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Supplementary materials 

Extended Material and Methods 

2.3. Species Occurrence Data 

Helleborus odorus subsp. cyclophyllus occurrence data (167 occurrences) were obtained from the 
Global Biodiversity Information Facility database through functions from the ‘rgbif’ 1.4.0 [36] 
package. To avoid pseudoreplication and associated spatial sampling biases, we selected occurrences 
with a minimum distance from each other (1 km). We removed the fewest records necessary to 
substantially reduce the effects of sampling bias, while simultaneously retaining the greatest amount 
of useful information. This subsampling reduces the spatial aggregation of records to prevent that 
SDMs reflect a possible over-representation of environmental conditions associated with regions of 
higher sampling, which hinder interpretation and application of models [73,74] This data cleaning 
and organizing procedure followed the protocols as set out in Robertson et al. [37] and we used the 
‘biogeo’ 1.0 [37] and ‘spThin’ 0.1.0 [74] packages. To tackle sample bias uncertainty, we also employed 
an environmental filtering procedure that can improve model performance [75], based on the 
representative and uncorrelated environmental variables occurring in the study area (see 
Environmental data below). Finally, we evaluated whether any geographical sampling bias existed 
in our species occurrence data by comparing the statistical distance distribution observed in our 
dataset to a simulated distribution expected under random sampling via the ‘sampbias’ 0.1.1 [76] 
package. 

2.4. Environmental data 

Current and future climatic data were obtained from the WorldClim database [38] and the 
CHELSA database [39,40] at a 30 sec resolution. We used two climate databases to assess the 
bioclimatic consistency and congruence of model predictions [41], a crucial source of uncertainty in 
SDMs [42]. 

We constructed 16 more climatic variables at the same resolution via the `envirem´ 1.1 [77] 
package based on the 19 bioclimatic variables from WorldClim and CHELSA for current and future 
climate conditions. We selected three Global Circulation Models (GCMs) that are rendered more 
suitable and realistic for the study area’s future climate based on McSweeney et al. [78] and four 
different IPCC scenarios from the Representative Concentration Pathways (RCP) family. Soil 
variables were obtained from the SoilGrids 250 m database [79,80]. Elevation data were derived from 
the CGIAR-CSI data-portal [43,81] and then aggregated and resampled using `raster´ 2.6.7 package 
[44] to match the resolution of the other environmental variables. Additional topographical variables 
(slope, aspect, heat load index, topographic position index and terrain ruggedness index) were 
computed based on elevation data using functions from the `raster´ 2.6.7 package [44] and 
`spatialEco´ 1.2-0 package [45]. Finally, we rasterized the Geological Map of Greece [46] and created 
a layer containing the occurrence of calcareous substrate, using functions from the `sf´ 0.8.0 package 
[82] and the `fasterize´ 1.0.0 package [83]. 

From this initial set of 50 predictors, only fifteen and seventeen variables (depending on the 
extent of the distributional area – see below) were not highly correlated (Spearman rank correlation 
< 0.7 and VIF < 5) [47]. Multicollinearity assessment was performed with the `usdm´ 1.1.18 package 
[84]. 

2.5. Species distribution models 

2.5.1. Model parameterization and evaluation 

We modelled the realized climatic niche of Helleborus odorus subsp. cyclophyllus by combining 
the available occurrence data with current environmental predictors with the `biomod2´ 3.3.7 
package [49] and `ecospat´ 2.2.0 package [85]. We used three different modelling algorithms for our 
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study species: Random Forest (RF), Classification Tree Analysis (CTA) and Multiple Adaptive 
Regression Splines (MARS) in an ensemble modelling scheme, as ensemble forecasting integrates the 
results of multiple SDM algorithms into a single geographical projection for each time period, 
reducing the uncertainties associated with the use of a single model algorithm [42,48] . Since these 
algorithms require presence/absence (PA) data, we generated PAs following the recommendations 
of Barbet-Messin et al. [86]. Since data regarding the exact distribution area of Helleborus odorus subsp. 
cyclophyllus in Greece are lacking, we estimated the species’ background area using the 
‘EOO.computing’ function from the ‘ConR’ 1.1.1 package [87] for both the convex and alpha hull 
methods. Thus, pseudo-absences were generated at a minimum distance of 39.4 and 35.7 km for the 
alpha and convex hull method, respectively, from presence locations to reduce the probability of false 
absences. We chose that minimum distance due to the median autocorrelation of 39.3 and 35.6 km for 
each method respectively, among the non-collinear environmental variables, which we computed 
with `blockCV´ 1.0.0 [88] package. We followed the ensemble of small models (ESM) framework [89], 
since the occurrence/predictors ratio was lower than 20 [73]. We calibrated ESMs by fitting numerous 
bivariate models, which were then averaged into an ensemble model using weights based on model 
performances. For all models, the weighted sum of presences was equal to that of the PAs. The 
models’ predictive performance was evaluated via the True Skill Statistic (TSS) [90] based on a 
repeated (10 times) split-sampling approach in which models were calibrated with 80% of the data 
and evaluated over the remaining 20%. We used null model significance testing [91] to evaluate the 
performance of all models and estimated the probability that each model performed better than 100 
null models. All models were found to outperform the null expectation at P < 0.001. Difference of 
predictive ability (TSS) between the different climate databases, distribution areas and thinning 
procedures was investigated via a Kruskal-Wallis non-parametric test (KWA). 

