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Abstract: Effective forest management is predicated on accurate information pertaining to the
characteristics and condition of forests. Unfortunately, ground-based information that accurately
describes the complex spatial and contextual nature of forests across broad landscapes is cost
prohibitive to collect. In this case study we address technical challenges associated with estimating
forest characteristics from remotely sensed data by incorporating field plot layouts specifically
designed for calibrating models from such data, applying new image normalization procedures to
bring images of varying spatial resolutions to a common radiometric scale, and implementing an
ensemble generalized additive modeling technique. Image normalization and ensemble models
provided accurate estimates of forest types, presence/absence of longleaf pine (Pinus palustris), and
tree basal areas and tree densities over a large segment of the panhandle of Florida, USA. This study
overcomes several of the major barriers associated with linking remotely sensed imagery with plot
data to estimate key forest characteristics over large areas.
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1. Introduction

Longleaf ecosystems are some of the most endangered forest ecosystems in the world [1].
Historically, these ecosystems covered approximately 37 million ha in the southeast United States of
America (USA) and provided habitat for a wide range of plants and animals owing to their unique
structure and adaptations to fire. The species composition and structure of these ecosystems is
maintained by frequent fire, which preserves a diverse early successional understory and relatively
open longleaf pine (Pinus palustris) dominated overstory [2]. Due to many anthropogenic factors
such as land use change, the suppression of fire on the landscape, over-harvesting of timber, and the
replacement of longleaf pine with faster growing loblolly (Pinus taeda) and slash (Pinus elliottii) pines,
less than 1.5 million ha of longleaf pine remain [2]. Because of this dramatic loss of habitat there has
been a recent resurgence in longleaf ecosystem restoration and conservation that calls for more than
doubling the existing area covered by longleaf ecosystems by 2024 [3].
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Transforming such a large amount of the existing landscape back to a healthy longleaf ecosystem
condition within today’s social framework will require well planned forest and natural resource
management and education targeted towards public, private, and nonprofit agencies, organizations,
and landowners. Moreover, the identification of restoration opportunities will require detailed,
spatially explicit information about not only existing longleaf ecosystems but also the condition of other
forested and nonforested landscapes. While detailed information is necessary to compare and evaluate
restoration projects and make informed decisions, such information currently does not exist and is cost
prohibitive to acquire across broad extents using ground-based inventory methodologies (e.g., [4]).
Because of this limitation and the lack of quality information, optimal restoration opportunities can be
difficult to identify and fully justify, leaving managers to rely on opinion and intuition when making
important and potentially costly restoration decisions.

Alternatively, relating remotely sensed data to field measurements of existing forest characteristics
to generate fine to medium grained spatially explicit information at a much lower cost than traditional
inventory methodologies has shown great promise [5,6]. However, in practice the implementation of
these techniques and the use of modeled outputs has seen mixed success. In large part this discrepancy
between promise and success stems from challenges and problems related to handling big data and the
data science techniques used to transform these data into actionable information. Additionally, the lack
of analysts and managers within natural resources with a requisite background in data science [7]
and a legacy of the types of outputs historically created from remotely sensed imagery (e.g., [8,9])
contribute to this inconsistency. While the scarcity of trained individuals in the field of data science
is now being addressed at many universities [10], the broader issues related to handling big data,
the techniques used to transform remotely sensed data streams into information to guide resource
management, and the types of products created for informing restoration are active, ever-evolving
areas of research [11].

Within this framework, we present a case study that: (1) used field plots and multiple sources
of remotely sensed data to convert spectral data into products to inform silviculture and forest
management, (2) developed and applied new techniques for normalizing multi-spectral imagery
obtained at various spatial resolutions and extents, (3) evaluated the impact of image normalization on
mapping key forest characteristics, and (4) implemented an ensemble modeling approach to estimate
key forest metrics and measures of estimation error. These techniques and evaluations were applied
across the Apalachicola Significant Geographic Area (ASGA) in the panhandle of northwestern Florida,
USA, and used to derive estimates of tree density and basal area by species groups for longleaf pine
restoration purposes.

2. Materials and Methods

2.1. Study Area

The ASGA is a large geographic area in the panhandle of Florida, USA, that consists of
approximately 2 million ha of public and private land holdings (Figure 1). With regard to longleaf
restoration, ASGA provides a unique combination of large intact remnant longleaf ecosystems clustered
and intermixed with converted forest types, agricultural lands, and urban landscapes [12]. Longleaf
ecosystems present within the boundary of the ASGA include sandhill, flatwoods, and upland pine
communities that represent a national biodiversity hot spot. Additionally, remnant components of
longleaf ecosystems reside within pine (Pinus taeda and Pinus elliotti) and mixed pine and hardwood
(e.g., Quercus spp., Carya spp. Acer spp. Liquidambar styraciflua, Ulmus spp.) forests (Table A1).
Notably, longleaf pine ecosystems provide habitat for various rare and threatened species such as the
red-cockaded woodpecker (Leuconotopicus borealis), Bachman’s sparrow (Peucaea aestivalis), frosted
flatwoods salamander (Ambystoma cingulatum), gopher tortoise (Gopherus polyphemus), and indigo
snake (Drymarchon spp.) [12]. Equally distinctive within ASGA are the partnerships and coalitions
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dedicated to the restoration of longleaf pine, making this region an ideal location to quantify various
aspects of the existing forest condition for the purposes of management and restoration.Forests 2018, 9, x FOR PEER REVIEW  3 of 21 
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Figure 1. Apalachicola Significant Geographic Area (ASGA) location map (right) and image boundaries
(left). Landsat 8 and Sentinel 2 images were acquired for three seasons, representing a leaf on growing
season (LGS), leaf on dormant season (LDS), and a leaf off winter season (LWS). Aerial imagery was
only acquired for LDS. Image acquisition dates can be found in Table A2.

