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Abstract: Knowledge about carbon and nutrient fluxes by litterfall is important for understanding
nutrient cycling in geologically unique ecosystems. However, the determination of forest litterfall
production patterns is difficult due to many biophysical factors influencing the process. In this study,
we (1) quantified the litterfall production and carbon and nutrient fluxes in warm-temperate evergreen
forest stands in Jeju Gotjawal and (2) compared these values to those of a typical cool-temperate
deciduous forest stand by forest types and climate differences. Litterfall from evergreen broadleaved
forests at Cheongsu (CS) and Seonheul (SHb), a mixed forest at Seonheul (SHm) in Jeju Gotjawal, and
a deciduous broadleaved forest at Chungnam National University Forest (CNU) was collected for a
full two years using litter traps. Samples were sorted into leaves, twigs, barks, seeds, and unidentified
materials, and then weighed and measured for C, N, P, K, Ca, and Mg fluxes by litterfall. Results
showed that the mean annual litterfall (846.3 g m−2, average of CS, SHb, and SHm) at Jeju Gotjawal
was similar to that of CNU (885.5 g m−2), but varied by site in Jeju Gotjawal: CS (933.1 g m−2) was
significantly higher than the average of SHb and SHm (802.9 g m−2). Seasonal patterns of litterfall
production differed by forest types; evergreen broadleaved forests showed a bimodal peak in fall
and spring while deciduous broadleaved forests showed a unimodal peak in fall. Jeju Gotjawal
had significantly higher total macronutrient concentrations and contents (except for K) than CNU
and they also varied by site in Jeju Gotjawal: CS had higher N, P, Ca, and Mg contents than SHb

and SHm. We conclude that litterfall production and nutrient fluxes differed by forest stand as
influenced by forest types and climate. Further, our findings are important for understanding carbon
and nutrient dynamics in the geologically unique ecosystem of Jeju Gotjawal and other areas with
similar characteristics.

Keywords: Litter production; Nutrient flux; Quercus acutissima Carruth; Quercus glauca
Thunb.; Gotjawal

1. Introduction

Litterfall indicates various ecosystem processes including biogeochemical cycles; hence, it plays a
role as an important pathway of nutrient cycling [1,2]. The input–output system of litterfall production
and subsequent mineralization maintains soil fertility in forest ecosystems [3–5], thereby increasing
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forest productivity. Litterfall is the most important source of organic matter and soil nutrients [6,7].
In forests, litterfall can transfer approximately 18 Pg C year−1 to the soil surface, which is about
one-third of the annual C uptake [8,9]. Consequently, studies about nutrient fluxes by litterfall in
forest ecosystems are deemed important for understanding nutrient cycling dynamics. However,
determining the pattern of litterfall production across different forests remains a challenge for ecologists
due to many physical and biological factors affecting litterfall production.

The quality and quantity of litterfall production affect the carbon and nutrient fluxes in temperate
and tropical ecosystems [10,11]. Litterfall production across forest types depends on biological
factors such as structure of the vegetation (e.g., density, basal area), its age, floristic composition, and
characteristics of plant communities [12–14]. Many studies have shown the significant variation of
litterfall on nutrient flux in different forests as influenced by climatic factors [7,15,16]. In Eurasian forests,
for instance, it was reported that relative unit change in temperature (annual mean temperature change
from −8 to 30 ◦C) had more effect on litterfall than that in precipitation (annual mean precipitation
change from 350 to 4000 mm) [15]. A high interannual variation of litterfall ranging from 18 g m−2

to 213 g m−2 through the 24-year study was reported for a Scots pine (Pinus sylvestris L.) stand in
Finland [17]. Even though the stand age was not an important determining factor for needle litterfall
with no overall pattern, the average temperature in July was apparently correlated with needle
litterfall, indicating that high temperature enhanced litterfall in the short term. Regression analysis
also indicated that the combined effect of temperature and precipitation accounted for 30%–52% of the
variation in N concentration of leaf litter across groups of conifers, broadleaves, deciduous trees, and
evergreens [18]. Further, different patterns in litterfall production exist in different types of ecosystems
including unimodal and bimodal [19,20], and the litter peaks could occur in several months of the
year [16]. For instance, peak litterfall of temperate deciduous forests usually occurs in autumn, whereas
cool-temperate evergreen forests do not show an obvious seasonal pattern [21,22].

In this study, we report for the first time the litterfall and carbon and nutrient fluxes in evergreen
forests in Jeju Gotjawal in comparison to a typical broadleaf deciduous forest in Daejeon, South Korea.
The Gotjawal has been the most interesting research site in Korea due to its unique biogeographic
feature, characterized by its unique forest ecosystem structures formed on widely and disorderly
distributed lava blocks [23]. Jeju is the largest volcanic island in South Korea where temperate and
subtropical species coexist [24,25]. Jeju Gotjawal is also home to more than 1990 taxa of vascular plants,
of which 90 taxa are endemic to Jeju such as Quercus glauca Thunb., Euphorbia octoradiata H.Lév.&Vaniot
ex H.Lév, and Codonopsis minima Nakai [26]. Further, the Jeju Gotjawal area has poor soil development
because the main parent material of the soils is basalt and some of the soils originated from trachyte
and trachytic andesite [27], making any ecological study in the area even more important.

