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Abstract: Research Highlights: We demonstrate the first quantitative evidence that the shoot
shedding of fast-growing species growing in a high-light environment is part of the process of shoot
redeployment into better-lit outer parts of the crown. Background and Objectives: Light foraging by
redeploying organs from shaded regions of a tree crown into better-lit regions is considered to apply to
both leaves and shoots. To date, however, this hypothesis has never been tested for shoots. Materials
and Methods: We investigated the shoot dynamics of saplings of five deciduous woody species. We
included fast-growing and slow-growing species (Alnus sieboldiana Matsum., Castanea crenata Siebold
& Zucc., Betula ermanii Cham., Acer distylum Siebold & Zucc., and Fagus crenata Blume). Results:
Shoots in the shaded regions of the crowns of the fast-growing trees showed higher mortality rates
than those at better-lit positions. Because of the selective shedding of the shaded shoots, at the end of
the growth period the light environment experienced by the shoots that survived until the following
spring was similar to that at the early stage of the same growth period. By contrast, the slow-growing
trees displayed slow and determinate growth, with a very low mortality rate of shoots at all positions
in the crown. Conclusions: The rapid shoot turnover of the fast-growing species resulted in the
redeployment of shoots into better-lit positions within the tree crown in a manner similar to the
redeployment of leaves.

Keywords: branch lifespan; shoot lifespan; stem lifespan; branch shedding; shoot shedding; stem
shedding; canopy; crown development; tree architecture; light foraging

1. Introduction

A plant canopy is a dynamically changing system due to the continuous production, growth, and
death of leaves and shoots [1–15]. The light environment within a canopy therefore changes temporally
during plant growth [1,9,10,14,16]. Although studies on static plant form and function, such as
allometric scaling approaches [17–24], are useful for analyzing time-averaged plant characteristics,
investigations of plant organ dynamics are essential to understanding the development of individual
plants and stands.

The dynamics of the aboveground parts of plants are driven by three processes: the production,
growth, and death of leaves and shoots. Plants in different light environments differ in their shoot
dynamics. In low-light environments (e.g., forest understories), plants may accelerate the shedding
of their shaded, lower-positioned leaves or shoots because of their negative carbon balances [1]
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(but see [6]). For plants in open habitats, the continuous production of leaves into better-lit, higher
positions in a canopy is an essential strategy to outcompete neighbors [25–27]. New leaves in the higher
or outer positions of a canopy shade the leaves in the lower or inner part of the canopy [14,28–30].
Senescence and death of the shaded leaves of plants in high-light environments are a part of organ
redeployment into better-lit positions [9,27,28,31–39]. Light foraging by organ redeployment from
shaded regions into better-lit regions of a tree crown is considered to apply to shoots in addition to
leaves [40,41]. To the best of our knowledge, however, no empirical study has tested the applicability
of this hypothesis to shoots.

The temporal changes of a crown are determined by two-way interactions between the light
environment and the dynamics of the leaves and shoots; light affects the dynamics (i.e., production,
growth, and death) of organs, and the dynamics of organs affect the environment [1,4,5,8,10,14,42].
Shoot production rates are higher and shoot mortality rates are lower in better-lit, outer parts than in
shaded, inner parts of the crown [13,40,43]. Furthermore, shoot growth and death depend on whether
the shoots are shaded relative to other shoots throughout the entire crown, a phenomenon known
as correlative inhibition [41,44–47]. Although these previous studies have successfully elucidated
how the light environment affects shoot dynamics, they have clarified only the one-way effects of
environmental factors on shoot dynamics. By contrast, only a few empirical studies (e.g., [6]) have
quantified the effect of shoot dynamics on light environments, despite the importance of these effects
having long been recognized in theoretical studies [1,4,5,8]. Therefore, further empirical studies of this
two-way interaction are needed.

In this study, we investigated the two-way interactions between the within-crown light
environment and shoot dynamics of saplings of five temperate, winter-deciduous woody plants
that included fast- and slow-growing species grown in open, well-lit places. We tested the hypothesis
that light foraging by organ redeployment from shaded regions into better-lit regions of a canopy,
an idea well supported for leaves, also applies to shoots. We also expected that the interaction
between shoot dynamics and light environments would be greater for fast-growing species than for
slow-growing species because of their difference in shoot production and survival rates.

