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Abstract: Sawmilling operations are typically one of the most important cells of the wood supply
chain as they take the log assortments as inputs to which they add value by processing lumber
and other semi-finite products. For this kind of operations, and especially for those developed
at a small scale, long-term monitoring data is a prerequisite to make decisions, to increase the
operational efficiency and to enable the precision of operations. In many cases, however, collection
and handling of such data is limited to a set of options which may come at high costs. In this study,
a low-cost solution integrating offline object tracking, signal processing and artificial intelligence
was tested to evaluate its capability to correctly classify in the time domain the events specific
to the monitoring of wood sawmilling operations. Discrete scalar signals produced from media
files by tracking functionalities of the Kinovea® software (13,000 frames) were used to derive a
differential signal, then a filtering-to-the-root procedure was applied to them. Both, the raw and
filtered signals were used as inputs in the training of an artificial neural network at two levels of
operational detail: fully and essentially documented data. While the addition of the derived signal
made sense because it improved the outcomes of classification (recall of 92–97%) filtered signals
were found to add less contribution to the classification accuracy. The use of essentially documented
data has improved substantially the classification outcomes and it could be an excellent solution in
monitoring applications requiring a basic level of detail. The tested system could represent a good
and cheap solution to monitor sawmilling facilities aiming to develop our understanding on their
technical efficiency.

Keywords: big data; automation; efficiency; monitoring; wood sawmilling; operations; low-cost;
improvement; integration

1. Introduction

Reliable production monitoring data collected on long term is of a crucial importance in many
industries because it provides an informed background for resource allocation and saving, optimization
and operational improvement [1]. In many ways, productivity increment in different types of operations
is seen nowadays as one of the founding factors of competitiveness enhancement, and monitoring
data is commonly gained by different types of surveys, starting from less advanced, generalist ones,
and ending with those able to produce accurate and detailed quantitative data, in real time. While the
wood processing industry makes no exception from that, it is frequently seen to hold a limited capability
to achieve an efficient production, which may be the effect of low technical and allocative efficiencies [2],
as well as of the missing monitoring data, with the latter preventing the science to find solutions for the
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problem. The situation is even more bottlenecked in the case of small-scale sawmills, which are relying
on simple machines, that do not integrate production monitoring systems, operate at low production
rates [3–5], and do not hold the financial ability to procure sophisticated monitoring systems. At least
in such cases, the production monitoring solutions are few and limited by the amount of resources
needed under the regular or advanced approaches to the problem.

In this regard, long-term assessment of efficiency and productivity requires data on production
(i.e., the amount of manufactured products) and time consumption (i.e., time spent to manufacture the
products) [6]. Moreover, to build a clearer picture on the factors that should be (re)engineered for a
better performance, productivity studies are often carried out at elemental level [7]. Of a particular
importance in production monitoring is also the ability to identify and delimitate different kinds of
delays, which gives the computational basis for the net and gross productive performance metrics [7];
in relation to the delay-free time, often the studies are framed around the main functions that a machine
or tool may enable, with the functions being also interpreted in a spatial context.

While the data on production is often handy to get because it forms the basis of transactions
on the market, monitoring of productive performance relies on time-and-motion studies that can be
done at different resolutions and by different means [7]. Regarding the means, and by assuming an
absence of integrated monitoring systems, the current options may include traditional chronometry
studies [3,8], video surveillance and the use of other kind of external sensors [9]. For long-term
monitoring, however, the approaches by video surveillance and the use of different types of sensors
have the most promising potential due to their ability to collect and store events of interest on long time
windows. In particular, video surveillance holds the important capability of capturing and storing the
real sequence of events [1]; however, the office effort needed to analyze the data by human-assisted
interpretation may be challenging, especially when the observed processes or study designs are
complex [10].

To overcome this situation, solutions are needed to learn and classify the events of interest and
their associated time consumption directly from the video files. Such an option could be enabled by
the use of a series of properties and methods associated with video surveillance, signal processing
and artificial intelligence. One of them refers to actually producing a useful signal from the collected
video files and it is related and enabled by the recent developments in the algorithms [11] and software
for video tracking applications [12]; the latter are based on the supervised definition of an object on
a given frame followed by its detection and tracking on the subsequent frames [13]. By doing so,
the frequency of the frames may be used as a counter to compute the time consumption on events
and, as such, object tracking may be implemented online or offline and it may refer to short-term
or long-term tracking of single or multiple objects [14]; it works well on 2D scenes to detect new
locations taken successively by the tracked objects. The motion identified by tracking a given object in
successive frames can be then used to produce a discrete signal in the scalar domain, a property which
is enabled by offline video-tracking software such as the Kinovea®, which has been typically used
in the science related to the human performance monitoring and to the kinematics of human body
segments [12,15,16]. The individual scalar signals may be then moved in the time domain and used,
either directly or after the application of different filters, as inputs for supervised learning algorithms
or processes, such as the artificial neural networks (ANNs). In this regard, the ANNs [17] and other
techniques of artificial intelligence (AI) are able to solve multivariate non-linear problems which
are quite common in the case of using as inputs for classification nonlinear signals characterizing
multi-class problems [9,18,19]. Similar to the object tracking software applications, implementation of
ANNs, as well as of many other types of classification algorithms, has become affordable lately by the
development of free open-source software.