Thus, the objectives of the present study were to (1) quantify carbon and nutrient fluxes through
litterfall in evergreen forest stands in Jeju Gotjawal, and (2) compare these fluxes to those of a typical
deciduous forest stand in terms of forest types and climate. We hypothesized that annual litterfall
production does not differ between warm-temperate evergreen and cool-temperate deciduous forests
while the seasonal pattern of litterfall is more distinct in cool-temperate deciduous forests than
warm-temperate evergreen forests. Moreover, the second hypothesis was that carbon and nutrient
fluxes through litterfall vary by forest types but not by year.

2. Materials and Methods

2.1. Study Sites and Stand Descriptions

This study was conducted in Jeju Island and Daejeon, Republic of Korea. We established two
research sites in Jeju, which are Cheongsu (33◦18’14.79”N, 126◦16’16.67”E, 120 m a.s.l.) and Seonheul
(33◦30’38.82”N, 126◦43’13.25”E, 110 m a.s.l.) Gotjawal, and one site in Daejeon, which is located in
Chungnam National University Experimental Forest (36◦22’16.0"N, 127◦21’08.0"E, 105 m a. s.l.). These
sites were selected based on forest functional types and climate. Cheongsu Gotjawal (hereafter, CS)
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is a warm-temperate broadleaf evergreen forest on lava plateau in the western part of Jeju Island,
having locally distributed water holes on gentle slopes. Soil texture in CS was clay with pH 4.0,
organic matter (OM) 44%, available phosphorus (AP) 70 mg kg−1, total nitrogen (TN) 2.3%, and cation
exchange capacity (CEC) 75 cmolc kg−1 [28]. Seonheul Gotjawal (hereafter, SH) is a warm-temperate
broadleaf evergreen (SHb) and mixed evergreen (SHm) forest located in the northeastern part of the
island characterized by small lava caves, wetlands, and a parasitic volcano terrain [29]. Soil texture in
SH was loam with pH 4.5, OM 31%, AP 61 mg kg−1, TN 1.3%, and CEC 57 cmolc kg−1 [28]. Lastly,
Chungnam National University Experimental Forest (hereafter, CNU) is a cool-temperate broadleaf
deciduous forest located in the central area of South Korea. Soil texture in CNU was sandy loam with
pH 4.5, OM 4%, AP 18 mg kg−1, TN 0.1%, and CEC 7.5 cmolc kg−1.

The study sites in Jeju Gotjawal and CNU were naturally regenerated after severe human
interferences for woods until the mid-1960s to early 1970s. Particularly, the vegetation in Jeju Gotjawal
originated from the secondary coppice forests with high sprouts density [30]. Diameter at breast height
(DBH) ranged from 6.1 cm to 55.8 cm in all stands and the total basal area (BA) for all tree species was
the highest in SH (50.8 m2 ha−1, Table 1). CS was dominated by Q. glauca with a 30.3 m2 ha−1 mean BA
accounting for 89% of total BA. Other subcanopy species were Actinodaphne lancifolia (Siebold&Zucc.)
Meisn., Ficus erecta Thunb., Cinnamomum camphora (L.) J. Presl, Cinnamomum yabunikkei H.Ohba, Celtis
sinensis Pers., Acer palmatum Thunb., and Picrasma quassioides (D.Don) Benn. SHb was dominated by Q.
glauca and Q. salicina Blume with 50.7 m2 ha−1 mean BA (88% of total BA) and 13.0 m mean height.
Other canopy and subcanopy tree species were Prunus pendula f. ascendens (Makino) Kitam. and Styrax
japonica Siebold&Zucc. SHm was dominated by Q. glauca and Pinus thunbergii Parl. with 50.9 m2 ha−1

mean BA. The tree height was 10.9 m for Q. glauca and 13.2 m for P. thunbergii. In this site, subcanopy
species (Camellia japonica L., Distylium racemosum Siebold&Zucc., and A. palmatum) accounted for 8% of
the total BA. Lastly, CNU was dominated by Q. acutissima Carruth. with 18.5 m2 ha−1 mean BA and
13.8 m mean height. Other subcanopy species (Cornus officinalis Siebold&Zucc., Magnolia kobus DC.,
Robinia pseudoacacia L., and Magnolia obovata Thunb.) accounted for 39% of the total BA [31,32].

Table 1. Descriptions of four study stands in Jeju Island (CS, SHb, and SHm) and Daejeon (CNU)
in Korea.