2.2. Overview

Primary datasets used in this study consist of field inventory plots, aerial based digital
imagery [13], multi-temporal Sentinel 2 satellite imagery with level 1 top of atmosphere correction [14],
and multi-temporal Landsat 8 satellite imagery with level 1 terrain precision correction [15,16] for
the extent of ASGA. Field plot measurements were collected by trained technicians [17] between the
months of September 2017 and February 2018. Aerial imagery was flown by Quantum Spatial [13] at a
nominal spatial resolution of 0.6 m for blue, green, red, and near infrared portions of the electromagnetic
spectrum between October 26th and November 18th, 2017 (Figure A1). In total, 29 aerial images
representing a given flight path were acquired for the study area (Table A2). Multi-temporal Sentinel 2
images were manually selected for cloud free tiles and were downloaded from the European Space
Agency (ESA) website Copernicus Open Access Hub [18]. Images were acquired for a leaf on growing
season (LGS; March–May), leaf on dormant season (LDS; October–November) and a leaf off winter
season (LWS; December–February) between the years of 2017 and 2018 to capture variations in tree
species phenology (Figure A1). Sentinel 2 bands 2, 3, 4, and 8 at a nominal spatial resolution of
10 m were used for study comparisons. In total, 15 Sentinel 2 tiles were acquired for the study area
(Table A2). Landsat 8 images were also manually selected for cloud-free scenes and were downloaded
from United States Geological Survey (USGS) website Earth Explorer [19]. They were acquired for
similar LGS, LDS, and LWS periods between the years 2015 and 2018 (Figure A1). Only Landsat 8
bands 2–7 were used for study comparisons. In total, 6 Landsat 8 scenes were acquired for the study
area (Table A2). Band selection for Sentinel 2 and Landsat 8 images were based on the desire to select
portions of the electromagnetic spectrum that were comparable with the portion of the spectrum
sensed within the aerial imagery while also including the short wave infrared (SWIR) component of
the spectrum. For SWIR portions of the spectrum, only Landsat 8 bands were included due to their
similarities to Sentinel 2 band spectral and spatial resolutions. Sentinel 2 bands 5–7 were not included



Forests 2020, 11, 426 4 of 21

within analyses because they were not comparable with the spectral resolutions of either the aerial or
Landsat 8 imagery.

To reduce the negative impacts of co-registration errors [20], we used a field plot layout consisting
of four adjacent circular subplots, each with a radius of 9 m (Section 2.4). In total, 244 field plots were
installed (Section 2.3) and used to measure tree species counts and diameters at breast height (dbh;
1.37 m). For the extent of each field plot, spectral and texture metrics (Section 2.6) were derived from
source and normalized Landsat 8, Sentinel 2, and aerial imagery (Section 2.5). These metrics were used
to calibrate classification models of the dominant forest type (DFT) and longleaf pine presence (LPP),
as well as continuous models of basal area per ha (BAH) and trees per ha (TPH) of pine and other tree
species groups (Section 2.7).

2.3. Sample Design

A significant portion of the ASGA is made up of private land holdings. Owing to access constraints,
forests in these holdings could not be sampled on the ground. The remaining area, consisting primarily
of public lands, constituted our target population (Figure 2). Plot locations within the target population
were allocated spatially at random within 804 m of a road. In total, a sample of 244 locations was
drawn from the target population. The restriction on sampling necessitated the following assumptions:
(1) the target population encompassed the spectral domain of the full ASGA and (2) the relationships
between variables observed in the field and those derived from the imagery were the same across the
target population and the full ASGA.
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Figure 2. Spatial allocation (left) and layout (right) of field plots overlaid on aerial imagery. Target
population (tan colored region) accounted for approximately 23% of the total area within the ASGA.

Only the first of those assumptions could be empirically evaluated. To do so, we partitioned the
multivariate distribution (feature space) of the normalized spectral and texture metrics (Section 2.5)
over the ASGA into 100 classes using an unsupervised k-means classification [21,22]. The number of
k-mean classes (k = 100) was based on the desire to split feature space into relatively small subsets that
could be mapped back to geographic space and used to geographically identify sampled portions of
feature space. While the number of classes chosen for our study was 100, increasing or decreasing
the number of classes would have the impact of decreasing or increasing the amount of feature space
attributed to each class, respectively. Similarly, in a geographic sense, increasing or decreasing the
number of k-mean classes would translate to increasing or decreasing the geographic precision of
sampled areas within feature space, respectively. To mitigate the computation load, a simple random
sample of 10,000 locations drawn from across the ASGA was used to build the k-means classifier and
estimate the proportion of area attributed to each class across the study area. We then compared the
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class proportions for this full ASGA sample to the proportions across the 244 sample locations drawn
from the target population.