2. Materials and Methods

2.1. Study Species

We investigated saplings of five temperate, winter-deciduous tree species, all of which are
native to Japan. The alder (Alnus sieboldiana Matsum.) is a nitrogen-fixing [48] pioneer species that
grows in open habitats after disturbances [49]. Its higher photosynthetic rates than those of typical
slow-growing species [50] indicate that this is a fast-growing species because the photosynthetic
rates of leaves and whole-tree growth rates are positively correlated [51–53]. The Japanese chestnut
(Castanea crenata Siebold & Zucc.) is an early-successional species that regenerates in sunny places [54].
In this study, we classified A. sieboldiana and C. crenata as fast-growing species based on their growth
rates (see Results). The Russian rock birch (Betula ermanii Cham.) is an early-successional species,
and its leaves have higher photosynthetic rates than those of typical late-successional species [55].
Thus, we classified B. ermanii as a medium-growth-rate species. Acer distylum Siebold & Zucc. is a
shade-tolerant sub-canopy species [56] found in climax beech forests [57]. Although it can tolerate
a shaded understory, this species also can grow rapidly in gaps [58]. Siebold’s beech (Fagus crenata
Blume) is a shade-tolerant [59] and late-successional [55] species that dominates in cool-temperate
climax forests in Japan [60]. The leaves of this species have lower photosynthetic rates than those
of typical early-successional species [55,61–64]. A. distylum and F. crenata were classified herein as
slow-growing species.
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2.2. Study Sites and Sample Trees

The current study was conducted from 2002 to 2003 at two study sites in Japan. To ensure that
the number of current-year shoots measured for each species exceeded 300, which we believed to
be sufficient to describe species-specific patterns, we examined three to six saplings of each species
(Table 1). Saplings of A. sieboldiana, C. crenata, and F. crenata were investigated at the experimental
garden of, or a plantation adjacent to, the Center for Ecological Research (CER), Kyoto University
(34◦58′ N, 135◦57′ E, 150 m asl). The mean annual temperature and precipitation at this location
are 14.6 ◦C and 1618 mm, respectively (years 2006–2010; data from CER). Saplings of B. ermanii and
A. distylum were investigated in a nursery at the Kamigamo Experimental Forest Station (KEFS), Kyoto
University (35◦04′ N, 135◦46′ E, 140 m asl), which is approximately 21 km from CER. The mean annual
temperature and precipitation at KEFS are 14.6 ◦C and 1580 mm, respectively (years 1971–2000; data
from KEFS). Therefore, the two study sites had very similar temperatures and precipitation. All of the
saplings investigated in the study were grown in open, well-lit places.

Table 1. Sample sizes of current-year shoots from the saplings of different species of trees.

Alnus
sieboldiana

Castanea
crenata

Betula
ermanii

Acer
distylum

Fagus
crenata

No. of saplings 3 3 3 6 4
Tree height (m) 0.81–1.03 0.95–1.13 0.61–0.81 0.86–1.72 0.81–1.02

No. of shoots for the shoot census 1 581 425 318 325 343
No. of shoots for the leaf census 1 189 251 259 288 339

1 Total number of current-year shoots from all saplings of each species that we investigated.

2.3. Shoot Census

For each sapling, we identified and periodically investigated all the current-year shoots that
appeared in 2002 (Table 1, Figure 1). In 2002, we measured the length of each shoot after it had
completely elongated. Shoot lengths (i.e., the annual shoot elongation) and the number of vegetative
buds (i.e., the production of daughter shoots) were used as indices of the growth rates of each shoot.
For A. sieboldiana, C. crenata, and A. distylum, we observed sylleptic shoots: lateral buds that grew from
current-year shoots within the same year. All of these were regarded as part of their parent (proleptic)
shoots, and the lengths and numbers of vegetative buds of the sylleptic shoots were summed with
those of their parent to calculate the annual shoot elongation and bud production of the parent shoot.
In April 2003, we evaluated the survival of each shoot. A shoot was defined as alive if it had at least
one living bud (vegetative or flower bud). A shoot was defined as dead if it had been shed before
April 2003 or if it lacked any living bud in April 2003.

Figure 1. Cont.
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Figure 1. Young shoots of (a) Alnus sieboldiana, (b) Castanea crenata, (c) Betula ermanii, (d) Acer distylum,
and (e) Fagus crenata (photographs captured in April 2002 by Hiroyuki Shirakawa).