Stand CS1 SHb
2 SHm

3 CNU4

Forest Type Evergreen
Broadleaved

Evergreen
Broadleaved

Evergreen
Mixed

Deciduous
Broadleaved

All tree species
DBH (cm) 12.5 (0.3) 19.1 (0.2) 21.6 (0.9) 20.2 (1.8)
Height (m) 9.4 (0.2) 10.7 (0.2) 10.9 (0.3) 12.5 (0.5)

BA (m2 ha−1) 5 34.0 (0.4) 50.7 (0.6) 50.9 (0.4) 33.2 (4.4)
Density (ha−1) 2475 (51) 1300 (25) 1075 (35) 900 (135)

Dominant species
Oak 6

DBH (cm) 12.4 (0.5) 27.3 (2.2) 20.7 (1.1) 21.4 (1.9)
Height (m) 9.5 (0.2) 13.0 (0.5) 10.9 (0.2) 13.8 (0.9)

BA (m2 ha−1) 5 30.3 (0.2) 44.4 (0.8) 28.5 (0.3) 18.5 (3.2)
P. thunbergii
DBH (cm) - - 31.4 (1.9) -
Height (m) - - 13.2 (0.9) -

BA (m2 ha−1) 5 - - 18.7 (3.2) -
Diversity indices

Shannon’s diversity index 7 1.4 2.1 1.4 1.5
Shannon’s equitability 0.5 0.8 0.5 0.7

Simpson’s diversity index 2.2 5.9 2.5 3.2
Simpson’s equitability 0.1 0.4 0.2 0.4

1 CS, Cheongsu Gotjawal in Jeju Island; 2 SHb, Seonheul Gotjawal in Jeju Island; 3 SHm, Seonheul Gotjawal in Jeju
Island; 4 CNU, Chugnam National University Experimental Forest in Daejeon.; 5 Sum of basal area; 6 Oak represents
Q. glauca in CS and SHm, Q. glauca and Q. salicina in SHb, and Q. acutissima in CNU; 7 Equations for diversity indices
in [33,34]; Minimum sampling DBH was 6 cm; Standard errors in parentheses (n = 4).
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2.2. Climate Conditions

Monthly temperature and precipitation data (Figure 1) were provided by the meteorological
center near each study site: (1) Seogwang Station (33◦18’16.4”N and 126◦18’21.6”E, 187 m a.s.l.),
3.2 km east of CS; (2) Seonheul Station (33◦28’55.5”N and 126◦42’32.5”E, 251 m a.s.l.), 3.4 km south of
SH; and (3) Daejeon station (36◦22′ N and 127◦ 22′ E, 70 m a.s.l), 1.8 km east of CNU. The monthly
temperature in Seonheul was calibrated according to the standard temperature lapse rate because the
elevation of the Seonheul weather station was 141.1 m higher than the study site in Seonheul. The
mean annual temperature (MAP) of the three sites were in this order: CS (15.5 ◦C) > SH (14.8 ◦C)
> CNU (13.6 ◦C). At all stands, the highest temperature was observed in summer (June–August,
c.a. 25–26 ◦C). The winter temperature (December–February) at Jeju Gotjawal was warmer (c.a. 5–10 ◦C)
than that at CNU (–5–0 ◦C). The mean annual precipitation of the three sites followed this descending
order: SH (1883 mm) > CS (1569 mm) > CNU (1299 mm). High precipitation rate was observed
during mid-summer season (July) to mid-fall (September) and the lowest was observed during winter
(December–February) in all stands. In October 2016, the storm “Chaba” induced heavy rainfall and
strong winds in Jeju Island.

Forests 2020, 11, x FOR PEER REVIEW 4 of 16 

 

of basal area; 6 Oak represents Q. glauca in CS and SHm, Q. glauca and Q. salicina in SHb, and Q. 
acutissima in CNU; 7 Equations for diversity indices in [33,34]; Minimum sampling DBH was 6 cm; 
Standard errors in parentheses (n = 4). 

2.2. Climate Conditions 

Monthly temperature and precipitation data (Figure 1) were provided by the meteorological 
center near each study site: (1) Seogwang Station (33°18'16.4''N and 126°18'21.6''E, 187 m a.s.l.), 3.2 
km east of CS; (2) Seonheul Station (33°28'55.5''N and 126°42'32.5''E, 251 m a.s.l.), 3.4 km south of SH; 
and (3) Daejeon station (36°22′ N and 127° 22′ E, 70 m a.s.l), 1.8 km east of CNU. The monthly 
temperature in Seonheul was calibrated according to the standard temperature lapse rate because the 
elevation of the Seonheul weather station was 141.1 m higher than the study site in Seonheul. The 
mean annual temperature (MAP) of the three sites were in this order: CS (15.5 °C) > SH (14.8 °C) > 
CNU (13.6 °C). At all stands, the highest temperature was observed in summer (June–August, c.a. 
25–26 °C). The winter temperature (December–February) at Jeju Gotjawal was warmer (c.a. 5–10 °C) 
than that at CNU (–5–0 °C). The mean annual precipitation of the three sites followed this descending 
order: SH (1883 mm) > CS (1569 mm) > CNU (1299 mm). High precipitation rate was observed during 
mid-summer season (July) to mid-fall (September) and the lowest was observed during winter 
(December–February) in all stands. In October 2016, the storm “Chaba” induced heavy rainfall and 
strong winds in Jeju Island. 