2.4. Field Data

Plot data consisted of global position system (GPS) locations and tree measurements within the
boundaries of subplots (36 m by 36 m, containing 4 subplots each with a 9 m radius; Figure 2) at those
locations. Basal area (BAH; m2 ha−1) and tree density (TPH; trees ha−1) were summarized for trees
greater than 5 cm in dbh by Pine and Other species classes (Table A1). Additionally, each plot was
assigned a dominant forest type (DFT) label of Nonforest, Pine, or Other using the rules defined in
Table 1. Finally, longleaf pine presence or absence (trees greater than 5 cm dbh) was described at the
plot level (Table 1).

Table 1. Definitions and queries used to label Pine, Other, and Nonforest dominant forest cover types
(DFT) and the presence of longleaf pine (LPP) along with proportions of plots meeting those criteria.
Species composition for Pine and Other class labels can be found in Table A1.

Classification Label Definition/Query Proportion

DFT
Pine (2) (P_BAH > O_BAH) and not Nonforest 0.480
Other (1) (O_BAH > P_BAH) and not Nonforest 0.340
Nonforest (0) P_BAH + O_BAH < 2 m2 ha−1 0.180

LPP Present LP_BAH > 0 m2 ha−1 and not Nonforest 0.168

P_BAH = pine, O_BAH = other, and LP_BAH = longleaf pine basal area per ha measure in m2.

Field plots were located using a Wide Area Augmentation System (WAAS) enabled global position
system (GPS) embedded within a Trimble Recon© data recorder (Trimble, Sunnyvale, CA, USA). Plot
GPS and tree data were collected using Environmental Systems Research Institute (ESRI)’s ArcPad©
version 10.0 (ESRI, Redlands, CA, USA) and a suite of mobile data collection applets developed
specifically for this project (Supplemental Materials 1). While every attempt was made to navigate to
the exact field plot location, real time navigation can introduce geographic error. To minimize this
error when relating field plot summaries to remotely sensed data, 20 GPS positions were collected
and averaged to estimate the exact center of the southeastern subplot within each 36 m by 36 m field
plot. From the southeastern plot location, remaining subplots centers were located based on ground
distance and compass bearings. On average the standard deviation of GPS positions across all plots
was less than 1 m with a maximum standard deviation in northing of 2.8 m and in easting of 5.1 m
occurring at one plot location (average horizontal dilution of precision of 0.93).

2.5. Image Normalization

Remotely sensed data were re-scaled to a common radiometric scale using an enhanced aggregate
no-change regression (EANR) methodology. Similar to aggregate no-change regression (ANR) [6,23],
EANR seeks to leverage strong linear relationships among Landsat, Sentinel 2, and aerial image bands
to bring finer spatial resolution imagery to the same relative radiometric scale as coarser imagery.
The main differences between EANR and ANR are: (1) an added aggregation step to bring finer
resolution imagery to the same spatial scale as the reference imagery, (2) a normalization of raw digital
number (DN) values, (3) a trimming procedure to mitigate confounding effects of land use/cover
changes for images acquired at different dates, and (4) a sampling scheme to extract spectral aggregates
within overlapping image boundaries.

Like ANR, EANR extends the concepts of automatic scattergram-controlled regression [24] by
applying an area slicing algorithm to identify no-change pixels. It then spatially aggregates pixel
values around selected locations to minimize the effect of co-registration errors [20,23]. Aggregated
values at selected locations of the subject image are then regressed against the corresponding values
for a reference image using ordinary least squares regression (OLS) on a band-by-band basis. Finally,
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regression coefficients are applied to the subject image to bring it to the same radiometric scale as the
reference image and to other fine-scaled images that overlap the same reference image.

Critical to this process is the elimination of areas and pixels within the region of image overlap
that have been affected by land use or land cover change. This was accomplished in two steps. The first
step required visually estimating the proportion (p∆) of area within the overlapping regions of the
images that were impacted by changes due to phenomena such as clouds, land use change, or land
cover change. For our study, we used an estimate of p∆ = 20 percent to mask Landsat 8 and Sentinel 2
pixels. For aerial imagery we used a p∆ ranging between 20 and 30 percent. Applying these change
proportions, raw DN values were separately normalized

(
D̂N

)
to the unit scale for each of the subject

(S) and reference (R) images and bands (k). Differences in the normalized D̂N values between subject
and reference images were then obtained for each band:

∆D̂Nk = D̂NRk − D̂NSk (1)

For step two, the ∆D̂Nk values were ordered from smallest to largest. Pixels in the lower 10%
(i.e., 0.5p∆) and upper 10% were identified as “change” pixels and masked from subsequent analyses.

The spatial aggregation process minimizes the effect of co-registration errors [20] by extracting and
calculating the mean values of unchanged pixels within the overlap of each image at a coarser grain size.
In this procedure an aggregation block window size of 270 m by 270 m was chosen based on simulated
results found for Landsat 8 co-registration errors reported in Hogland and Affleck [20]. Aggregated
blocks with more than 30 percent of the pixels identified as no-change were used for regression analyses
of subject image blocks on reference image blocks for individual bands. The resulting regression
coefficients for each band were then applied back to the non-aggregated pixel values of the subject
image. The described EANR procedure was developed and integrated into the RMRS Raster Utility
project [22] (Supplemental Materials 2).