The goal of this study was to test the performance of a system implemented for data collection,
signal processing and supervised classification with application in the long-term performance
monitoring of small-scale wood processing facilities. One of the basic assumptions and requirements in
developing and testing the system was that of using to a great extent the freely available tools
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and software to produce accurate classifications of the operational events in the time domain.
The system consisted of using an affordable video camera to collect the data and the freely available
Kinovea® (version 0.8.27, https://www.kinovea.org/) and Orange Visual Programming Software®

(version 3.2.4.1, Ljubljana, Slovenia) software tools to produce the needed discrete scalar signals and
to check the accuracy of the classification. Therefore, the objectives of this study were (i) to check
the classification performance of the operational events in the time-domain by using the original
signals as a baseline, less resource-intensive alternative; (ii) to check the classification performance
enhancements, if any, by adding a derived simple-to-compute signal, based the original signals as an
additional, more discriminative solution for the implementation of the ANN algorithm; and (iii) to
check the classification performance enhancements, if any, brought by signal filtering to their roots,
by median filters, as a fine-tuned, discriminative solution for the implementation of the ANN algorithm.
Acknowledging the importance and differences that may occur in the classification performance in
the testing phase, for the achievement of most of this study objectives, the workflow of the ANN
implementations has been restricted to the training phase. Further, the ANN implementations were
done at two levels of detail, of which one characterized the data documented at the finest possible
level (elemental study) and one characterized the data aggregated at two discriminant levels which are
important for production monitoring: machine working versus machine non-working.

2. Materials and Methods

2.1. Video Recording and Media Input

The media files used to test the system were captured by video recording in a sawmilling
facility by the use of a cheap small-sized camera which was mounted near the steel frame of the
sawmilling machine with the field of view perpendicularly oriented towards the active frame (Figure 1).
The surveyed machine (Mebor, model HTZ 1200) operates in a similar way to that described in [9]
with the main differences consisting in its propelling system, which was electrical, and the maximum
allowable size of the input logs which was higher. During the field study, the machine operated with
Norway spruce logs that had diameters in the range of 26 to 69 cm (average of 45 cm), by the free
willingness of the operator in what regards the settings and sequences of cutting, at an air temperature
of ca. 25 ◦C, without any camera vision interferences caused by the sawing dust.
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At the field study time (2017), the placement and use of the camera were intended to collect the
data needed to estimate the productivity of operations by a rather traditional approach which supposed
a manual measurement of the wood inputs and outputs and a chronometry method which was based
on regular video surveillance. That is the reason for which the camera was used to continuously record
a full day of operation as well as for not placing and using any kind of arbitrary highly-reflective
markers on the moving parts of the machine. Nevertheless, by its placement, the camera enabled the
video recording of operations in a distance range of ca. 1 to 5 m; it produced a set of video files of
20 min in length each (by settings), at a video resolution of 1280 × 720 pixels and at a sampling rate of
21 frames per second (fps). During recording the light conditions were good, ensuring a good visibility
in the collected files, which was enabled by the natural and artificial light available in the hangar
of the facility. For the purpose of this study, all the video files were analyzed in detail by playing
them in the office phase, to check them against two selection criteria. A first one was that of having
in the recording all of the work elements typical to the machine surveyed, including here different
delays that characterized non-working events of the machine. The second condition referred to the
non-obstruction of the field of view by different moving features such as the interference of workers or
other machines. Based on this analysis, a media file was selected for further processing and parts of it
which failed to meet the above criteria were removed.

2.2. Signal Extraction, Processing, and Event Documentation

Extraction of the discrete scalar signals from the media file was done by the means of the Kinovea®

free software. An example of the settings used is given in Figure 1. To provide a reference for
measurement by tracking, a convenient coordinate system was chosen and set with the y-axis close
to the middle of the field of view captured in the media file; the origin of the coordinate system was
defined close to one seventh of the field of view’s height (Figure 1). Based on these preliminary settings,
the tools for trajectory configuration were used to set up the tracking point. This was enabled by
the presence on the machine’s frame of some distinguishable geometric features resembling typical
markers (Figure 1) of which one was selected as a reference in the first frame taken into analysis.
Following the selection, the effective tracking of the machine’s movements was done automatically at
50% of the real running speed of the media file and the data outputted this way was then exported
as a Microsoft Excel (Microsoft, Redmond, WA, USA). XML file. For each frame, it contained the
coordinates given in pixels and the current time of each coordinate pair (x, y). This output formed the
reference dataset of this study, and it accounted for a total number of 13,116 frames.

