 3 shows higher R2 values
during winter months than spring or summer months with the exception of July. On one hand, this is
not as one may expect as photosynthesis and transpiration occur when the trees have leaves. On the
other hand, autumn and winter generally produce more precipitation than summer in temperate forests.
This could be due to the fact that precipitation across periods when the trees are not in leaf contribute
towards the groundwater reservoir which the tree utilises in summer when in leaf. This may partially
explain why the oxygen isotope ratios of the samples collected in California at the Institute of Forest
Genetics are outliers; California drought may have led to a lack of groundwater and a need to irrigate
the trees. As irrigation is unusual in silviculture, this may mean models would benefit if data from the
Californian samples were removed (Figure 9). Nevertheless, the data for the Californian samples have
been included in the models included in this paper. Furthermore, the influence of rainfall early in the
season has been noted to break bud dormancy and trigger the growth of earlywood [36]. Therefore
growth, and by relation stable isotope ratios, may be related to increases in soil water reserves.Forests 2020, 11, x FOR PEER REVIEW 16 of 23 
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Figure 9. (Left) Regression of oxygen (18O/16O) and hydrogen (D/H) ratios in the 69 oak samples. Red
points indicate outliers, all of which were sampled at the Eddy Arboretum, Institute of Forest Genetics.
(Right) Regression of oxygen and hydrogen ratios (D/H in oak) in the 69 oak samples. Outliers from the
Eddy Arboretum have been removed. The function for the regression line and R2 of the regression is
included in both plots.

July appears to be an important month in the summer for US oaks, no other summer month
shows quite the R2 as it. More information about the influence of each month may be garnered if
isotope data from oaks around the world are added to the model. It should also be stated that no one
month explained more than 50% of the variance in the oxygen isotope ratios in the 69 oaks; oxygen in
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cellulose/lignins originates from water and CO2. Therefore, there may yet be further improvements
that can be made to models.

7.2. Hydrogen Isotope Ratios—D/H

It is interesting that virtually all of the regressions of the D/H isotope data of the oak reference
samples have relatively high values for R2 with the precipitation isoscapes. It is also intriguing that
the R2 value for January is fairly low especially when contrasted with the fact that the R2 value for
January was one of the highest for oxygen isotope ratios in the oak reference samples. Perhaps this
is a coincidence or perhaps it reflects that oxygen in cellulose originates from CO2 and from H2O
whereas hydrogen in cellulose originates from H2O. The highest single R2 value for hydrogen isotope
regressions was in July (R2 = 0.7, Figure 5) which is a good basis to generate a model. Though the
value for R2 is high, 30% of the variance cannot be explained by the data from modelled precipitation
isoscapes, meaning there is still room for improvement with the model. There could be several
explanations for the model not being perfect ranging from model inaccuracy (e.g., the grid size of the
Bowen isoscapes [12] is not fine enough to reflect the density of sampling or true variance of values in
the US) to trees exchanging sugars via the mycelial network meaning the precipitation isoscapes are
only part of the explanation.

7.3. Carbon Isotope Ratios—13C/12C

Based on the results of the regressions, water vapour in April, the month when oaks come back
into leaf, is the leading predictive parameter for carbon ratios in US oaks based on the assessments
made in this project (Figure 6), there may yet be further improvements to the model that can be made.
Multiple regressions were carried out using the months with highest R2 of other parameters. However,
no additional variables caused a dramatic improvement to the model suggesting they are describing
similar conditions (e.g., water vapour is related to vapour pressure and precipitation). Inclusion of
pollution parameters (CO and NO2) did not aid the predictive model either. A carbon isotope ratio
model based on water vapour in April is available in Figure 7. This model predicts more extreme
values than have been observed thus far with the reference data with areas within the great plains
forecast to have significantly enriched carbon isotope ratios.