2.4. Leaf Census

From bud break (late March 2002) to completion of leaf fall (late January 2003), we periodically
investigated all leaves of the selected shoots of each species (Table 1) and recorded the numbers of
leaves that appeared from these shoots every one or two weeks. The date of leaf emergence was
postulated to be the midpoint between the date of a previous observation and the date that a new leaf
was observed [65]. For each shoot, we calculated the shoot elongation period as the time between the
emergence of the first and last leaf (i.e., the leaf emergence period calculated for each shoot). All leaves
on the monitored shoots of F. crenata emerged as a flush within seven days between two successive
census days (8 and 15 April 2002). The shoot elongation period of F. crenata was therefore estimated at
3.5 days.

2.5. Measurement of Light Environments

We measured the light environment within each crown for all the current-year shoots of the studied
saplings. For the two fast-growing species (A. sieboldiana and C. crenata), which had indeterminate
growth patterns, we investigated seasonal changes of the light environment within each canopy by
conducting the same measurements twice during the same growth period in 2002 for all the shoots.
The first measurement was taken in June or July, when almost all of the current-year proleptic shoots
had emerged, but their elongation (including elongation of their sylleptic shoots) was not yet complete.
The second measurement was conducted in September, when the elongation of almost all of the
shoots was either complete or nearly so. For the other three medium- or slow-growing species,
the measurements were conducted once, between June and September, when the elongation of most of
the shoots was complete or nearly so (the dates of the measurements for each species are shown in the
Results). We conducted the measurements from 11:00 to 13:00 local time on overcast days. On each
measurement day, we used two quantum sensors (IKSX-7/101; Koito Manufacturing, Tokyo, Japan)
to measure the photosynthetic photon flux density (PPFD) simultaneously. One sensor was fixed
horizontally to a pole at the top of each tree. Light conditions at the tops of the trees in the open
experimental gardens were nearly the same as those in the open full-lit location. Another sensor was
fixed horizontally at the top of each shoot [46,66] with a hand-held measuring bar, as described in
Muraoka et al. [67,68] (Figure 2). The investigators took care so as to not shade the sensor. We calculated
the relative PPFD (rPPFD) as the ratio of the PPFD at the tip of each shoot to the PPFD at the top of the
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tree [46]. A previous study demonstrated that rPPFD measured on the horizontal surface at the tip of a
branch represents the average light environment of that branch because it is highly correlated with the
mean rPPFD of distal-to-proximal secondary shoots on that branch [46]. Therefore, we used the rPPFD
at the tip of each shoot as a representative value for the average light environment of that shoot.

Figure 2. A schematic diagram demonstrating the measurement of light environments of different
shoots in this study. A sensor was fixed horizontally with a hand-held measuring bar. (Illustration by
Kohei Koyama).

Some sylleptic shoots emerged after the first measurements (June–July) and were considered part
of their parent proleptic shoots. Therefore, if a proleptic shoot had sylleptic shoots, the continuum
of proleptic–sylleptic shoots of the same age (i.e., those shoots that emerged within the same growth
period) was considered as one current-year shoot. In that case, the top of that current-year shoot was
measured in the second measurement. In the case of a shoot that had been shed prior to the second
measurements, we measured the PPFD at the approximate prior position of the shoot tip (estimated
from its length).

We analyzed the effect of rPPFD that was obtained at the first measurement on each shoot for
each species on the subsequent survival of that shoot in April 2003 using a generalized linear mixed
model (GLMM) with the function glmer (binomial (link = “logit”)) [69] and R software v4.0.3 (Vienna,
Austria) [70]:

ln
(

y
1− y

)
= a + bx + r⇔ y=

exp(a + bx + r)
1 + exp(a + bx + r)

⇔ y=
1

1 + exp(−a− bx− r)
, (1)

where y is the survival of that shoot in April 2003 (0 = dead, 1 = survived), x is the fixed effect (rPPFD),
a and b are the coefficients estimated by the glmer, and r is the random intercept (individual tree).
The significance of the fixed effect of rPPFD (coefficient b) was tested by a likelihood ratio test with
the R function anova (test = “Chisq”) by comparing Equation (1) with the null model with no rPPFD
dependence (b = 0).