Time (month)

1 4 7 10 1 4 7 10 1 4 7 10

Te
m

pe
ra

tu
re

 (o C
)

-10

0

10

20

30

Pr
ec

ip
ita

tio
n 

(m
m

)

0

200

400

600

800
TEMP-CS
TEMP-SH
TEMP-CNU

20172016 2018

PRECIP-CS
PRECIP-SH
PRECIP-CNU

 
Figure 1. Monthly temperature and precipitation at Cheongsu (CS) and Seonheul (SH) Gotjawal in 
Jeju Island and Chungnam National University (CNU) Experimental Forest in Daejeon from 2016 to 
2018. 
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was further classified into Q. acutissima, evergreen oak (Q. glauca and Q. salicina), and P. thunbergii. 

Figure 1. Monthly temperature and precipitation at Cheongsu (CS) and Seonheul (SH) Gotjawal in Jeju
Island and Chungnam National University (CNU) Experimental Forest in Daejeon from 2016 to 2018.

2.3. Litterfall Collection

In each stand, we established four plots with four litter traps in each plot (>20 m distance between
plots). A total of 64 traps were installed (12 m distance between traps) in a quadrangle shape manner.
Litterfall was collected every three months in Jeju Gotjawal stands and CNU forest using circular litter
traps (i.e., 67 cm in diameter) from August 19th, 2016 to August 21st, 2018. Litter traps were set 30 cm
above the forest floor in April 2015 for Jeju Gotjawal. In August 2016, different sizes of litter traps
were used for CNU forest (i.e., 56 cm in diameter) and were set 40 cm above the ground. Further, we
installed a 2 mm size iron mesh and rocks were placed at the bottom of each litter trap to prevent
overflow and litter loss. The litterfall samples were immediately air-dried at room temperature to
prevent decomposition. After drying, samples were sorted into five litterfall components: leaves,
twigs, bark, seeds, and unidentified materials. Leaf litter of dominant species was further classified
into Q. acutissima, evergreen oak (Q. glauca and Q. salicina), and P. thunbergii. The sorted components
were oven-dried at 65 ◦C for 48 h to a constant mass and then weighed. Annual litterfall production
was estimated by summing up the quarterly litterfall mass during the study.
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2.4. Nutrient Analysis

For nutrient concentration analysis, we used two cohort litter samples collected in November 2016
and May 2017 for CS and SH. For the CNU forest, samples from November 2016 collections were used.
Samples from two plots at each collection time were composited and made two composite samples per
stand. A total of 105 composite samples were analyzed for leaf, needle, and other leaf tissue.

Samples for chemical analysis were ground and homogenized following a standard protocol in
tissue nutrient analysis. Total nitrogen (TN) was determined by using the micro-Kjeldahl digestion
method. Ca, Mg, and K were measured by atomic absorption spectrophotometry, and P by the ascorbic
acid method [35]. Nutrient contents were calculated by annual total litterfall multiplied by average
nutrient concentrations by each tissue.

2.5. Statistical Analysis

Two-way analysis of variance (ANOVA) was performed to detect statistical differences in litterfall
mass, nutrient concentration, and nutrient contents across different forest stands. Multiple comparisons
of means were completed using Duncan’s multiple range test at α = 0.05. All statistical analyses were
performed using SAS 9.4 software (SAS Institute, Cary, NC, USA).

3. Results

3.1. Litterfall Variation

The first year’s total litterfall was significantly greater than the second year of production in all
stands, except for the CNU forest, in which it increased significantly in 2018 (Figure 2a). Between
deciduous and evergreen forests, the mean annual litterfall at Jeju Gotjawal (i.e., 846.3 g m−2, average
of CS, SHb, and SHm) did not differ significantly from that at CNU (i.e., 884.5 g m−2), but varied by
stand in Jeju Gotjawal, such that CS (933.1 g m−2) was significantly higher than the average of SHb

and SHm (802.9 g m−2). Mean annual litterfall at SHb was lower (i.e., 782.5 g m−2) than that at SHm

(i.e., 823.3 g m−2). Further, annual leaf litterfall comprised 60%–69% of the total litterfall in all sites, of
which SHm had the highest leaf litterfall across the stands (p < 0.05, Figure 2b) in the first study period.
This result did not vary significantly in the second study period. The other litterfall components
comprised 30%–35% of the total litterfall across the sites in the first year; nearly the same pattern was
observed in the following year (Figure 2b).