For Landsat 8 and Sentinel 2 images, we used EANR with 1000 randomly chosen locations within
regions of overlap to bring images within a given season to a common relative radiometric scale.
For normalization of Landsat 8 imagery, path/row 18/39 data were used as the reference images for each
season. Reference images for normalization of Sentinel 2 imagery are specified in Table A2. For aerial
imagery, normalized Landsat 8 imagery was used as the reference image. In instances when substantial
land use or land cover change had occurred due to differences in image acquisition dates (e.g., changes
in agricultural fields), manually defined spatial masks were used to remove additional pixels prior to
implementation of the EANR procedure (Figure 3).
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Figure 3. Example of spatial masks (semitransparent beige polygon with green border) and random
locations (yellow points) used in the enhanced aggregate no-change regression procedure (EANR) for
LDS Landsat 8, Sentinel 2, and aerial imagery. Light blue polygons highlight the overlapping area
between images acquired at different dates while masked areas highlight a subset of that area composed
primarily of forest vegetation.

2.6. Spectral and Texture Metrics

Once normalized, focal mean and standard deviation analyses [5,6,22] were performed to quantify
texture and mimic field plot extents for each band, season, and source of remotely sensed imagery
(Table 2). Due to differing spatial resolutions of the imagery, various window sizes were used to
capture spectral and texture patterns at approximately the same spatial resolution as the field plot
extent. Window sizes for each image source were chosen based on the smallest window extent with an
odd number of rows and columns that could be used to calculate focal mean and standard deviation
statistics without resampling the imagery. For Landsat 8 imagery, mean band DN values were extracted
based on the location of a given field plot and the nearest pixel (30 m by 30 m spatial resolution).
Additionally, at those locations, Landsat 8 band standard deviations for a three by three moving
window (90 m by 90 m) were calculated for each pixel and extracted. For Sentinel 2 imagery, a three by
three moving window (30 m by 30 m) was used to calculate mean values and a five by five window
(50 m by 50 m) was used to calculate standard deviation. For aerial imagery, a 61 by 61 window (grain
size of 0.6 m, ~37 m by 37 m) was used to calculate image mean and standard deviation at each location.
In total, 68 different metrics were created and extracted from the normalized remotely sensed imagery
using the averaged GPS location of each field plot and the nearest image pixel. As shown in Table 2,
these metrics include 36 band values extracted from Landsat 8 based imagery (2 metrics for 6 bands
and 3 seasons), 24 band values extracted from Sentinel 2 based imagery (2 metrics for 4 bands and 3
seasons), and 8 band values extracted from the aerial imagery (2 metrics for 4 bands and 1 season).
To evaluate the impact of EANR on estimating DFT, LLP, BAH and TPH, this metric creation and
extraction process was repeated for non-normalized imagery and the values from both sets were used
to build and compare models.
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Table 2. Sources, spatial resolution, and labeling of imagery used in comparisons.

Source Code Resolution Bands Spectral and Texture Metrics Season ID

Landsat 8 L 30 m 2–7

Mean (Cell)
LDS 1–6
LGS 7–12
LWS 13–18

Standard Deviation (3 by 3 Cells)
LDS 19–24
LGS 25–30
LWS 31–36

Sentinel 2 S 10 m 2, 3, 4, and 8

Mean (3 by 3 Cells)
LDS 1–4
LGS 5–8
LWS 9–12

Standard Deviation (5 by 5 Cells)
LDS 13–16
LGS 17–20
LWS 21–24

Quantum
Spatial A 0.6 m 1–4

Mean (61 by 61 Cells) LDS 1–4
Standard deviation (61 by 61 Cells) LDS 5–8

2.7. Model Development, Comparisons, and Raster Surface Creation

For each response variable (DFT and LLP classes, plus Pine and Other tree species BAH and TPH)
we used a variable selection routine described in [5,6] to select EANR normalized and non-normalized
remotely sensed metrics that significantly (α = 0.05) improved the model fit of generalized additive
models (GAMs), as defined by increased percent deviance explained. This variable selection routine
uses GAMs, deviance, and pseudo p-values to iterate through potential predictor variables and
exhaustively find the combination of additive variables that are both significant and improve the model
fit by a user specified amount (Supplemental Materials 3). GAMs are a flexible modeling technique that
can accommodate nonlinear relationships between response and predictor variables using penalized
regression splines [25] and can be applied to non-Gaussian response data such as the DFT and LLP.
While useful in identifying nonlinear, nonparametric relationships, GAMs can overfit sample data
making estimates less generalizable to a given population [26]. To address the issue of overfitting, we
employed a Monte Carlo re-sampling scheme to build a suite of 50 GAMs constructed from random
subsets of our data. For each of the 50 GAMs, 75 percent of the observations within our sample were
used to develop relationships between a given response and our previously selected predictor variables.
The remaining 25 percent of the observations that were not used to build the GAM constituted an out
of bag (OOB) subset of the data and were used to assess the accuracy of GAM estimates
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Ê
)

and corresponding standard error
(
ŜE
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EGAMs based on EANR normalized imagery were compared against EGAMs based on
non-normalized imagery using averaged RMSE, classification accuracy statistics, and Akaike’s
information criterion (AIC) [27,28]. Our best fitting EGAMs (normalized versus raw image based
predictors) were used with the corresponding image metrics to produce raster surfaces depicting the
condition of forests in the ASGA. Additionally, estimation errors at field plot locations were evaluated
for spatial correlation using a global Moran’s I test [29]. The described analyses and procedures were
developed and performed in R statistical software [30] and are available in Supplemental Materials 3.
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3. Results