As mentioned, for the two fast-growing species, we conducted the PPFD measurements twice (i.e.,
the early (June or July) and the late (September) stages) in 2002 for the same set of shoots. The survival
of the shoots was monitored until April 2003. The shoots were then assigned to one of two groups:
(1) survivor group, those that survived until April 2003, or (2) dead group, those that had died by
April 2003. We performed two types of comparisons (A and B) as follows. (A) Using all of the shoots
from the survivor and dead groups, we compared the early versus late environments within the
same growth period in 2002 within each tree crown. We expected that because of the rapid and
indeterminate growth of the fast-growing species, the later-stage shoots would experience an inferior
light environment compared with the early-stage shoots. This expected result would indicate that
rapid growth causes an increment of self-shading. (B) We compared all the shoots at the early stage
with the rPPFD of the survivor group shoots at the late stage. The survivor group shoots at the late
stage were considered to be the shoots for the next year. Finally, we compared the difference in the
results between (A) and (B). We hypothesized that any difference between (A) and (B) would indicate
an effect of shoot shedding on the within-crown light environment. We expected that shoot deaths
would counter the development of self-shading by the selective shedding of shaded shoots. For these
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two types of comparisons, we tested the differences in the two distributions of rPPFD (early versus
late) with two-sample Kolmogorov–Smirnov tests using R software. All of the datasets used in this
article are available online as Supplementary Materials.

3. Results

3.1. Growth Rate and Pattern

Table 2 summarizes the results of the growth and survival rates of the shoots. The shoot elongation
period was longest for the fastest-growing species (A. sieboldiana), which showed typical indeterminate
growth and successive emergence of leaves (Figure 3). By contrast, the elongation period was shortest
for the slowest-growing species (F. crenata), which displayed typical determinate growth and a flush
of leaf emergence during a very short time. The remaining species showed intermediate patterns.
C. crenata experienced three flushes of leaf emergence, while B. ermanii and A. distylum showed one
flush of emergence of early leaves and the successive emergence of late leaves.

Table 2. Growth and survival rates of the shoots.

A. sieboldiana C. crenata B. ermanii A. distylum F. crenata

Species category Fast Fast Medium Slow Slow
Annual shoot elongation 1,2 (cm year−1) 26.9 8.0 4.4 1.5 2.2

Shoot elongation period (days) 1 156 33 18 8 3.5
Number of daughter buds per shoot 1,2,3 5.1 2.7 1.9 1.1 1.1

Shoot survival rate 0.54 0.78 0.88 0.93 0.98
1 Mean values for each species. 2 The lengths of sylleptic shoots and the number of their vegetative buds were
summed with those of their parent proleptic shoots. 3 Shoots without vegetative buds were not included.

Figure 3. Histogram of shoot elongation period. The shoot elongation period is defined as the time
interval between the emergence of the first and last leaves.

3.2. Shoot Survival

The shoot survival rate was lower for the fast-growing species than for the slow-growing species
(Table 2). The shoots in the shaded part of the canopy of the two fast-growing species (A. sieboldiana
and C. crenata) experienced a high mortality rate (Figure 4, Table 2). By contrast, the shoots of the
slow-growing species (A. distylum and F. crenata) experienced a low mortality rate at all positions
within the canopy, regardless of the light environment (Figure 4, Table 2). The mortality rate of the
shoots of the medium-growth-rate species (B. ermanii) was intermediate between these two extremes
(Figure 4, Table 2). Logistic regression analysis demonstrated that those shoots located in a low-rPPFD
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environment were significantly less likely to survive than shoots located in a high-rPPFD environment
in fast-growing (A. sieboldiana and C. crenata, p < 0.001) and medium-growth-rate species (B. ermanii,
p < 0.001), but not in slow-growing species (A. distylum, p = 0.54; F. crenata, p = 0.45).

Figure 4. Relative photosynthetic photon flux density (rPPFD) at the shoot tips in summer and autumn
in 2002 and number of surviving or dead shoots in April 2003. Dates of rPPFD measurements in
2002 are as follows: A. sieboldiana, 15–24 June; C. crenata, 19 July; B. ermanii, 17 June; A. distylum,
4 August–1 September; F. crenata, 27 August–26 September.