Based on the extracted data, and for convenience in graphically reporting some of the results,
the original data collected on the two axes was downscaled by a factor of 1/100. The resulting datasets
(XREF, YREF) were then used as direct inputs to compute a new, derived signal (∆XYREF), in the form
of a restricted positive difference between XREF and YREF (that is subtracting YREF from XREF and
when this gave negative values these were included as positive values in the analysis) and for filtering
purposes assuming a median filter implemented over a 3-observation window, which was iterated
until reaching the root signals. These measures were taken to improve the separability of data under
the assumption of less noise in the signals’ patterns.

The benefits of using the median filtered data are those explained, for instance, in [20]; in short,
filters from this class may improve the signal-to-noise ratio and provide an unaltered (by truncation)
dataset, for instance, in the time domain. This property is important in preserving the time consumption
distribution on categories and the approach of median filtering was similar to that detailed in [9].
In what regards the use of root signals, the approach was based on the theoretical backgrounds given
in [21] and it was carried out to reach a better uniformity of the signals and to remove the noise from
the original data due to inter-pixel movement of the tracker. It is worth mentioning here that a limited
calculation effort was assumed right at the beginning, based on an initial plotting of XREF and YREF
in the time domain, as well as that the approach may be suitable only for applications such as that
described in this study since the computational effort to get the root signals may be extensive by
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definition [21]. The procedure implemented for median filtering to get the root signals required five
iterations in the case of XREF and six iterations in the case of YREF. Based on the filtering results, a new
set of signals was developed (XROOT, YROOT and ∆XYROOT) taking as a reference the number and
order of observations specific to YROOT. The approach has led to a minor data loss at the extremities of
the datasets (12 observations in total). Table 1 is showing the six signals used in the training phase of
the ANN.

Table 1. Signals extracted and processed and their purpose in this study.

Signal Abbreviation Signal Description and Purpose

XREF X-axis raw scalar response following the use of tracking tool
YREF Y-axis raw scalar response following the use of tracking tool

∆XYREF Positive scalar response of the difference between XREF and YREF
XROOT Median root-filtered of XREF
YROOT Median root-filtered of YREF

∆XYROOT Positive scalar response of the difference between XROOT and YROOT

Data coding was done by analyzing in the best possible detail the media file and by considering
the kinematics of the machine. This procedural step has used the work sequences and codes shown in
Table 2. In general, machines from this class operate by adjusting the cutting frame height by upward
or downward movements before cutting and before returning the frame to start a new work sequence;
in addition, they enable the forward movement of the cutting frame to carry on the active cut and
backward movement, in the empty turn, to reach the point of starting a new operational sequence.

Table 2. Codes used to document the events.

Event Code Event Name Event Description

MD Moving down
The cutting frame was identified to move

downwards. Event specific to the adjustment of the
cutting height before starting an active cutting event

MF Moving forward
The cutting frame was identified to move forward.
Event specific to the active cutting of the blade and

includes blade releasing from the log

MU Moving up
The cutting frame was identified to move upwards.

Event specific to the adjustment of the cutting frame
before engaging in the backward movement

MB Moving backward
The cutting frame was identified to move backwards.
Event specific to the empty turn of the cutting frame

to restart a new cutting sequence

S Stopped
No movement of the active frame was identified in

the media file. Event specific to different kind of
delays having various durations

W Working Any of the MD, MF, MU or MB, by recoding.

As such, to detach a wood piece from the log, the typical sequence was that of moving the frame
downward, then moving the frame forward while carrying on the cut, moving the frame upward and
moving the frame backward. This sequence was conventionally adapted to the order of log processing.
Using the codes attributed by the analysis of video files, four datasets were developed and used in the
ANN training. The first set contained the data of XREF, YREF, and ∆XYREF coded in detail as shown
in Table 2 and the second set contained the same signals for which the data was coded for working
(W) and non-working events (S). The same data organization procedure was used for the last two
datasets which contained the XROOT, YROOT, and ∆XYROOT signals, which were documented in full
and essential detail, respectively. Therefore, the analysis of the two groups of signals was extended to
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include two alternatives: fully detailed (FULL), which included the events MD, MF, MU, MB, and S,
and essentially detailed data (ESSEN), respectively, which included the events S and W.

2.3. Setup and Training of the ANN

Setup of the ANN for training has used the freely available Orange Visual Programming Software
(version 3.2.4.1) [22]. The main parameters of the ANN were configured similarly to those explained
in detail in [9], by assuming the same reasons in regards to the computational cost and classification
performance. The setup was based on the use of the rectified linear unit function (ReLu) as an activation
function, Adam solver and the L2 penalty regularization term set at 0.0001; additional settings consisted
of using three hidden layers of 100 neurons each as well as of using a number of 1,000,000 iterations
for training a given ANN model. For all models, training and scoring were done by cross-validation
assuming a stratified approach and a number of folds set at 20. The training procedure has used two
signal sets (REF and ROOT) of seven possible combinations each, as shown in Table 3. They were used
to account for the designed analysis resolutions and to produce data by training to see which one could
output the best results. Using the approach described, a total number of 28 ANN models were trained.
For example, the REF1 referred to training of the ANN using the fully detailed XREF signal first and
then to training of the ANN by using the essentially detailed XREF.