3.1. Field Data

Plot summaries from field data are displayed in Figure 4 and Table 1. Almost half the plots were
in the Pine class (48%), but only 16.8% contained longleaf pine trees above 5 cm dbh and BAH above
2 m2 ha−1. Mean BAH for the DFT Other class was only slightly higher than that for the DFT Pine class,
but BAH was more variable in the former. Mean TPH and variability in TPH was substantially lower
in the Pine class relative to the Other forested class. Taken together, this indicates that tree diameter
(dbh) tended to be larger in the Pine class.
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Figure 4. Histograms and summary statistics of plot basal area m2 ha−1 (BAH) and trees ha−1 (TPH)
for pine and other tree species groups.

3.2. Image Normalization

The EANR-adjusted Landsat 8, Sentinel 2, and aerial imagery is shown in Figure 5. The R2

statistics for LDS, LGS, and LWS Landsat 8 normalization regressions were generally large (greater than
0.9; Figure 6) across all bands, with the lowest R2 coinciding with LWS analyses. Similarly, for Sentinel
2 imagery, the R2 statistics of the image-to-image overlap regressions were large (greater than 0.9) with
the lowest occurring in LWS. The strength of these associations resulted in the improved radiometric
consistency across Landsat 8 and Sentinel 2 images that is visually evident in Figure 5 (cf. Figure A1).
In contrast, regressions of overlapping aerial and Landsat 8 Imagery were weak for several flight paths
(Figure 6). The acquisition dates for these paths tended to be later (Figure 3) and potentially coincided
with substantial changes in plant phenology. As a result, original scene boundaries were still apparent
in normalized aerial image mosaics (Figure 5).
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Figure 6. Box plots of enhanced aggregate no-change normalization (EANR) coefficients of
determination (R2) results for each source of imagery and season across all image bands. For Landsat
8 and Sentinel 2, the reference and subject images were of the same source; for Aerial analyses,
the reference images were normalized Landsat 8 imagery.

3.3. Sample Distribution

Clusters derived from spectral and texture metrics using the k-means unsupervised clustering
algorithm divided the feature space into 100 classes of varying size (Figure 7). The distribution of the
field plot locations across those same 100 classes shows that the field plots spanned a wide range of the
feature space, but did not capture all the spectral classes. Many of the classes not represented at field
plot locations corresponded to urban and agricultural cover types.
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Figure 7. Estimated proportion of AGSA (orange) falling within each of 100 classes derived from an
unsupervised classification of normalized Landsat 8, Sentinel 2, and aerial imagery, plus the proportion
of 244 field plots (blue) within those same classes.

3.4. Model Development, Comparisons, and Raster Surface Creation

Spectral and texture metrics selected for modeling varied by response variable and whether images
were normalized to a common radiometric scale (Table 3). Using the variable selection procedure
described by Hogland et al. [6], EGAMs selected between four and twelve metrics out of the potential
68, at a significance threshold of α = 0.05. In all instances, metrics were selected from each image source
and from multiple seasons (Tables 2 and 3). Compared with EGAMs built using non-normalized texture
metrics, EANR based EGAMs generally improved model fit as measured by average classification
error, RMSE, and AIC (Table 3). EGAMs based on non-normalized imagery generally selected fewer
metrics and tended to utilize metrics derived from Landsat 8 and Sentinel 2 data sources. In all cases,
EGAMs that used normalized predictors were selected as the top fitting models and used to assess
accuracy and create raster surfaces.
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Table 3. Selected predictor variables and mean error statistics for normalized (EANR) and
non-normalized (RAW) based ensemble generalized additive models (EGAMs). Error statistics
for dominant forest type (DFT) and longleaf pine presence (LPP) models are in terms of 1–accuracy
of the classification, while BAH and TPH errors are measured in terms of root mean squared error
(RMSE) on the square root scale. Train and out of bag (OOB) errors denote whether error statistics were
calculated from observations used to train a given model or withheld from training, respectively. Mean
Akaike information criterion (AIC) was calculated using training data and the AIC statistics for each
generalized additive model within the corresponding ensemble.

Response Normalization Predictors * Train OOB AIC

DFT
EANR L3, L16, L17, S2, S5, S7, S21, A1 0.068 0.235 86.217
RAW L8, L9, L16, L18, S11, S5 0.103 0.263 110.023

LPP
EANR L2, L17, S3, S4, A2, A5 0.056 0.129 94.683
RAW L2, L13, S9, A6 0.095 0.148 113.617

√
Pine BAH

EANR L2, L8, L10, L11, L16, L17, L18, L22, A2, A8 0.909 1.168 548.664
RAW L2, L5, L6, L8, L10, L11, L17, L22, S9, S10, S11, S12, A4 0.900 1.267 547.441

√
Other BAH

EANR L3, L5, L11, S7, S9, S21, S23, A2, A5 1.108 1.365 600.177
RAW L3, L5, L11, L13, L16, S12, A5, A7 1.188 1.541 637.448

√
Pine TPH

EANR L3, L5, L8, L10, L11, L17, L28, S4, S11, A2, A5 5.755 9.197 1243.537
RAW L1, L4, L5, l6, L13, L22, L31, S11, S20 6.709 10.866 1277.418

√
Other TPH

EANR L9, L13, S2, S6, S7, S20, A1 11.787 14.977 1471.036
RAW L3, L5, L11, L13, S12, S20, A5 12.492 14.682 1486.281

* Predictor variable naming convention is based on the concatenation of Table 1 Code and Id columns.

