Supplementary Materials:

Tree stem volume of eastern beech [64]:

$$
\begin{equation*}
V=(0.397641 . h-1.16988) \frac{d b h^{2}}{10000} \tag{1}
\end{equation*}
$$

where $d b h=$ tree diameter at breast height $(\mathrm{cm}), h=$ tree height (m).
Tree stem volume of sessile oak [65]:

$$
\begin{align*}
V=\left(a_{1}+\frac{a_{2}}{h}+\frac{a_{3}}{h^{2}}\right. & +\frac{a_{4}}{d b h}+a_{5} \cdot \frac{h}{d b h}+a_{6} \cdot \frac{h^{2}}{d b h}+\frac{a_{7}}{d b h^{2}}+a_{8} \cdot \frac{h}{d b h^{2}}+a_{9} \cdot \frac{h^{2}}{d b h^{2}}+a_{10} \cdot d b h^{3} \\
& \left.+a_{11} \cdot \frac{h}{d b h^{3}}+a_{12} \cdot \frac{h^{2}}{d b h^{3}}\right) \cdot \frac{\pi \cdot d b h^{2}}{40000} \cdot h \tag{2}
\end{align*}
$$

where $a=$ parameters of the equation, $h=$ tree height (m), and $d b h=$ tree diameter at breast height (cm).
Näslund function [66] for height-diameter relationship:

$$
\begin{equation*}
h=\frac{d b h^{2}}{(a+b \cdot d b h)^{2}}+1.3 \tag{3}
\end{equation*}
$$

where $h=$ tree height $(\mathrm{m}), d b h=$ tree diameter at breast height, and $(\mathrm{cm}) a$ and $b=$ parameters of the equation.

Pielou-Mountford index of nonrandomness [67,68]:

$$
\begin{equation*}
\propto=\frac{1}{n} \pi\left(\frac{N}{P}\right) \sum_{i=1}^{n} \omega_{i}^{\prime} \tag{4}
\end{equation*}
$$

where $n=$ number of sample points, $N=$ number of trees in a sample plot, $P=$ sample plot area $\left(\mathrm{m}^{2}\right)$, and $\omega^{\prime} 1_{1}$ quadratic distance from sample point to the nearest tree (m).

Clark-Evans index of aggregation [69]:

$$
\begin{equation*}
R=\frac{\frac{1}{N} \cdot \sum_{i=1}^{N} r_{i}}{0.5 \sqrt{\frac{P}{N}}+0.0514 \cdot \frac{u}{N}+0.041 \cdot\left(\frac{u}{N}\right)^{\frac{3}{2}}} \tag{5}
\end{equation*}
$$

where $r_{i}=$ distances between two nearest neighbors $(\mathrm{m}), N=$ number of trees in sample plot, $P=$ plot area $\left(\mathrm{m}^{2}\right)$, and $u=$ perimeter of sample plot (m).

David-Moore index of cluster size [71]:

$$
\begin{equation*}
I C S=\frac{s^{2}}{\bar{x}}-1 \tag{6}
\end{equation*}
$$

where $s^{2}=$ sample variance and $\bar{x}=$ sample mean of quadrat counts.
Species richness index [73]:

$$
\begin{equation*}
D=\frac{m-1}{\ln (N)} \tag{7}
\end{equation*}
$$

where $m=$ number of tree species and $N=$ number of trees per hectare.
Species diversity index [74]:

$$
\begin{equation*}
H^{\prime}=\frac{-\sum_{i=1}^{m}\left[w_{i} \cdot \ln \left(w_{i}\right)\right]}{\ln (10)} \tag{8}
\end{equation*}
$$

where $m=$ number of tree species, $w_{i}=$ basal area proportions of individual tree species, $\ln (10)=10$ tree species were set as a default for the forest stand rich in tree species.

Species evenness index [75]:

$$
\begin{equation*}
E=\frac{H^{\prime} \cdot \ln (10)}{\ln (m)} \tag{9}
\end{equation*}
$$

where $H^{\prime}=$ Entropy H^{\prime} according to Shannon [74]-Equation (8), $m=$ number of tree species.
Diameter differentiation index [76]:

$$
\begin{equation*}
T M_{d}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(1-r d_{i j}\right) \tag{10}
\end{equation*}
$$

where $r d=$ ratio between larger and smaller diameter of all nearest neighboring trees in a stand.
Height differentiation index [76]:

$$
\begin{equation*}
T M_{h}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(1-r h_{i j}\right) \tag{11}
\end{equation*}
$$

where $r h=$ ratio between larger and smaller height of all nearest neighboring trees in a stand.
Crown differentiation index [77]:

$$
\begin{equation*}
K=\left[1-\log \left(H C B_{\min }\right)\right]+\left(1-\frac{C D_{\min }}{C D_{\max }}\right) \tag{12}
\end{equation*}
$$

where $H C B_{\min }=$ minimum height to crown base $(\mathrm{m}), C D_{\min }=$ minimum crown diameter (m), and $C D_{\max }$ $=$ maximum crown diameter (m).

Arten-profile index [78]:

$$
\begin{equation*}
A p=\frac{-\sum_{i=1}^{m} \sum_{j=1}^{3}\left[p_{i j} \cdot \ln \left(p_{i j}\right)\right]}{\ln (3 . m)} \tag{13}
\end{equation*}
$$

where $m=$ number of tree species and $p_{i j}=$ proportion of basal area of trees of i th tree species in j th stand layer.

Total diversity index [77]:

$$
\begin{align*}
& B=\left\{4\left[\log (m) \cdot\left(1.5-Z_{\max }-Z_{\min }\right)\right]+3\left(1-\frac{h_{\min }}{h_{\max }}\right)+\left(1-\frac{r_{\min }}{r_{\max }}\right)+\left[1-\log \left(H C B_{\min }\right)\right]\right. \\
& \left.+\left(1-\frac{C D_{\min }}{C D_{\max }}\right)\right\} \tag{14}
\end{align*}
$$

where $m=$ number of tree species, $Z_{\text {max }}=$ maximum tree species proportion, $Z_{\text {min }}=$ minimum tree species proportion, $h_{\min }=$ minimum tree height in the stand $(\mathrm{m}), h_{\max }=$ maximum tree height in the stand (m), $r_{\min }=$ minimum tree spacing $(\mathrm{m}), r_{\max }=$ maximum tree spacing $(\mathrm{m}), H C B_{\min }=$ minimum height to crown base (m), $C D_{\text {min }}=$ minimum crown diameter (m), and $C D_{\max }=$ maximum crown diameter (m).

Stand density index [79]:

$$
\begin{equation*}
S D I=N \cdot\left(\frac{25}{d b h_{g}}\right)^{-1.605} \tag{15}
\end{equation*}
$$

where $d b h_{g}=$ quadratic mean diameter (cm) and $N=$ number of trees per hectare.
Crown closure [80]:

$$
\begin{equation*}
C C=100 \cdot\left(1-e^{-1 . P C A}\right) \tag{16}
\end{equation*}
$$

where $P C A=$ crown projection area per hectare (ha).