Table 3. Combinations, signals and analysis resolutions used in the training phase of the ANN.

Combination Abbreviation Signal(s) Used in Training Analysis (Detail) Resolution

REF1 XREF FULL, ESSEN
REF2 YREF FULL, ESSEN
REF3 ∆XYREF FULL, ESSEN
REF4 XREF and YREF FULL, ESSEN
REF5 XREF and ∆XYREF FULL, ESSEN
REF6 YREF and ∆XYREF FULL, ESSEN
REF7 XREF, YREF and ∆XYREF FULL, ESSEN

ROOT1 XROOT FULL, ESSEN
ROOT2 YROOT FULL, ESSEN
ROOT3 ∆XYROOT FULL, ESSEN
ROOT4 XROOT and YROOT FULL, ESSEN
ROOT5 XROOT and ∆XYROOT FULL, ESSEN
ROOT6 YROOT and ∆XYROOT FULL, ESSEN
ROOT7 XROOT, YROOT and ∆XYROOT FULL, ESSEN

Following the training procedure, the most commonly used performance metrics
(CA—classification accuracy, PREC—precision, REC—recall, and F1—the harmonic mean of PREC and
REC) were calculated for each of the trained ANN models. Definitions, meaning, and interpretation of
these classification performance indicators may be found, for instance, in [23,24]; for a supplementary
check of the classification performance, the area under curve (AUC) was computed for each model.
While all of the computed metrics are important in characterizing the classification performance,
the focus of this study was on the REC metric, following the reasons given in [25] which apply to
time-and-motion studies. Configuration of the computer used to run the training of the ANN models
was that given in [9] and to differentiate between the training costs incurred by the potentially different
complexities of the signals, the time of training was counted, in seconds, for each model.

2.4. Data Processing and Analysis

Data processing and analysis was done mainly in the Microsoft Excel® (Microsoft, Redmond,
WA, USA, 2016 version) software and it relied on the visual comparisons of the data. It was assumed,
therefore, that statistical comparisons of the classification performance metrics will bring no relevance
due to the fact that the outcomes of training were quite different, as well as due to the fact that even a
small difference found in a given pair of metrics could cause significant effects in such a case in which
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the results would have been scaled to larger datasets. As a first step of data analysis, data coming
from the XREF, YREF, and ∆XYREF signals was plotted in the time domain against the codes attributed
for the events identified and delimited at the FULL and ESSEN resolutions. While this helped in
understanding the kinematics of the machine, in the results section, only a partition of the most
representative data was given due to the limited graphical space. Based on the resolutions taken
into study (FULL, ESSEN) and on the signal combination classes (REF, ROOT) the main descriptive
statistics were computed and reported for the events encoded in each of them as the absolute and
relative frequencies. Then, the training time was reported for each signal, on combination classes and
resolutions taken into study.

Classification performance was reported at the same levels of detail, by a graphical comparative
approach. At this stage, however, only the global classification performance of each model has been
taken into consideration for reporting. Based on its outcomes, the best models were selected for both,
FULL and ESSEN study resolutions and the classification performance metrics for these models were
reported in detail, at the event level. The last task took into consideration a more detailed analytical
approach to identify and characterize those events that were misclassified. For this step, the data of
the two models retained as holding the best global classification performance was exported from the
software used to train the ANN into Microsoft Excel® (Microsoft, Redmond, WA, USA, 2016 version)
where sorting procedures were taken to account for the number and share of misclassifications at event
level; this step was complemented by a graphical representation of two examples of misclassifications
extracted as being relevant for the models taken into analysis.

3. Results

3.1. Description of Data and Training Time

The coding results plotted against the signals extracted from the media files by tracking are given
as an example, in the time domain, in Figure 2. The kinematics of the active frame were found to be
quite distinguishable in the signals’ pattern shown.
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Figure 2. A partition of the original data extracted by tracking plotted against the coded events in
the time domain. Legend: meaning of S, W, MU, MD, MF, and MB is given in Table 2, FULL—fully
documented data, including the events S, MU, MD, MF and MB, ESSEN—essentially documented data,
including the events S and W, meaning of XREF, YREF, and ∆XYREF is given in Table 1.

For instance, one could identify quite easily a full cutting cycle consisting of a succession of MD,
MF, S, MU, and MB events (e.g., Figure 2, time domain from ca. 7400 to 8150, expressed in 1/21 s
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where the events are given by the pattern of the green line). Moreover, at the ESSEN resolution scale
the events of working (W) and non-working (S) may be easily identified in the data patterns shown
(Figure 2, events are shown in the pattern of the red line). Given the setup and placement of the camera,
the variation in amplitude of the XREF was wider compared to that of YREF and it was transposed also,
to a great extent, in the amplitude variation of ∆XYREF.