Total and each litter component were significantly different across stands and seasons (Table 2).
Seasonal patterns of total litterfall production differed between evergreen and deciduous forests; total
litterfall in CS and SHb was the greatest in fall and spring seasons, that is, it showed a bimodal pattern,
while CNU showed a unimodal total litterfall production (i.e., peaked only in the fall season) (Figure 3).
However, a bimodal pattern of litter production in the Jeju Gotjawal sites was inconspicuous in the
second year (Figure 3a,c,d). Summer and winter had the lowest litterfall across the sites and study
periods. Leaf and twig litters in Jeju Gotjawal stands peaked in the season of fall 2016, and we did not
observe the same pattern the following year.
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Figure 2. Annual litterfall (a) mass and (b) proportion of each litter component in evergreen broadleaved
forest at Cheongsu (CS), evergreen broadleaved forest at Seonheul (SHb), mixed forest at Seonheul
(SHm), and deciduous broadleaved forest at Chungnam National University (CNU) from August 2016
to August 2018. First and second year indicate the period from August 19, 2016 to August 23, 2017
and from August 24, 2017 to August 21, 2018, respectively. Evergreen oak leaf includes Quercus glauca
and Q. salicina in CS, SHb, and SHm. Pine needle in SHm represents needle litter of Pinus thunbergii.
Deciduous oak leaf in CNU represents leaf litter of Q. acutissima.

Table 2. P values estimated by two-way analysis of variance (ANOVA) for seasonal litterfall variation
across stands in Jeju Island and Daejeon of South Korea.

Stand Season Stand×Season

Litter components df 3 7 21

Leaf litterfall
Oak1 <0.0001 <0.0001 <0.0001
Pine2 <0.0001 0.0263 0.0026

Other species <0.0001 <0.0001 <0.0001
Total leaf 0.0476 <0.0001 <0.0001

Other litterfall
Twig <0.0001 <0.0001 <0.0001
Seed <0.0001 <0.0001 <0.0001
Bark <0.0001 0.0087 0.52183

Unidentified material <0.0001 <0.0001 <0.0001
Total litterfall 0.0002 0.0002 <0.0001

1 Oak denotes leaf litter of Q. glauca and Q. salicina in Cheongsu and Seonheul, and Q. acutissima in Chungnam
National University; 2 Pine denotes needle litter of Pinus thunbergii; 3 P value in bold indicates statistically
nonsignificant (<0.05).



Forests 2020, 11, 143 7 of 15
Forests 2020, 11, x FOR PEER REVIEW 7 of 16 

 

Li
tte

rf
al

l m
as

s 
(g

 m
-2

)

0

200

400

600

Season

Li
tte

rf
al

l m
as

s 
(g

 m
-2

)

0

200

400

600

Season

Evergreen oak leaf
Deciduous oak leaf

Pine needle
Other leaf

Twig
Seed

Bark
Unidentified material

FA WI SP SU FA WI SP SU
First year Second year

FA WI SP SU FA WI SP SU
First year Second year

(a) CS (b) CNU

(c) SHb (d) SHm

 
Figure 3. Seasonal variation of litterfall mass in (a) evergreen broadleaved forest at Cheongsu (CS), 
(b) deciduous broadleaved forest at Chungnam National University (CNU), (c) evergreen 
broadleaved forest at Seonheul (SHb), and (d) mixed forest at Seonheul (SHm) from August 2016 to 
August 2018. FA, WI, SP, and SU indicate the seasons of fall, winter, spring, and summer, respectively. 
First and second year indicate the period from August 19, 2016 to August 23, 2017 and from August 
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Figure 3. Seasonal variation of litterfall mass in (a) evergreen broadleaved forest at Cheongsu (CS),
(b) deciduous broadleaved forest at Chungnam National University (CNU), (c) evergreen broadleaved
forest at Seonheul (SHb), and (d) mixed forest at Seonheul (SHm) from August 2016 to August 2018. FA,
WI, SP, and SU indicate the seasons of fall, winter, spring, and summer, respectively. First and second
year indicate the period from August 19, 2016 to August 23, 2017 and from August 24, 2017 to August
21, 2018, respectively. Evergreen oak leaf includes Quercus glauca and Q. salicina in CS, SHb, and SHm.
Pine needle in SHm represents needle litter of Pinus thunbergii. Deciduous oak leaf in CNU represents
leaf litter of Q. acutissima.

3.2. Carbon and Nutrient Concentrations of Litterfall

Litterfall concentrations in Jeju Gotjawal stands ranged from 46.15% to 51.01%, showing the
highest value in pine needle at SHm (Table 3) and they were not different from CNU. Similarly, there was
not much difference between CS and SH and between SHb and SHm. Generally, CNU had lower total
macronutrient concentrations (except for K) than those stands in Jeju Gotjawal (Table 3). The annual K
concentration was found highest at CNU but CNU had the lowest P and Mg concentrations across
the stands. In terms of leaf litterfall macronutrient concentrations, CNU had lower N, P, Ca, and Mg
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concentrations compared to those stands in Jeju Gotjawal. Within Jeju, macronutrient concentrations at
CS were higher than SHb and SHm. There was also not much difference for the C and macronutrient
concentrations in the nonleaf components (twig, seed, bark, and other tissues) across the sites.

Table 3. Carbon and nutrient (nitrogen, phosphorus, potassium, calcium, and magnesium)
concentrations of each litter component at four stands in Jeju Island (CS, SHb, and SHm) and Daejeon
(CNU) of South Korea.