3.3. Light Environment

The long shoot elongation periods observed for the two fast-growing species caused the
development of self-shading during a single growth period. Shoots of the two fast-growing species
(A. sieboldiana and C. crenata) experienced significantly more self-shading in the late stage than the
early stage of the same growth period (p < 0.001; Figure 5a). Nonetheless, the light environment in the
later stage of growth experienced by the shoots that survived until April 2003 (i.e., the shoots for the
next year) was similar to the one experienced by all the shoots in the early stage (Figure 5b). For both
of the fast-growing species, the light distributions during the two stages did not differ significantly
(A. sieboldiana, p = 0.48; C. crenata, p = 0.10; Figure 5b).

Figure 5. Cont.



Forests 2020, 11, 1301 8 of 15

Figure 5. Comparison of the light environments between the first (early stage of the growth period,
black curves) and the second (late stage, red curves) measurements illustrated by empirical cumulative
distribution functions. (a) All the shoots were analyzed for both stages. (b) All the shoots were
analyzed for the early stage, and only the shoots that survived until April 2003 were analyzed for the
late stage. p-values are the results of two-sample Kolmogorov–Smirnov tests, which were used to
determine whether the difference between each pair of distributions (early vs. late) was significant.
N.S., not significant.

4. Discussion

The high metabolic activities of plant organs are generally associated with their fast turnover
rates and short lifespans [71]. We observed that the shoot growth and mortality rates were higher for
the fast-growing species than for the slow-growing species. Recent advances in plant ecophysiology
have led to the concept of a “plant economics spectrum,” a covariation of a suite of traits that can
be largely explained by a position on the single axis of fast versus slow strategies [71]. The core
relationships in the economics spectrum are the negative correlations between trait values associated
with productivity (e.g., higher growth rate, higher leaf photosynthetic rate) and those associated with
persistence (e.g., slow turnover rate, mechanical stability, longer lifespan). This growth–persistence
trade-off has been reported both at the organ level (e.g., “leaf economics spectrum” [72], “wood
economics spectrum” [73], “root economics spectrum” [74]) and at the whole-plant level (fast vs.
slow strategies or “plant economics spectrum”) [51,71,75–77], based on the rationale that more active
organs afford individuals with better whole-plant growth rates at the expense of lower survival
rates [1,51,73,75,78,79]. Such trade-offs have been found across different taxa, including different
vascular plant groups [51,71–78], ferns [80], and mosses [81]. Similar trade-offs have also been observed
in interspecific comparisons globally [72,73,82] and locally [55,83–85]. Analogous trade-offs have been
quantified at intraspecific levels as well [86].

Two major theories have been proposed to explain the negative correlation between growth
and survival rates. The first is the physiological constraints theory, which states that an organ or an
individual cannot attain both high productivity and high persistence [87,88]. Such a trade-off may
arise because of the selective investment of resources between traits related to high activity and those
related to persistence [71,75,89]. For example, an investment of nutrients into the photosynthetic
apparatus enhances photosynthetic rates [90] at the expense of investment in defense chemicals that
reduce herbivory [75] or into mechanical toughness [91]. Likewise, stems comprising dense wood
with narrow conduits are durable but may be less effective at transport [88] (but see [73]). Thus far,
the physiological constraints underlying growth–persistence trade-offs have been intensively studied
both theoretically [92] and empirically [73,91,93]. The second explanation for the negative correlation
between growth and survival rates is the theory of optimal longevity (TOL): an organ should be replaced
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at an optimal time to maximize whole-plant carbon gain [9,29,31,38–40,94–96]. The key idea is that plant
organs should be continuously moved into more productive environments [9,29,31,39,40,71,97] because
a plant generally competes with its neighbors for light [25,26,71]. The production and deployment
of new leaves and shoots into better-lit positions cause self-shading of the shaded inner part of the
plant canopy [1,28,36] resulting in the death of the shaded leaves or shoots [1,3,9,29,30,39,97]. Such
organ redeployment would be faster if the plants or shoots were growing faster [3,9,14,31,36,65,97].
TOL predicts that a higher growth rate is one of the reasons for a shorter organ lifespan. The two
theories are not mutually exclusive, and the difference between them is a difference between proximate
and ultimate or evolutionary factors [98].

Previous studies of shoots, however, have focused primarily on testing physiological constraints
(i.e., causes of short organ lifespan), whereas few studies [13,40] have directly investigated the
consequences of a shortened organ lifespan. Specifically, although the concept of the economics
spectrum may apply to any organ [71], quantitative assessment of the TOL is limited to leaves [39,99]
or fine roots [100]. It has been suggested that TOL can also be applied to shoots [40,101]; however,
those studies did not quantitatively evaluate the effects of shoot shedding on light environments
within crowns. Our results quantitatively demonstrated a consequence of rapid shoot shedding;
i.e., redeployment of shoots into better-lit positions within a tree crown. The present results are
consistent with the predictions of TOL, which, to date, have been thoroughly tested with leaves but
not with shoots.