Table 4 is showing the absolute and relative frequencies of the events in their corresponding
datasets for the two resolutions taken into study. Irrespective of the case, the observations in which the
machine was found to work accounted for ca. 85% of the datasets. In the case of the FULL resolution,
moving up (MU) and down (MD) accounted for relatively similar speeds; therefore, the number of
observations found for the two was close. However, this was not the case of moving forward (cut, MF)
and backward (MB), because the active cut was done at a considerably lower speed. Therefore, the
use of the machine to effectively cut the wood was found to predominate in observations (ca. 58%),
and this event is also important because it can be used to infer the number of cuts done or pieces
detached from the logs.

Table 4. Absolute and relative frequency of the events in the signals used.

Analysis (Detail) Resolution Combination Class Events No. of Events Share of Events (%)

FULL

REF

MD 694 5.29
MF 7601 57.95
MU 1078 8.22
MB 1681 18.82
S 2062 15.72

ROOT

MD 694 5.30
MF 7595 57.96
MU 1072 8.18
MB 1681 12.83
S 2062 15.74

ESSEN
REF

W 11,054 84.28
S 2062 15.72

ROOT
W 11,042 84.26
S 2062 15.74

Table 5, on the other hand, is showing the variation of the ANN training time for the signal(s)
used in the training process. The general trend was that of systematically taking less time to train the
ANN from the signals extracted from the X axis (XREF, XROOT) while any combination that has used
the data coming from the Y axis took considerably more time in the training process. From this point
of view, it seems that it was easier for the ANN to see a better pattern in data coming from the X axis
compared to that coming from the Y axis, a fact that can be supported by the data shown in Figure 2.
Training costs in terms of time consumption for the derived signal (∆XY) were lower, probably due to
the contribution of data coming from the X axis in its computation. In general, the combination of X, Y,
and ∆XY signals took considerably more training time compared to any other alternatives. Further,
the signals filtered to the root (ROOT) failed to improve considerably the amount of time needed for
training as the ratios between the time needed to train the ROOT and REF signals were in range of
0.76–1.17 for the FULL resolution and of 0.80–1.21 for the ESSEN resolution, respectively. On the other
hand, the highest differences in terms of training time resources were brought by the classification
complexity (FULL, ESSEN); for these, with one exception, the ratio of time needed to train essential
data to that needed to train fully described data was in the range of 0.20–0.73. From this point of view,
and by assuming that the objectives of a given application will be met, less detailed data could be a
better approach to save resources in the case of extensive datasets.
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Table 5. Training time of each model.

Analysis (Detail) Resolution Combination Abbreviation Signal(s) Used in Training Training Time (s)

FULL REF1 XREF 421
FULL REF2 YREF 853
FULL REF3 ∆XYREF 361
FULL REF4 XREF and YREF 1597
FULL REF5 XREF and ∆XYREF 1211
FULL REF6 YREF and ∆XYREF 1424
FULL REF7 XREF, YREF and ∆XYREF 1491
FULL ROOT1 XROOT 406
FULL ROOT2 YROOT 980
FULL ROOT3 ∆XYROOT 436
FULL ROOT4 XROOT and YROOT 1351
FULL ROOT5 XROOT and ∆XYROOT 1099
FULL ROOT6 YROOT and ∆XYROOT 1135

FULL ROOT7 XROOT, YROOT and
∆XYROOT

1410

ESSEN REF1 XREF 198
ESSEN REF2 YREF 318
ESSEN REF3 ∆XYREF 415
ESSEN REF4 XREF and YREF 320
ESSEN REF5 XREF and ∆XYREF 391
ESSEN REF6 YREF and ∆XYREF 276
ESSEN REF7 XREF, YREF and ∆XYREF 334
ESSEN ROOT1 XROOT 228
ESSEN ROOT2 YROOT 348
ESSEN ROOT3 ∆XYROOT 317
ESSEN ROOT4 XROOT and YROOT 342
ESSEN ROOT5 XROOT and ∆XYROOT 410
ESSEN ROOT6 YROOT and ∆XYROOT 322

ESSEN ROOT7 XROOT, YROOT and
∆XYROOT

359

3.2. Overall Classification Performance

The general results of the classification performance are given in Figures 3 and 4, respectively. By a
data comparison between the two, it was quite obvious that signals characterizing the ESSEN resolution
returned better classification performances irrespective of the signal(s) taken into consideration in
the training phase. In what concerns the same level of detail in data coding, the results were quite
different. In the case of FULL resolution both, REF and ROOT classes of signals returned poorer
classification results when using a single signal as an input for training. For instance, REF1, REF2,
and REF3 corresponded to the individual use of XREF, YREF and ∆XYREF, respectively, in the training
phase. Accordingly, ROOT1, ROOT2, and ROOT3 corresponded to the individual use of XROOT, YROOT,
and ∆XYROOT for training. In these circumstances, classification accuracy, precision, and recall (CA,
PREC, REC) were rather in the average domain, with values ranging from ca. 0.7 to 0.8. So, in these cases,
and by considering the REC metric, one could misclassify very well 20–30% of the data. Nevertheless,
the X signals seemed to carry more information to classify the events as the values of REC were the
highest in their case.