Stand Litter
Component

Carbon
(%)

Nitrogen
(%)

Phosphorus
(%)

Potassium
(%)

Calcium
(%)

Magnesium
(%)

CS1 EO5 leaf 47.48 (0.21) 1.58 (0.05) 0.07 (0.00) 0.13 (0.01) 0.69 (0.04) 0.27 (0.01)
Other leaf 46.98 (0.37) 1.60 (0.10) 0.10 (0.00) 0.14 (0.02) 1.02 (0.07) 0.30 (0.04)

Twig 48.08 (0.19) 0.98 (0.10) 0.05 (0.00) 0.08 (0.01) 0.81 (0.08) 0.18 (0.01)
Seed 47.25 (1.27) 1.11 (0.19) 0.09 (0.01) 0.24 (0.04) 0.34 (0.05) 0.20 (0.04)
Bark 47.11 (0.24) 1.72 (0.09) 0.11 (0.01) 0.12 (0.00) 1.07 (0.13) 0.29 (0.02)

SHb
2 EO leaf 48.76 (0.28) 1.39(0.05) 0.06 (0.01) 0.12 (0.01) 0.54 (0.03) 0.26 (0.03)

Other leaf 47.65 (0.29) 1.57 (0.07) 0.09 (0.00) 0.13 (0.01) 0.63 (0.07) 0.30 (0.02)
Twig 48.12 (0.25) 0.86 (0.05) 0.05 (0.00) 0.07 (0.01) 0.52 (0.03) 0.19 (0.02)
Seed 47.19 (0.08) 1.07 (0.09) 0.08 (0.01) 0.25 (0.06) 0.22 (0.00) 0.21 (0.04)
Bark 47.49 (0.22) 1.73 (0.11) 0.11 (0.01) 0.11 (0.01) 0.65 (0.04) 0.25 (0.02)

SHm
3 EO leaf 48.13 (0.11) 1.32 (0.04) 0.06 (0.00) 0.12 (0.01) 0.46 (0.02) 0.26 (0.01)

Pine6 needle 51.01 (0.09) 0.60 (0.03) 0.04 (0.00) 0.04 (0.00) 0.34 (0.02) 0.14 (0.01)
Other leaf 46.15 (0.63) 1.37 (0.11) 0.08 (0.01) 0.12 (0.02) 0.50 (0.07) 0.38 (0.02)

Twig 50.30 (0.73) 0.61 (0.07) 0.05 (0.00) 0.04 (0.00) 0.55 (0.06) 0.14 (0.02)
Seed 48.74 (0.89) 0.89 (0.10) 0.07 (0.00) 0.13 (0.01) 0.15 (0.03) 0.15 (0.01)
Bark 48.68 (0.61) 1.32 (0.25) 0.08 (0.01) 0.05 (0.01) 0.44 (0.05) 0.21 (0.03)

CNU4 DO7 leaf 49.11 (0.46) 0.97(0.09) 0.03 (0.00) 0.18 (0.01) 0.46 (0.01) 0.13 (0.01)
Other leaf 47.69 (0.34) 1.52 (0.06) 0.05 (0.00) 0.32 (0.02) 0.81 (0.14) 0.21 (0.02)

Twig 48.69 (0.22) 0.73 (0.04) 0.04 (0.00) 0.23 (0.01) 0.53 (0.01) 0.17 (0.02)
Seed 48.50 (0.19) 0.93 (0.12) 0.06 (0.00) 0.28 (0.05) 0.22 (0.05) 0.15 (0.01)
Bark 44.29 (1.69) 1.55 (0.19) 0.09 (0.01) 0.20 (0.03) 0.53 (0.14) 0.17 (0.01)

1 CS, Cheongsu Gotjawal in Jeju Island; 2 SHb, Seonheul Gotjawal in Jeju Island; 3 SHm, Seonheul Gotjawal in Jeju
Island; 4 CNU, Chugnam National University Experimental Forest in Daejeon; 5 EO denotes evergreen oak trees,
which are Quercuss glauca and Q. salicina in Cheongsu and Seounheul; 6 Pine denotes Pinus thunbergii; 7 DO denotes
deciduous oak tree, which is Q. acutissima in CNU; Standard errors in parentheses (n = 4).

3.3. Carbon and Nutrient Inputs by Litterfall

Across the stands, litter carbon content did not show considerable difference across the stands
(Figure 4). However, carbon content decreased in the second year in Jeju Gotjawal stands; CNU showed
a reverse trend (Figure 4a). Jeju Gotjawal stands had higher nutrient contents (except for K) than CNU.
Nutrient contents all decreased in the second year across the sites, except K at CNU which increased
significantly. The K content was found highest at CNU across the stands (Figure 4d). Lastly, CS had
higher N, P, Ca, and Mg contents than SHb and SHm.
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Figure 4. Annual (a) carbon, (b) nitrogen, (c) phosphorus, (d) potassium, (e) calcium, and (f) 
magnesium content of litterfall in evergreen broadleaved forest at Cheongsu (CS), evergreen 
broadleaved forest at Seonheul (SHb), mixed forest at Seonheul (SHm), and deciduous broadleaved 
forest at Chungnam National University (CNU) from August 2016 to August 2018. First and second 
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Figure 4. Annual (a) carbon, (b) nitrogen, (c) phosphorus, (d) potassium, (e) calcium, and (f) magnesium
content of litterfall in evergreen broadleaved forest at Cheongsu (CS), evergreen broadleaved forest
at Seonheul (SHb), mixed forest at Seonheul (SHm), and deciduous broadleaved forest at Chungnam
National University (CNU) from August 2016 to August 2018. First and second year indicate the period
from August 19, 2016 to August 23, 2017 and from August 24, 2017 to August 21, 2018, respectively.
Evergreen oak leaf includes Quercus glauca and Q. salicina in CS, SHb, and SHm. Pine needle in
SHm represents needle litter of Pinus thunbergii. Deciduous oak leaf in CNU represents leaf litter of
Q. acutissima.