Based on the wood economics spectrum theory [73], we analyzed the wood density of four
of the five species from the published literature and reconfirmed the predicted relationship [73]
that the shoot survival rate is higher for species with higher wood density (Figure 6). A recent
study [102] further proposed that a variation in crown structure (e.g., those maximizing light capture
vs. those maximizing vertical growth) can be considered a new trait trade-off continuum: the structural
economics spectrum [102]. This spectrum can be integrated with the previously described concepts of
the leaf and wood economics spectra [102], in which the turnover rate of organs (i.e., leaf lifespan) plays
a central role as an indicator of plant strategy [71–73]. Quantitative results regarding the consequence
of organ turnover on the crown structure and light environment, such as those presented in this
study, would be useful for investigating the suggested linkage among those economics spectra in
future studies.

Figure 6. Shoot survival rates in relation to wood density. Fc: Fagus crenata (data from [24]); the original
publication contained a typographical error (the same numbers were expressed in the wrong units
[kg m−3], and therefore the correct units [g cm−3] have been used here, based on personal communication
with the first author of [24]. Ad: Acer distylum (calculated from values in [103]), Be: Betula ermanii (data
from [104]), and Cc: Castanea crenata (data from [24]). The wood density of A. sieboldiana was not found
in our literature survey.
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A simulation that was based on a dynamic functional-structural model [1] suggests that the death
of shade shoots among shaded understory saplings is merely a passive response to the negative carbon
balance of shaded shoots. Later, Laurans and Vincent [6] conducted an empirical study to test that
suggestion. Their results showed that shoot shedding was not accelerated, whereas shoot production
was suppressed for saplings in more heavily shaded understories than the conspecific individuals in
less-shaded gaps. Laurans and Vincent [6] intentionally excluded pioneers that grew only in open
habitats from their experimental design because their objective was to clarify how the suppression
of shoot production in the shade and the long lifespan of the branches of shade-tolerant species
determined crown morphological variation as a mechanism of shade tolerance. However, neither of
those previous studies [1,6] clarified the consequences of shoot shedding on the within-crown light
environment of vigorously growing trees in open, well-lit places. In the present study, we focused
on plants in high-light environments, in which the continuous production and growth of shoots are
expected. Our results, therefore, cannot be directly compared with those of these previous studies.
In contrast to the cases of trees, there have been many results from experiments on herbaceous species
grown in well-lit places that clarified the consequences of leaf shedding on the within-canopy light
environment (e.g., [9,28–30,39]). These studies reported the function of the redeployment of leaves
from shaded into well-lit places. Thus, our results of the shoot redeployment process observed in open,
well-lit experimental gardens are more similar to the results of herbaceous species in open places than
to the results of woody species in shaded understories.

Our study had several limitations. First, we monitored the trees for only a short time. The shoot
mortality rate of the slow-growing trees was very low during the single growth period investigated
in this study. It has been reported that late-successional old trees maintain their within-canopy
structure by continuously replacing branches [105]. The implication may therefore be that fast- and
slow-growing species maintain their within-crown light environments by replacing shoots rapidly and
slowly, respectively. Further studies that monitor trees for more extended periods of time are therefore
needed. Second, competition with neighbors was excluded in our experiment, which involved growing
each sapling in an isolated condition. Nonetheless, the development of a tree crown in a real stand is
also affected by competition with neighboring trees [102,106,107] and shading by a surrounding forest
canopy [1,4,6,8]. Further studies are therefore needed before the present results can be generalized to
real forest conditions.

5. Conclusions

We demonstrated the first empirical evidence that production and shedding of shoots for the
saplings of fast-growing woody plants in high-light environments are part of a process of the
redeployment of shoots into better-lit parts of the crown, similar to the redeployment of leaves.
By contrast, the slow-growing trees displayed slow and determinate growth, with a low mortality rate
of the shoots at all positions in the crown. These results indicate that fast- and slow-growing species
maintain their within-crown light environments by replacing shoots rapidly and slowly, respectively.
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