For the same resolution and irrespective of the signal class, the classification performance outcomes
were improved substantially by the use of two or more signals for a given classification attempt.
For instance, when using both (XREF and YREF), as specific to REF4, accuracy, precision and recall were
found to have values of 0.916 to 0.971. Furthermore, they were in the range of 0.907 to 0.909 in the
case of ROOT signal class. For both classes of signals, the best results of the classification performance
indicators were found when using all the three signals (XREF, YREF, and ∆XYREF, on the one hand and
XROOT, YROOT, and ∆XYROOT on the other hand). In these cases, the outcomes of the main classification
performance indicators exceeded the value of 0.915 and they have shown a better performance when
training the data from the REF class of signals.
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Figure 3. General classification performance metrics computed for the signals characterizing the FULL
resolution: (a) classification performance metrics for the REF signals, (b) classification performance
metrics for the ROOT signals. Legend: REF1—REF7 and ROOT1—ROOT7 have the meanings given in
Table 3, AUC—area under curve, CA—classification accuracy, F1—harmonic mean of PREC and REC,
PREC—precision, REC—recall.
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Figure 4. General classification performance metrics computed for the signals characterizing the ESSEN
resolution: (a) classification performance metrics for the REF signals, (b) classification performance
metrics for the ROOT signals. Legend: REF1—REF7 and ROOT1—ROOT7 have the meanings given in
Table 3, AUC—area under curve, CA—classification accuracy, F1—harmonic mean of PREC and REC,
PREC—precision, REC—recall.
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Given the results found, in the case of REF class of signals it would be advisable to compute and
use a derived signal (∆XYREF), as defined in this study. This could be important since by using it one
could bring an additional improvement of the classification performance by up to 0.6% if the REC
metric is to be considered. While this can be interpreted as being a low improvement, one should
account for scaling when interpreting such data. For instance, this study used ca. 13,000 observations
for the REF class of signals which could be transposed in ca. 620 s of detailed analysis. An improvement
of 0.6% of the REC metric, from 0.917 (as the signals could be extracted directly by tracking) to 0.923
(which will suppose an additional, yet simple calculation of the ∆XYREF) for this dataset would account
for an additional correct classification of ca. 4 s. Scaled at least at one operational day, this will mean
an improvement by an additional correct classification of ca. 192 s. The same could apply to the
ROOT signal class but, given the outcomes of the classification performance, as well as the additional
effort to process the signals by filtering to the root, the attempt seems to be unreasonable. On the
other hand, by assuming that a less detailed data (by type of events surveyed and coded) could fit
the needs of a study, the results shown in Figure 4 are encouraging. In this case, and by keeping the
same interpretations on the feasibility of signal filtering procedure, as well as those related to the type
of signals used to train the ANN models, the use of all the three signals from the REF class has led
to values of the classification performance metrics of 0.973, which could be interpreted as excellent
event (time) classification results. In this case (i.e., ESSEN resolution) the outcomes of the classification
performance seemed to be less affected by the number of signals used to train the ANN. As a fact,
the values of the classification performance metrics ranged from 0.927 to 0.973 and they were also
less affected by the class of signals used (REF, ROOT). However, given the results shown in Figures 3
and 4, for a more detailed analysis were kept the REF7 combinations corresponding to both, FULL and
ESSEN resolutions.

3.3. Characteristics of the Best Classification Models

The detailed results of the classification performance for the two retained models are given in
Table 6. In the case of the FULL resolution, classification accuracy was found to exceed 0.95 (95%)
irrespective of the event taken into study. However, the values of the REC metric ranged from ca. 70%
(MD) to ca. 98% (MF), with the last high value being also very important because it characterizes largely
the active cutting of the machine. Therefore, excepting the downward movement, all the values shown
may characterize very good classification results. It is important to mention here also the amount of
data to which a given metric of classification performance applies. For instance, the movements done
downward and upward accounted for less than 15% of the data.

Table 6. Detailed description of the classification performance for the best models.

Analysis (Detail)
Resolution

Combination
Abbreviation

Signal(s) Used
in Training Event

Classification Performance Metrics

CA F1 PREC REC

FULL REF7
XREF, YREF and

∆XYREF

MD 0.975 0.748 0.809 0.696
MF 0.959 0.965 0.953 0.977
MU 0.967 0.801 0.802 0.801
MB 0.966 0.862 0.898 0.829
S 0.979 0.934 0.926 0.942

ESSEN REF7
XREF, YREF and

∆XYREF

W 0.973 0.984 0.982 0.985
S 0.973 0.913 0.919 0.906

Similar results were found for the classification performance of the REF7 at the ESSEN resolution.
Machine working, which is essential in the productivity studies to delimitate and account for the
productive time [6], was found to yield a value of 98.5% for the REC classification performance metric
while the machine non-working has outputted a value of 90.6% for the same metric. Misclassifications
found in the best models are detailed in Table 7 by a matrix comparison approach.
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Table 7. Misclassifications in the best models.