Overall classification accuracies for top fitting DFT and LPP EGAMs were greater than 88%
with the most common classification errors being the mapping of the Other forested class as pine,
and longleaf presence being mapped as absence (Figure 8). Training and OOB errors for DFT, LPP,
BAH and TPH EGAMs are reported in Table 3 and suggest strong relationships among response and
normalized predictor variables, particularly in the Pine class. Estimated BAH and TPH values from
top fitting models were also strongly correlated with observed values, though in densely stocked
conditions (TPH above 1000 stems ha−1, BAH above 20–30 m2 ha−1), EGAMs tended to underestimate
BAH and TPH (Figure 9). Estimation errors for some EGAMs were positively spatially correlated,
suggesting spatial patterns or trends in model errors (Table 4). Though tempting to address the spatial
variability in estimation error using kriging [31], our sample design does not lend itself to accounting
for spatial trends in the residuals across the largely privately-owned tracts of the AGSA that were
outside the target population.
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Figure 8. Accuracy assessment for dominant forest type (DFT) and presence of longleaf pine (LPP)
using all 244 field plots and the corresponding ensemble generalized additive model (EGAM). Exact 95
percent lower and upper confidence limits for each class are reported above and below bold numbers
within the error matrix and within parentheses of overall accuracy.
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Figure 9. Predicted versus observed values (blue circles) of basal area per ha (BAH) and trees per
ha (TPH) for pine and other tree species groups derived from ensemble generalized additive models
(EGAMs) that used normalized predictors. The black dashed line shows the general trend based on a
loess smooth estimator with grey shaded 95 percent confidence bands. The red line denotes a one to
one line.

Table 4. Global Moran’s I (GMI) statistics and p-values for the hypothesis of no spatial association for
ensemble generalized additive model (EGAM) residuals.

EGAM * GMI p-Value

DFT (Nonforest) 0.364 <0.001
DFT (Other) 0.067 0.190
DFT (Pine) 0.093 0.153

LPP (Present) 0.223 0.002
Pine BAH 0.184 0.011
Pine TPH 0.068 0.188

Other BAH 0.087 0.131
Other TPH 0.140 0.037

* DFT = dominant forest type, LPP = longleaf pine presence, BAH = basal area per ha (m2), TPH = trees per ha.

EGAM raster surfaces were created at a spatial resolution of 30 m across the ASGA for all response
variables. For DFT and LPP, EGAM estimates include class probabilities and model-based estimated
standard errors for each cell within the study area. For pine and other

√
BAH and

√
TPH, estimates

and standard errors were calculated using squared transformations of EGAM estimates.
DFT and LPP raster surfaces are presented in Figure 10 while BAH and TPH surfaces are presented

in Figure 11. Additionally, Figures 10 and 11 display the spatial distribution of EGAM-specific feature
space k-means classes that were not represented within the sample. Some banding of estimates and
standard errors is evident in Figures 10 and 11 for the models using the A2 and A5 metrics (e.g.,
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for LLP, Pine TPH, Other BAH) in the eastern portion of the ASGA. Those bands tend to appear in the
corresponding sample representation maps, suggesting that certain flight paths in the aerial imagery
could not be fully normalized and were unable to be adequately sampled in the field.
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Figure 10. Spatial distribution of the dominant forest type most likely class (DFT), class probabilities,
and class probability standard errors for Nonforested (red), Other (green), and Pine (blue) cover types
(Table 1). Additionally, presence and absence of longleaf pine within a plot based on a most likely
class rule (LPP), presence probabilities, and presence probability standard errors (purple to green color
gradient). Finally, the spatial location of k-mean classes not represented in the sample used to train
EGAMs are displayed as orange areas in the bottom row of graphics.
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Figure 11. Display of trees per ha (TPH) and basal area per ha (BAH) raster surfaces created from
ensemble generalized additive models (EGAMs) for Pine and Other tree species classes. EGAM raster
cell estimated values (top row of graphics) and standard errors (middle row of graphics) increase as
colors transition from purple to green. The spatial locations of k-mean classes not represented in the
sample used to train EGAMs are displayed as red areas in the bottom row of graphics.
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4. Discussion

We mapped key forest characteristics across ASGA that can be used to inform spatially explicit
longleaf restoration decision making. These surfaces transform data that are relatively easy to collect
into pertinent information for longleaf pine restoration, providing the fine level of spatial detail and
accuracy needed to make well-informed restoration decisions. We have also described a procedure for,
and demonstrated the importance of, bringing images to a common radiometric scale across sources,
years, and spatial resolutions (Figure 5). Models built with EANR-normalized spectral and texture
metrics utilized distinct sources, phenological seasons, and bands, and had less error than models built
using the raw imagery (Table 3). Additionally, our study highlights how multiple image resolutions
(temporal, spectral, and spatial) can improve model fit and estimation, especially after images have
been brought to a common radiometric scale using a technique like EANR. Finally, we presented and
implemented an EGAM approach to estimate DFT, LPP, and BAH and TPH for pine and other tree
species groups that accommodates nonlinear relationships while mitigating the potential for overfitting.
Combined, EANR and EGAM produce better estimates of key forest characteristics than previous
longleaf pine mapping efforts [5,6] (reductions in classification error and RMSE). Moreover, the EGAM
procedure provided spatial depictions of estimation error (standard error surfaces) that can be used by
resource managers when making management decisions.