4. Discussion

4.1. Litterfall Production in Different Forests

Annual litterfall production at evergreen broadleaved stands in Jeju Gotjawal did not vary
significantly from that of a deciduous stand at CNU. This result confirmed a previous study [36]
conducted in the same region, in which annual litterfall production in deciduous broadleaved forests
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(i.e., 560.6 g m−2) was nearly similar to that of evergreen broadleaved forests (i.e., 544.8 g m−2). Such a
pattern of litterfall production, however, contrasts with the global pattern of litterfall between evergreen
and deciduous stands [37]. The possible reason for the inconsistency in the result may include the
difference in the diversity of species and stand structures. Although the forest functional type of
Jeju Gotjawal (i.e., evergreen) is very distinct from that of CNU (i.e., deciduous), the variation in the
diversity of tree species and the stand structure may have not differed significantly across the stands to
cause significant litterfall variation. In this study, we found that all the stands at Jeju Gotjawal and
CNU fall in the same category of diversity index (i.e., very low to low) based on the classification
scheme of the Shannon–Wiener diversity index [38]. Significant difference in litterfall production may
exist in different ecosystem types which are partly dependent on plant community composition and
species abundance [39]. Some diversity-related studies have reported that more diverse tree species
produce more litter [40,41] by changing the diversity of litter quality [40]. According to a previous
study, higher mean annual litterfall production was found in evergreen mixed forests than in evergreen
broadleaved forests [42]. For example, the mean annual litter production in the evergreen mixed
forest was significantly higher by 24% than the evergreen broadleaved stand in a subtropical region in
China [43].

However, we found that litterfall production varied by stand within Jeju Gotjawal, such that
litterfall at CS was significantly higher than that at SHb. This observation can be explained by the
difference in stand structure; DBH, height, and BA are higher in SHb than CS, indicating that SHb is
probably older than CS. Several studies have long documented a rapid increase in annual litterfall
production during the stand development until canopy closure; it then remains nearly stable as the
stand becomes older [44,45]. Moreover, [46] found higher litterfall production in pioneer forests. The
difference between the two stands may also be explained by a mechanism called competitive production
principle [47]. The forest stand at CS had higher MAT and lower MAP than at SH, which may have
induced its net primary production. In some studies, litterfall correlated positively with temperature,
which controlled nearly half of the variation [15,48]. Further, actions of herbivores influencing the leaf
senescence and decay were also positively related to temperature [49].

In this study, seasonal litterfall production varied between Jeju Gotjawal and CNU. CNU is located
in the cool-temperate region while Jeju Gotjawal is located in the warm-temperate/subtropical region
of South Korea. Studies have already shown that warm-temperate and cool-temperate forests have
strong seasonal variability that influences the seasonal patterns of litterfall [7] as a function of climate
and plant functional types [45,46]. The litterfall peak patterns (i.e., spring and fall) observed in CS and
SHb stands may be due to two factors, namely, (1) the influence of temperature on leaf phenology of
the species, and (2) the disturbance effect of typhoons. First, it was reported that the enhanced annual
litterfall production was positively related to temperature due to the advancement of leaf expansion
and increased forest productivity during the spring season [50–53]. The litterfall peaks we observed
are also consistent with the pattern reported for a subtropical evergreen forest in China [54], which
was associated with physiological leaf senescence as cited in similar studies [55,56]. Second, litterfall
in CS and SHb stands also peaked in the fall season during the first study period, causing high annual
litterfall fluctuation. This can be in part a consequence of the disturbance effects of the storm Chaba that
hit forests in Jeju Gotjawal in October 2016 (i.e., fall season), as it is evident that twig and leaf litterfall
was huge in the first study period and was not consistent the following year. Similar findings were
reported in [20], who observed higher branch litterfall production during typhoon and rainy months.
In addition, litterfall was found significantly higher in years with typhoons than in years without
typhoons in a subtropical forest in Taiwan, in which 82% of the litterfall variation was attributed to the
number of strong typhoons [57]. Consequently, the disturbance effect of the storm in this study may
remain a speculation that needs to be investigated in future studies using longer study duration.
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4.2. Carbon and Nutrient Fluxes through Litterfall