Analysis (Detail)
Resolution

Combination
Abbreviation True Event No. of Misclass. Share in Misclass. (%)

Number of Misclassifications on Events

MB MD MF MU W S

FULL REF7

MB 287 28.50 NA 1 3 200 70 NA 1 14
MD 211 20.95 6 NA 1 106 40 NA 1 59
MF 175 17.38 35 43 NA 1 52 NA 1 45
MU 215 21.35 92 54 31 NA 1 NA 1 38

S 119 11.82 26 14 28 51 NA 1 NA 1

ESSEN REF7
W 164 45.81 NA 1 NA 1 NA 1 NA 1 NA 1 164
S 194 54.19 NA 1 NA 1 NA 1 NA 1 194 NA 1

1 Not applicable.
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In total, there were 1007 misclassified events in the REF7 of the FULL resolution and these were
quite equally distributed among all the moving events, with backward movement accounting for the
most. In this case, most of them were misclassified as forward movements, a fact that characterized also
the downward movement misclassifications. For the ESSEN resolution, on the other hand, the number
of misclassified events was much less, accounting for 358. In this case, the misclassifications were
distributed quite evenly between the two classes (W and S, respectively). Given the tools used to
collect the data, as well as the approach used to extract the used signals, it was assumed that some
of the misclassifications could be specific to a particular geometry or regions in the signals’ patterns.
To visually check for such behaviors, Figure 5 was developed to report a representative partition of the
data. What can be interpreted from Figure 5 is that the misclassifications din not followed a specific
pattern in relation to the geometry included in the patterns of the used input signals, neither did they
hold a specific grouping in the data. Another thing that can be seen was that, for the approximately
the same data range, the ESSEN resolution produced significantly less misclassifications which was
already proven by the data included in Figures 3 and 4, respectively.
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Figure 5. A partition of the original data plotted against misclassifications in the time domain: (a) for
the FULL resolution and (b) for the ESSEN resolution. Legend: XREF, YREF, and ∆XYREF have the
meaning given in Table 1, MISS—misclassifications (0—absent, 5—present).
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4. Discussion

Classification outcomes, as outputted by the system taken into study, were encouraging, a fact
that may be discussed from at least two points of view. First of all, the precision of classification is
generally termed as being very high if for a given application one achieves values of 90% or over [23].
However, what is to be considered is also the utility of the metrics, their magnitude and the role of a
given class in a given application. From this point of view, the classification recall (REC) would be
the best choice to evaluate the performance of the models. As it reached values of 92.3% and 97.3%
for the FULL and ESSEN resolutions, respectively, then one could expect misclassifications of time
consumption associated to the recall metric of ca. 1.5 (ESSEN) to 4.5 (FULL) minutes per one hour of
monitoring. However, this assumes that one will use the models as given herein without any other
checks on the geometry and other features, while the data for the active cutting (FULL) and machine
working (ESSEN) will lead to much fewer misclassifications. On the other hand, it was shown that
improvements of classification ability may be obtained by data scaling to standardize the inputs [26]
so as to reach a mean value of zero and a standard deviation of one for the input data. While for the
application described herein the eventual improvements brought by this kind of approach still need to
be checked, what is clear for now is that they will also need an additional computational effort.

Since the performance of the ANNs is related to the data used (signals, patterns) as inputs,
then one good approach to improve the classification outcomes will be that of getting very good
signals, including by their augmentation [23] where there is the case. As such, the ability to convert an
analogous signal into a good digital one and to augment the inputs provided by a digital signal may
be done in several ways, by having in mind both, the acquired signal and the underlying process [27].
From this point of view both, deriving a new signal as well as filtering the used input signals to
their roots could be seen as some sort of data augmentation. As the first approach actually led to an
increment of the general classification accuracy, one may conclude that it can bring improvements
for applications such as that described herein. However, its usefulness would depend also by the
acceptability of the classification outcomes since the improvement was of 0.6% compared to that of
using the raw signals in the multiclass (FULL) resolution problem and of 0.2% in the binary (ESSEN)
resolution problem. It is worth mentioning here that the raw signals (REF) were produced at half of
the original media speed, therefore, the trade-off between accuracy and saving time sources in the
office phase should be explored further.