Sample design played an important role in our study. Because some areas were inaccessible,
field sampling was limited to a subset of the ASGA (Figure 2). This limitation means that inferences
must rely on the assumptions that the sample adequately characterizes the feature space and that the
predictor–response relationships do not vary among different ownership types across the ASGA. For our
study, the sampled locations captured an appreciable extent of the feature space (Figures 7, 10 and 11)
and there were relatively strong relationships among response and predictor variables. Because of these
reasons we feel relatively confident that the model estimates provide an accurate depiction of forested
conditions across the ASGA. However, our assessment did identify portions of the feature space that
were unsampled, and others that were over- or under-represented. From a model calibration perspective,
overrepresentation can be thought of as wasted effort when variability in the predictor–response
relationship is relatively minor. In those instances, observations from overrepresented regions of
feature space could potentially be reallocated to unsampled or underrepresented areas. Additionally,
our assessment detected some geographic areas where the imagery could not be adequately normalized
and thus may have related differently to the vegetation conditions. Future designs should attempt
to spread sample locations across predictor variable space, while balancing the sample to mimic the
distributional characteristics of the population [32]. Toward this end, the raster surfaces created from
this study could be used to spread and balance sampling locations for future studies [33], thereby
providing additional means to minimize error and reduce sample cost.

Quantitatively, DFT and LPP EGAM fit statistics suggest that our models accurately depicted
forest cover types and the presence of longleaf pine. Similarly BAH and TPH EGAM estimates were
strongly correlated with observed plot BAH and TPH over the more commonly observed lower ranges
of these variables. Moreover, EANR based EGAMs outperformed EGAMs based on spectral and
texture metrics from raw imagery. Interestingly, the correlation between observed and predicted
values for Other TPH was substantially less than BAH and Pine TPH models, especially when tree
densities were high. This may be due to the variability in tree crown shapes associated with the various
tree species of the Other class (Table A1). However, further investigation is needed to substantiate
this claim.

Qualitatively, our raster surfaces display more detail and are less impacted by variation in image
acquisition dates when compared to previous mapping efforts [5]. However, there were instances
when our EGAMs appeared to underestimate TPH (Figure 9) and to omit instances when longleaf pine
was present (Figure 8). For example, when TPH was greater than 1000 ha−1 (e.g., as would be the case
in young or overstocked stands), EGAMs underestimated TPH. Additionally, some areas dominated
by cities, agricultural fields, water, and aquatic vegetation were underrepresented or not represented
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(Figures 10 and 11) in our sample and led to imprecise estimates (Figure 12). However, DFT, LPP, BAH
and TPH models generally produced reliable, spatially explicit estimates.
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underrepresentation of feature space classes within the sample.

While estimation error could be reduced for almost every EGAM by including additional
EANR normalized spectral and texture predictive variables (i.e., setting an α = 0.1), the added
complexity and processing associated with including more variables outweighed the marginal gains
in accuracy. Similarly, many of the predictor variables used in our EGAMs were highly correlated,
suggesting marginal utility of additional metrics. Additionally, areas within feature space that were
underrepresented or not represented generally produced extremely variable estimates, which should
be viewed with skepticism. Moreover, EGAMs that were more complex (i.e., more predictor variables)
tended to have larger proportions of the expanded feature space underrepresented. This suggests
that for limited sample sizes, simpler models (i.e., fewer predictors) may be preferred for wall to wall
mapping endeavors along with masking land cover types that are not forested. Finally, for some of our
EGAMs, estimation errors exhibited minor positive spatial correlation. While tempting to use kriging
methods [31] to remove global spatial trends in estimation error, our design did not adequately sample
geographic space across ASGA, limiting the utility of kriging methods to contiguous accessible areas
sampled within our study.

Though additional improvements can be made to our estimates of forest characteristics, tradeoffs
between processing, model development, and sampling costs related to improvements in accuracy
should be weighed to evaluate the level of precision needed to inform decision making [34]. Given the
amount of model error potentially introduced by co-registration errors [20], our EGAMs explained
the majority of the variation that can be accounted for within the field data and provide a substantial
improvement over previous efforts [5,6]. Additionally, by implementing an ensemble approach
to generalized additive models, we were able to capture nonparametric trends in the data while
mitigating overfitting and providing a technique to empirically estimate model-based standard errors.
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The resultant estimates and standard errors provide the type of information needed to make both fine
and coarse grained restoration decisions across the ASGA.

For example, DFT, LLP, Pine and Other BAH and TPH, and standard error raster surfaces, can be
combined using a geographic information system and map algebra to locate, prioritize, and quantify
overstocked pine areas where longleaf pine trees are present. The resulting surfaces from those spatial
analyses can then be used to plan thinning and prescribed fire regimes to restore those areas to healthy
longleaf ecosystem stand densities and compositions [35]. Similarly, these same surfaces could be
used to locate, prioritize, and quantify areas where tree species other than pine make up the dominant
component of BAH (DFT Other class) but still have a remnant pine and longleaf element (hardwood
encroachment). Once identified, silviculture prescriptions can be planned and implemented to convert
those locations into a healthy longleaf ecosystem. Moreover, those silviculture prescriptions can be
designed in such a manner that they can be spatially depicted and coupled with BAH and TPH surfaces
and logistic spatial modeling techniques as described in [36] to quantify implementation costs and
further prioritize these types of restoration efforts.