Pollutants such as Carbon Monoxide, CO2, and NO2, which have been stated to influence stomatal
conductance [28,37,38] explain little of the variance in the carbon ratios of oak in this study. Tropospheric
NO2 in the US, particularly Eastern USA is relatively high compared to most regions on the planet;
in July 2017 the AURA Satellite measured 108 billion molecules/mm2 NO2 in New York [39,40].
Only China has typically greater NO2 concentration; in July 2017 the AURA satellite measured
178 billion molecules of NO2/mm2 [39]. Carbon monoxide has its greatest relationship with 13C/12C
in oak in October (R2 = 0.146, Figure 6), a time of year when oaks are typically shedding their last
leaves. Most likely, this is a coincidence or the relationship refers to a covariate as there is no clear
logical causal explanation for this phenomenon. The strongest relationship between NO2 and carbon
isotope ratios is in summer, particularly in July. In the context of the results from the oxygen and
hydrogen isotope ratios, this may further suggest conditions in July are a key point in an oak’s calendar.
To a degree, this appears to be consistent with the findings of Christison and Christison [41] that the
growing months of leaf-shedding stress is confined to the months of June, July and August. This
finding is also consistent with stomatal conductance experiments using pollutants [28], though it is
noted that the relationship is not as strong as precipitation or vapour pressure which all have max
R2 relationships over 0.25. Various studies have emphasised the importance of pressure and vapour
pressure’s influence on carbon isotope ratios [42]. Some have shown that carbon ratios may be related
to radiation, however, the body of knowledge shows that any relationship is likely indirect as radiation
can influence air pressure and water vapour pressure [26]. Water vapour pressure is related to stomatal
conductance [26], it is also noted that low water vapour pressure can cause water stress in plants and
can be a rate limiting step in the growth of trees and may also fractionate carbon isotope ratios [43].
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Increased CO2 emissions are expected to cause more depleted carbon ratios in trees [37]. Freyer
and Belacy [38] demonstrated that across a 50-year span in tree rings, there is a 2%� difference in carbon
isotope ratios. The rationale for this is that as the carbon ratios of combustion carbon dioxide are more
negative than natural CO2, this is represented in tree rings. This study has not found this to be the case
with the 69 oak reference samples. Instead, a very weak negative relationship between tropospheric
CO2 concentration and the carbon isotope ratios of oak was observed (Figures 6 and 10). This may be
due to the low resolution of the grid NASA has provided for CO2 concentration (20

× 2.50 resolution)
or due to the fact that the samples represent a ‘pooling’ of data from multiple tree rings in each sample.
For perspective, the grid resolution is comparable to the area of the country of El Salvador. Though if
this weak relationship is maintained when comparing data to higher resolution grids, this may be of
benefit to timber tracking technologies as they may not need to be as concerned about the impact of
increasing atmospheric carbon dioxide concentrations on the stable carbon isotopic composition of
timber. Even so, perhaps this is not an ideal measure of this effect as several factors would provide a
greater degree of information such as comparing the tropospheric carbon dioxide concentration in a
single year with the corresponding growth ring in the tree as well as using carbon dioxide data that
has a greater spatial resolution than 20

× 2.50.
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7.4. Sulfur Isotope Ratios—34S/32S

To date, prevailing theories about sulfur isotope ratios in timber and agricultural products are
that they may be related to plant or microbial fractionations [44], atmospheric deposition under certain
conditions [45,46], or proximity to the sea [32,34,47]. Often, sulfur isotope ratio analysis is used just to
identify the source of sulfur in geochemistry [33]. NO2 concentration is related to pollution [48], March
and November NO2 concentrations appear to have some relationship with sulfur isotope ratios with R2

of 0.3108 and 0.2724, respectively (Figure 11). This may suggest that atmospheric deposition has some
influence on sulfur ratios, though the findings of Novak and Bottrell [46] must be noted; if sulfur has
been in the soil for longer than sulfur from pollution (over 50 years) then the sulfur within the timber
is predominantly natural. The seasonal patterns in R2 and sulfur isotope ratios for cloud water content,
precipitation, vapour pressure and water vapour may suggest that rates of transpiration play a role in
the sulfur isotope ratio of oak. All the aforementioned parameters are related to transpiration [43] and
the fact that strong relationships between the parameters and sulfur ratios exist while the trees are in
leaf is not likely a coincidence.
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The relationship of sulfur isotope ratios, sulfate and precipitation may be due to deposition of sulfate
(SO4

2−) via precipitation; Mayer et al. [45] showed that the sulfur ratios of sulfate in precipitation
are the same as sulfate in soil solution in aerobic forest soils. Using data from Reflected Shortwave
Radiation and SO4 together is currently the leading model for sulfur ratios of oak in the USA,
the lack of a significant leap in improvement may suggest that both parameters are describing similar
environmental attributes.

Consistent with the findings by Novak and Bottrell [46], it is doubted that the sulfur isotopes of
the oak reference samples have been greatly influenced by pollution. The reason for this conclusion is
that at the time of year when oaks are transpiring most (when they are in leaf), there are lower values
of R2 between tropospheric NO2 concentration and sulfur ratios in the oak samples. Additionally,
when values for NO2 are included in multiple regressions with values for SO4 or RSWR, NO2 is
not a significant parameter, its P value always exceeds 0.05. However, the impact of sulfate from



Forests 2020, 11, 862 17 of 21

precipitation may be an influencing factor as the addition of precipitation into a predictive model of
sulfur ratios using multiple regression caused a small, but significant improvement in the model.

Finally, the sulfur isotope model appears to show similarity to the sulfur isoscape for human hair
demonstrated in Valenzuela et al. [49]. In particular, Northern states such as Montana show similar
patterns in sulfur ratios to the sulfur isoscape in Figure 3. However, there are some key differences
between the patterns of the isoscapes in Ohio, Indiana, south Texas and Louisiana. This might be due
to key differences between sulfur assimilation in humans and trees. As humans can consume food
from anywhere in the world, Texans may have a different source of dietary sulfur than the sources of
sulfur available to oaks.