In this study, the litter carbon concentration and contents did not vary significantly across the
forest stands. This is consistent with the study on carbon and energy fluxes between deciduous and
evergreen oak woodlands reported in [58]. In a cretaceous polar forest, similar annual carbon fluxes
were reported between deciduous and evergreen species, despite incurring carbon losses of deciduous
species through annual leaf shedding [59]. The result can represent different strategies of dominant
species in Jeju Gotjawal (Q. glauca, evergreen) and CNU (Q. acutissima, deciduous) for coping with
the environmental conditions. Evergreens can minimize the rate of C return via litterfall through a
“conservative” leaf strategy. Through this strategy, evergreens produce leaves with longer life span and
lower photosynthetic capacity than deciduous leaves [60–62]. However, evergreens can compensate
for the lower photosynthetic capacity by assimilating carbon over a longer growing season [63–65],
whereas deciduous trees compensate for the shorter growing season by producing shorter-lived leaves
that have higher photosynthetic rates and low carbon cost [66].

In the present work, we report for the first time the nutrient fluxes via litterfall in Jeju Gotjawal,
one of the important forest ecosystems and groundwater aquifers in Korea. In this study, the nutrient
concentrations and contents differed significantly between CNU (deciduous) and Jeju Gotjawal
(evergreen) and between evergreen forests in CS (lower precipitation) and SH (higher precipitation).
This result is consistent with the pattern reported in [10]. Even though annual litterfall production
did not significantly vary between Jeju Gotjawal and CNU stands, Jeju stands were shown to have
higher total nutrient contents (N, P, Ca, Mg) compared to CNU, which can be due to its higher nutrient
concentration. These high litterfall nutrient concentrations (except K) can be attributed to the unique
properties of volcanic ash soil (i.e., allophanic and Al-humus Andisols) on the island [67]. Andisols
possess many unique properties that are rarely found in other types of soil [68]. This soil is formed from
basalt-based volcanic materials such as ash, resulting in minerals in the soil that have an unusually
high nutrient-holding capacity [67,69], but may have limited K and some micronutrients. Other unique
physicochemical properties of Andisol soils include a large amount of humus accumulation, high water
retention, phosphate retention, friability, and affinity for multivalent cations such as Ca2+ and Mg2+,
making the soil productive and fertile [70]. The soil in Jeju Gotjawal is also rich in silicon (Si) [61],
which affects the absorption, uptake, distribution, and functionality of several nutrients (e.g., N, P, Mg,
and Ca) in plants [71,72]. Increased concentrations of some elements such as N, P, Ca, and Mg in soil
and plant tissues after Si amendments were already recognized in some studies [73,74].

The variations can also be attributed to the difference in temperature and precipitation between
CNU and Jeju Gotjawal stands. Jeju has a higher MAP and MAT than CNU, which makes it more
favorable for plant growth. Warmer temperatures along with higher water availability could enhance
nutrient uptake [63]. Similarly, stands at SH had lower nutrient concentrations and contents of leaf and
total litterfall than CS, and this can be due to its higher MAP [75] and nutrient resorption efficiency [76].

The effect of the typhoon Chaba on the patterns of litterfall production in Jeju Gotjawal may further
explain the observed pattern of nutrient inputs between Jeju Gotjawal and CNU. Catastrophic events,
such as typhoons, influence the timing and amount of litterfall, therefore altering the cycling rate of
certain nutrients, particularly N and P cycles [77]. In a study of the effect of typhoon disturbance on
litterfall in subtropical forests in Okinawa Island, Japan, results revealed that the highest concentrations
of N and P were recorded in typhoon season; in that, N and P concentrations were 34% and 106%
greater, respectively, in the green leaves that fell during typhoon season than in senescent leaves [11].
Further, K is highly mobile and is easily leached from senescent and typhoon-caused leaf litter [78],
and this phenomenon can partly explain the lower K concentration and input in Jeju Gotjawal stands
than in those at CNU.

5. Conclusions

Litterfall production and nutrient fluxes differed by stand as influenced by forest type and climate
in this study. Annual litterfall production was not different by forest types but the seasonal pattern was
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different between evergreen and deciduous oak-dominated forests, showing bimodal peaks (spring and
fall) in evergreen forests and unimodal peaks (fall) in deciduous forests. However, bimodal peaks in
evergreen forests were not observed in the second year, suggesting a more distinct seasonal pattern in
cool-temperate deciduous forests. The amount of nutrient input by litterfall was higher in evergreen
forests of Jeju than in deciduous forests of Daejeon except for K, and it was also higher in Cheognsu
Gotjawal than in Seonheul Gotjawal with high precipitation. Moreover, the differences in carbon and
nutrient input between stands were more remarkable than yearly changes. These variations may
be attributed to species composition of each stand and abiotic factors induced by precipitation and
temperature. The information provided in the present study will contribute to understanding carbon
and nutrient dynamics in various forest ecosystems and further research on the litter decomposition
process in a geologically unique ecosystem such as Jeju Gotjawal will benefit from the results in this
study to broaden our knowledge.
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