The above mentioned, lead naturally to the data collector, its capabilities, setup, and settings,
which could hold the key for producing better signals. For a data collector such as that used herein,
and by considering the classification recall metric, it was found that the lower performing events
were the upward, downward and backward movements. This may not be erratic given the camera
capabilities and location, the background data used to produce the raw signals, the distance to
the surveyed events, and the speed at which the events occurred. In what concerns the backward
movement, it was found to be done at considerably higher speeds compared to the forward movement,
a fact that could have been affected the output signal at least by the sampling frequency. This was
also the case of upward and downward movements, with the latter ones being done in the field
of view’s background; therefore, one may just assume that the speed at which the events occurred
and their distance from the camera affected the classification performance. The general classification
outcomes may be related very well also to the resolution of the camera and to the sampling frequency.
For instance, Ref [28] have indicated that monitoring the movement prediction errors in construction
sites may be affected by the frequency of sampling (i.e., number of frames per second). On the other
hand, higher sampling rates have produced excellent results even for faster events [16]. Hence, a camera
holding a better resolution, a finer sampling rate and an improved shooter speed, may have been
improved the outcomes, given the fact that the software used to produce the signals works by a
frame-by-frame, pixel-by-pixel approach. Since the camera itself is not the only one component of the
data collection system, one may think if the use of well-designed markers placed on the machine’s
frame could have been produced better signals. As such, many applications of the Kinovea® software
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have produced excellent results from using markers [12,15] while the software itself has been used
in many types of applications that supposed the analysis of motion [12,15,16] or inter-validation of
different methods [16,29].

This study addressed only those events that were related to the machine use. Therefore, long-term
applications could include also external events such as feeding the logs and log rotation on the
machine’s platform (partly included in this study). It is to be checked to what extent a multi-tracking
approach could enhance a better event and time consumption classification for a setup such as that
from herein, as well as for a setup designed to monitor other active parts of the machine such as the
devices used to hold and rotate the logs. Accordingly, for a finer tuning of the system, it is to be checked
to what extent a calibration of the camera could solve other problems such as actually getting variables
related to the size of the logs and of the processed wood products. However, by assuming a system
such as that described herein, what could matter for long-term data collection sessions is that of finding
and holding a non-obstructed and non-interfered position for the camera. Moreover, the system’s
financial performance and sustainability are to be checked against those systems based on cheap
external sensors [9].

Last, but not least, this study has used an ANN architecture which is just one of the several
techniques of the AI. Our choice for this technique was based on its performance and popularity [23]
and mainly on its ability to solve multivariate problems [19] and to extract meaningful data from
complex patters [25]. Nevertheless, future studies should check the performance of other techniques
such as the support vector machine (SVM), Bayes classifier (BC), or random forests (RF) to see if
they could output better results. Furthermore, the approach of this study was just that to check the
performance of ANN architectures to classify data. This was done only by training and has outputted
excellent results. However, an extension of the system to get long term data would be beneficial
to build more robust models and to keep a separate subset for testing and validation, as these are
the typical steps for ANN development and deployment [17]; it will also extend our understanding
related to the use of algorithms, electronics and computer software in the assessment of operational
performance in the wood supply chain by adding new approaches to the known ones [30–32].

5. Conclusions

The main conclusion of this study is that the described and tested system holds a lot of potential for
automating data collection, processing, and analysis in wood sawmilling time-and-motion applications.
This was enabled by the use of more than one scalar signal as well as by the use of derived signals,
while the filtering to the signal’s roots did not concur to performance enhancements. Less detailed
data has produced better outcomes in the classification accuracy metrics; therefore, this approach
could be more suitable for long term applications under the assumption that such outcomes will be
accepted. Even if not fine-tuned, as described in the discussion section, the system may still achieve a
high performance in data collection, analysis, and classification problems related to the efficiency of
wood sawmilling operations. Assuming that a sufficient dataset would be available to build a robust
ANN model, the system could be implemented to get long-term data for an in-depth analysis. In this
configuration, it would enable better decisions supported by an informed background, contributing
this way to an easier search for improvement approaches in small-scale sawmilling industry.
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3. Gligoraş, D.; Borz, S.A. Factors affecting the effective time consumption, wood recovery rate and feeding
speed when manufacturing lumber using a FBO-02 CUT mobile bandsaw. Wood Res. 2015, 60, 329–338.

4. Cedamon, E.D.; Harrison, S.; Herbohn, J. Comparative analysis of on-site free-hand chainsaw milling and
fixed site mini-bandsaw milling of smallholder timber. Small-Scale For. 2013, 12, 389–401. [CrossRef]

5. De Lasaux, M.J.; Spinelli, R.; Hartsough, B.R.; Magagnotti, N. Using a small-log mobile sawmill system to
contain fuel reduction treatment cost on small parcels. Small-Scale For. 2009, 8, 367–379. [CrossRef]

6. Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; The Swedish
University of Agricultural Science: Garpenberg, Sweden, 1995.

7. Acuna, M.; Bigot, M.; Guerra, S.; Hartsough, B.; Kanzian, C.; Kärhä, K.; Lindroos, O.; Magagnotti, N.; Roux, S.;
Spinelli, R.; et al. Good Practice Guidelines for Biomass Production Studies; CNR IVALSA Sesto Fiorentino
(National Research Council of Italy—Trees and Timber Institute): Sesto Fiorentino, Italy, 2012; pp. 1–51.
ISBN 978-88-901660-4-4.
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