8. Model Assessment Using the Test Dataset

The majority of test data samples (78% or 14/18) had isotope ratios that were in the 95% confidence
interval of the model at their location. For the four samples that did not have values in the range
forecast by the isoscape models, all were assigned to the USA but some were assigned up to 600 km
away. This finding is important to consider as this error in assignment may be the difference in
recommending further investigation is carried out on test samples. For sample 9, it appears that the
resolution of the hydrogen isotope precipitation grid (approximately 18.5 × 18.5 km) that was used
to predict the hydrogen isoscape was not able to account for the mountain location where sample
9 of 18 was collected. Perhaps including elevation, or some other high-resolution predictor grid
as an additional predictor may help alleviate this problem in future. For samples 14, 15 and 18 of
18, the 13C/12C isoscape was unable to accurately predict their carbon isotope ratios within a 95%
confidence interval. Again, this may be due to the resolution of the predictor grid (approximately
11 × 11 km) not being able to fully describe local variation in water vapour or the fact that 13C/12C
isotopic composition of an oak is influenced by more variables than just water vapour. It also must
be considered that the variogram assessment (Table 4) of the training dataset suggests that there is a
weak spatial component to carbon isotope ratios. Tables 3 and 5 also show that carbon isotope ratios
have relatively broad ranges in sampling sites (e.g., 3.5%� range in one site in Maryland n = 6) when
carbon stable isotope measurements are taken across multiple growth rings. It is important to consider
these findings in context of the natural range of 13C/12C isotope ratios in timber, which may only
be approximately 10%� in trees. Perhaps the limitation is more to do with the analytical method of
measuring carbon isotope ratios across multiple growth rings, rather than carrying out individual ring
measurements. Kagawa and Leavitt [50] produced models of carbon stable isotopes of Pinus edulis and
Pinus monophylla based on a carbon isotope time series and individual ring measurements of 13C/12C
that permitted the provenancing of these species with a precision of 114–304 km in southwestern
United States. This method takes advantage of inter-ring variability in carbon whereas the method
demonstrated here appears to be limited by it. Nevertheless, for those that do not have the ability to
identify what growth ring in a piece of furniture or flooring corresponds to which year in a carbon
isotope time series, measuring 13C/12C isotope ratios across multiple growth rings may be a more
practical method despite its apparent limitations.

9. Conclusions

This project has produced detailed forecasts of oxygen, hydrogen, carbon and sulfur isotopes
in the United States. The formulation of these forecasts lays the pathway for these techniques to be
used to verify the origins of protected timbers. The production of these forecasts is potentially quite
significant as it may provide a route to being able to verify the origin of timber in countries where it is
not possible to obtain reference samples. It may also pave the way for forecasts of isotope ratios such
as sulfur and carbon to be more routinely used in the verification of origin of other products such as
fruits and vegetables. Over time, the ability to produce better and better forecasts will develop as the
understanding of the causal factors grows.
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The models demonstrated here are effective at predicting the stable isotope ratios of oaks from the
USA, even considering that the test dataset samples were not collected in identical locations as training
dataset samples. This finding is an encouraging demonstration of the predictive power of isoscapes.
However, these models also have limitations. These include issues to do with the grid size of climatic
predictors, the absence of including other predictor variables such precipitation amount-weighted
precipitation isoscapes, elevation or others, and the highly locally variable nature of some parameters
such as carbon isotope ratios. High local variability hampers large-scale prediction efforts. Perhaps
other methods that make use of inter-annual variability in carbon isotope ratios between growth rings,
such as the method proposed by Kagawa and Leavitt [50] may offer a better strategy than the carbon
isotope ratio solution we put forth here if they can be used in practice on items such as furniture
and flooring.

The ‘resolution’ of the analysis has been demonstrated to be variable and is based on the ‘rarity’
of a set of isotope ratios within a given geographic area. Nevertheless no strong inferences should
be made about the resolution of isotope analysis using four stable isotope ratios from this paper as
the resolution is shown to be variable dependent on: the rarity of the signature, the size of the grids
used to make the forecasts, and the amount of available reference samples used to generate the model.
It may even be possible to produce higher ‘resolution’ results with the same base data and more
climatic information.

Finally, a map-based statistical method offers several advantages over pure-statistical models to
verify the origin of timber. A map-based method may be able to integrate with other timber tracking
tools to a better degree if they can be represented in map format. For example, it may be possible
to use information from trace element analysis, chemical profiling, or Genomic analyses to further
narrow-down areas that are forecast to be statistically consistent with the sample. Converting the
statistical probability of a sample into a map gives both an ideal presentation tool and also may be a
common ground for combining the results of various analytical methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/8/862/s1,
Table S1: d13C predictor variables, Table S2: d34S predictor variables.
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