5. Conclusions

Adept forest management requires accurate information concerning the status and distribution of
forest resources. To create accurate information pertinent to longleaf pine restoration, we developed
procedures to bring multi-temporal images to a common radiometric scale, model nonparametric
relationships between remotely sensed and field measured data, and produce spatial depictions of
forest cover types, longleaf pine presence, and BAH and TPH by forest cover class. These procedures
and sources of data were combined to produce the types of information needed to inform longleaf
restoration planning and implementation at planning and tactical spatial scales across a relatively large
area in northwestern Florida.
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Figure A1. Landsat 8, Sentinel 2, and Quantum Spatial (Aerial) imagery true color mosaics for leaf on
fall dormant (LDS), leaf on spring growing (LGS), and leaf off winter (LWS) seasons. The AGSA is
outlined in orange.

Table A1. Trees species composition for Pine and Other classes based on FIA tree species codes [37].

Class FIA Species Codes

Pine 115, 128, 131, 107, 110, 111, 121 (Longleaf pine)

Other

819, 835, 838, 842, 806, 824, 840, 841, 68, 221, 222, 802, 812, 813, 820, 825, 827, 831, 837, 822, 833,
834, 461, 462, 491, 521, 531, 544, 555, 591, 611, 621, 652, 653, 682, 691, 692, 693, 694, 711, 721, 762,
858, 922, 931, 972, 975, 993, 999, 316, 373, 391, 311, 317, 323, 345, 356, 367, 381, 421, 471, 500, 502,
541, 548, 551, 552, 581, 660, 662, 681, 701, 722, 731, 760, 764, 766, 901, 912, 953, 971, 994, 402, 403,

404, 409, 401, 410

Table A2. Landsat 8, Sentinel 2, and Aerial image acquisition dates by season and path, row, or tile.

Source Season Path\Row\Tile Acquisition Date

Landsat 8 LDS 18\39+ 10/11/2016
Landsat 8 LDS 19\39 10/16/2015
Landsat 8 LGS 18\39+ 5/7/2017
Landsat 8 LGS 19\39 4/9/2016
Landsat 8 LWS 18\39+ 1/18/2018
Landsat 8 LWS 19\39 12/21/2016
Sentinel 2 LDS 16RFV+ 10/12/2018
Sentinel 2 LDS 16RFU+ 10/12/2018
Sentinel 2 LDS 16RFT+ 10/12/2018
Sentinel 2 LDS 17RGU 10/14/2018
Sentinel 2 LDS 17RKP 10/14/2018
Sentinel 2 LGS 16RFV 3/16/2017
Sentinel 2 LGS 16RFU 3/16/2017
Sentinel 2 LGS 16RFT+ 5/2/2017
Sentinel 2 LGS 17RGU+ 5/2/2017
Sentinel 2 LGS 17RKP+ 5/2/2017
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Table A2. Cont.

Source Season Path\Row\Tile Acquisition Date

Sentinel 2 LWS 16RFV+ 1/30/2018
Sentinel 2 LWS 16RFU+ 1/30/2018
Sentinel 2 LWS 16RFT 2/24/2017
Sentinel 2 LWS 17RGU 1/12/2017
Sentinel 2 LWS 17RKP 1/12/2017

Aerial Imagery LDS 7001 10/26/2017
Aerial Imagery LDS 7002 10/26/2017
Aerial Imagery LDS 7003 10/26/2017
Aerial Imagery LDS 7004 10/26/2017
Aerial Imagery LDS 8001 11/10/2017
Aerial Imagery LDS 8002 11/18/2017
Aerial Imagery LDS 8003 11/18/2017
Aerial Imagery LDS 8004 11/18/2017
Aerial Imagery LDS 8005 11/5/2017
Aerial Imagery LDS 8006 11/5/2017
Aerial Imagery LDS 8007 11/5/2017
Aerial Imagery LDS 8008 11/5/2017
Aerial Imagery LDS 8009 11/5/2017
Aerial Imagery LDS 8010 11/1/2017
Aerial Imagery LDS 8011 11/1/2017
Aerial Imagery LDS 8012 11/1/2017
Aerial Imagery LDS 8013 11/1/2017
Aerial Imagery LDS 8014 10/26/2017
Aerial Imagery LDS 9017 10/29/2017
Aerial Imagery LDS 9018 10/24/2017
Aerial Imagery LDS 9019 10/24/2017
Aerial Imagery LDS 9020 10/24/2017
Aerial Imagery LDS 9021 10/24/2017
Aerial Imagery LDS 9022 10/24/2017
Aerial Imagery LDS 9023 10/24/2017
Aerial Imagery LDS 9024 10/24/2017
Aerial Imagery LDS 9025 10/24/2017
Aerial Imagery LDS 9026 10/24/2017
Aerial Imagery LDS 9027 10/24/2017

+ Denotes reference image used to normalize a given image source. Aerial imagery was normalized to normalized
Landsat 8 imagery.
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