2.5.2. Model projections 

Calibrated models were used to project the suitable area for our species in the study area under 
current and future conditions through an ensemble forecast approach [48]. The contribution of each 
model to the ensemble forecast was weighted according to its TSS score. Models with a TSS score < 
0.8 were excluded from building projections, to avoid working with poorly calibrated models. Note 
that while model evaluation was carried out using the above-mentioned data-splitting procedure, 
the final models used for spatial projections were calibrated using 100% of the data, thus allowing 
taking advantage of all available data. Binary transformations were carried out using the value 
maximizing the TSS score as the threshold for distinguishing presence and absence predictions. 

As a conservative approach, the suitability of all cells showing variable values not experienced 
during the model training (values greater than zero in the clamping mask) was set to zero [73]. We 
subsequently applied a mask representing urban and suburban areas to avoid projections at locations 
that are unsuitable regardless of the prevailing environmental conditions. 

2.5.3. Area range change 

To assess whether Helleborus odorus subsp. cyclophyllus will experience range contraction or 
expansion under future conditions, we used the `biomod´ 3.3.7 package [49]. 

2.6. Bioclimatic congruence and consistency 

We followed the framework of Morales-Barbero & Álvarez [41] in order to construct the 
bioclimatic congruence and consistency maps for Helleborus odorus subsp. cyclophyllus for every time-
period that was available in both climate databases. 

2.7. Generalized Dissimilarity Modelling 

We used Generalized Dissimilarity Modelling (GDM )[50] in the framework laid out by 
Fitzpatrick and Keller [51] to investigate the spatial and environmental drivers of genetic beta 
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diversity, as well as to explore the potential variation in future genetic diversity patterns due to 
climate change. 

2.7.1. Statistical modelling 

We used the same environmental variables as in the SDM analyses. The significance of all 
variables was assessed through a Monte Carlo permutation test (999 repetitions) [52] and thus, we 
identified the most significant predictor variables. For each of these variables, we extracted the fitted 
I-spline (a curvilinear line expressing the relationship between species turnover and each predictor – 
each I-spline has three coefficients). We quantified the magnitude of turnover along each gradient by 
using the used the sum of the I-spline’s coefficients [it defines the proportion of compositional 
turnover explained by that variable and is determined by the maximum height of its I-spline [50,92]. 
We assessed model fit via percent deviance explained by the model [52]. The relative importance of 
each gradient in driving species turnover was explained as the percent change in deviance explained 
by the full model and the deviance explained by a model fit with that variable permuted (999 
permutations [52]. 

2.7.2. Visualisation of genetic variation patterns 

We followed Fitzpatrick and Keller [51] to visualise the spatial patterns of genetic variation. We 
reduced into three factors the important and uncorrelated environmental variables via a Principal 
Component Analysis (PCA) and assigned them to RGB colour palette. Thus, similar colours indicate 
similarity of the expected genetic composition patterns [51]. 

2.7.3. Population level variability to climate change 

Finally, we projected our GDM based on current environmental conditions to every GCM/RCP 
combination we included in our study, so as to predict the areas where the relationship between 
genetic composition and future environmental conditions will experience the greatest change ( 
‘genetic offset’)[51]. We then mapped the mean genetic offset from the twelve GCMs/RCPs to indicate 
the spatial distribution of population-level vulnerability to climate change [51]. By doing so, we can 
infer the intensity of the change of the genetic composition across the landscape needed to preserve 
the gene-environment relationships observed under current environmental conditions [51]. Based on 
the GDM results and following the framework of Fitzpatrick et al. [93], we estimated the current and 
future spatial clusters of genetic composition via an unsupervised classification procedure, using two 
clustering algorithms: k-means and CLARA. We assessed the optimal number of clusters via the 
Silhouette index [94] for each time-period and GCM/RCP combination. Finally, we quantitatively 
assessed the similarity of the different bioregionalizations via the V-measure index of spatial 
association [95,96]. All analyses were performed using functions from the ‘raster’ 3.0.7 [44], ‘cluster’ 
2.0.7-1 [97], ‘clusterCrit’ 1.2.8 [98] and ‘sabre’ 0.3.1 [96] R packages. 

All GDM analyses were performed with the ‘gdm’ 1.3.7 [52] R package in the R 3.5.3 [53]. 
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Supplementary Figures 

 

Figure S1. Delta K values for 1 to 8 genetic clusters for Helleborus odorus subsp. cyclophyllus 
populations studied. Delta K was calculated according to Evanno et al. (2005). 

 

Figure S2. True Skill Statistic (TSS) values for every source of uncertainty included in the present 
study. THGEO: geographical thinning. THENV: environmental thinning. HUALPHA: distribution area 
estimated with the alpha-hull method. HUCONVEX: distribution area estimated with the convex-hull 
method. CH: CHELSA climate database. WC: WorldClim climate database. Panels A, B, C and D 
correspond to the thinning procedure, distribution area method, climate database and all the 
aforementioned uncertainty sources combined, respectively. 



 S5 of S48 

 
Figure S3. Habitat suitability map based on the CHELSA climate database, geographically thinned 
coordinates and distribution area estimated with the alpha-hull method for the present-time period. 

 
Figure S4. Habitat suitability map based on the WorldClim climate database, geographically thinned 
coordinates and distribution area estimated with the alpha-hull method for the present-time period. 
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Figure S5. Bioclimatic consistency maps for both thinning procedures (geographical and 
environmental thinning) based on the alpha-hull method regarding the distribution area of Helleborus 
odorus subsp. cyclophyllus. From top-left to bottom-right: Geographically-thinned, based on CHELSA; 
Geographically-thinned, based on WorldClim; Environmentally-thinned, based on CHELSA; 
Environmentally-thinned, based on WorldClim. 
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Figure S6: Bioclimatic consistency maps for both thinning procedures (geographical and environmental 
thinning) based on the convex-hull method regarding the distribution area of Helleborus odorus subsp. 
cyclophyllus. From top-left to bottom-right: Geographically-thinned, based on CHELSA; Geographically-thinned, 
based on WorldClim; Environmentally-thinned, based on CHELSA; Environmentally-thinned, based on 
WorldClim. 
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Figure S7: Predicted potential distribution map for 2070 and the BCC GCM and the RCP 2.6 scenario. Red grid 
cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species currently 
occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does not 
currently occupy those areas and it will not occupy them in the future. The dotted line indicates the distribution 
area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to the WorldClim 
database. 
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Figure S8: Predicted potential distribution map for 2070 and the BCC GCM and the RCP 4.5 scenario. Red grid 
cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species currently 
occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does not 
currently occupy those areas and it will not occupy them in the future. The dotted line indicates the distribution 
area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to the WorldClim 
database. 
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Figure S9: Predicted potential distribution map for 2070 and the BCC GCM and the RCP 6.0 scenario. Red grid 
cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species currently 
occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does not 
currently occupy those areas and it will not occupy them in the future. The dotted line indicates the distribution 
area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to the WorldClim 
database. 
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Figure S10: Predicted potential distribution map for 2070 and the BCC GCM and the RCP 8.5 scenario. Red grid 
cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species currently 
occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does not 
currently occupy those areas and it will not occupy them in the future. The dotted line indicates the distribution 
area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to the WorldClim 
database. 
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Figure S11: Predicted potential distribution map for 2070 and the CCSM4 GCM and the RCP 4.5 scenario. Red 
grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
 
 
 



 S13 of S48 

 
Figure S12: Predicted potential distribution map for 2070 and the CCSM4 GCM and the RCP 6.0 scenario. Red 
grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S13: Predicted potential distribution map for 2070 and the CCSM4 GCM and the RCP 8.5 scenario. Red 
grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S14: Predicted potential distribution map for 2070 and the HadGEM2 GCM and the RCP 2.6 scenario. 
Red grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S15. Predicted potential distribution map for 2070 and the HadGEM2 GCM and the RCP 4.5 scenario. 
Red grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S16: Predicted potential distribution map for 2070 and the HadGEM2 GCM and the RCP 6.0 scenario. 
Red grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S17: Predicted potential distribution map for 2070 and the HadGEM2 GCM and the RCP 8.5 scenario. 
Red grid cells: the species currently occupies those areas but will not in the future. Blue grid cells: the species 
currently occupies those areas and will continue to occupy them in the future. Grey grid cells: the species does 
not currently occupy those areas and it will not occupy them in the future. The dotted line indicates the 
distribution area of Helleborus odorus subsp. cyclophyllus based on the alpha-hull method. Climate data refer to 
the WorldClim database. 
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Figure S18: GDM-fitted I-splines (partial regression fits) for variables significantly associated with the genetic 
composition of the populations under study of Helleborus odorus subsp. cyclophyllus. The maximum height 
reached by each curve indicates the total amount of turnover associated with that variable, holding all other 
variables constant. The shape of each function indicates the variation of turnover rate along the gradient. 
GEODIST: The geographical distance (in km) between the populations under study. 
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Figure S19: Predicted spatial variation for the current time-period in population-level genetic composition from 
GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are expected to 
harbour populations with similar genetic composition. 
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Figure S20: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the current time-period. 
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Figure S21: Predicted spatial variation for the BCC RCP 2.6 time-period in population-level genetic composition 
from GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are 
expected to harbour populations with similar genetic composition. 
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Figure S22: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the BCC RCP 2.6 time-period. 
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Figure S23: Predicted spatial variation for the BCC RCP 4.5 time-period in population-level genetic composition 
from GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are 
expected to harbour populations with similar genetic composition. 
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Figure S24. The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the BCC RCP 4.5 time-period. 
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Figure S25: Predicted spatial variation for BCC RCP 6.0 time-period in population-level genetic composition 
from GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are 
expected to harbour populations with similar genetic composition. 
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Figure S26: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the BCC RCP 6.0 time-period. 
 



 S28 of S48 

 
Figure S27: Predicted spatial variation for the BCC RCP 8.5 time-period in population-level genetic composition 
from GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are 
expected to harbour populations with similar genetic composition. 
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Figure S28: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the BCC RCP 8.5 time-period. 
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Figure S29: Predicted spatial variation for the CCSM4 RCP 2.6 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S30: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the CCSM4 RCP 2.6 time-period. 
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Figure S31: Predicted spatial variation for CCSM4 RCP 4.5 time-period in population-level genetic composition 
from GDM. Different colours represent gradients in genetic turnover. Locations with similar colours are 
expected to harbour populations with similar genetic composition. 
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Figure S32: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the CCSM4 RCP 4.5 time-period. 
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Figure S33: Predicted spatial variation for the CCSM4 RCP 6.0 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S34: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the CCSM4 RCP 6.0 time-period. 
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Figure S35: Predicted spatial variation for the CCSM4 RCP 8.5 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S36: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the CCSM4 RCP 8.5 time-period. 
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Figure S37. Predicted spatial variation for the HadGEM2 RCP 2.6 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S38: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the HadGEM2 RCP 2.6 time-period. 
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Figure S39: Predicted spatial variation for the HadGEM2 RCP 4.5 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S40: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the HadGEM2 RCP 4.5 time-period. 
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Figure S41: Predicted spatial variation for the HadGEM2 RCP 6.0 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S42: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the HadGEM2 RCP 6.0 time-period. 
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Figure S43: Predicted spatial variation for the HadGEM2 RCP 8.5 time-period in population-level genetic 
composition from GDM. Different colours represent gradients in genetic turnover. Locations with similar 
colours are expected to harbour populations with similar genetic composition. 
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Figure S44: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering 
algorithms regarding the optimal number of spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus for the HadGEM2 RCP 8.5 time-period. 
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Figure S45: Similarity regarding the spatial clusters of genetic composition for Helleborus odorus subsp. 
cyclophyllus between the present and each Global Circulation Model (GCM) and Representative Concentration 
Pathway (RCP), based on the V-measure index. 

Table 1. Pairwise Fst values between populations. 

ERY *        
VEL 0.1018 *       
PAR 0.1757 0.1101 *      
VOU 0.1015 0.0572 0.0862 *     
FRAG 0.1234 0.0597 0.1272 0.0317 *    
NAOU 0.1326 0.0743 0.1254 0.0787 0.1079 *   

OLY 0.2140 0.1500 0.2906 0.1922 0.2134 0.2212 *  
DIR 0.2171 0.1740 0.1756 0.1591 0.2010 0.1530 0.3316 * 
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