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Abstract: Allergies became a major public health problem, identified as an important global pandemic
with a considerable impact on the worldwide economy. In addition, a higher prevalence of pollen
Type I sensitization cases in urban environments in comparison with the rural territories was detected.
Our survey sought to assess the main biological pollution episodes caused by the aeroallergens of
the major allergenic tree species in urban environments. A Hirst-type volumetric device was used
for pollen sampling and a Burkard Cyclone sampler for the detection of tree atmospheric allergens
over two years. The main allergens of Alnus, Fraxinus, Betula, Platanus and Olea, were detected
in the atmosphere. Three peaks of important pollen concentrations were recorded throughout the
year. The developed regression equations between pollen counts and allergen proteins registered
great R2 values. The number of days with probability of allergenic symptoms was higher when
the pollen and allergen data were assessed altogether. Fraxinus allergens in the atmosphere were
detected using Ole e 1 antibodies and the Aln g 1 allergens with Bet v 1 antibodies, demonstrating the
cross-reaction processes between the principal allergenic proteins of the Oleaceae and Betulaceae
families. Long Distance Transport processes (LDT) showed that pollen from Betula populations located
in mountainous areas increased the secondary peaks of pollen and allergen concentrations, and air
masses from extensive olive orchards of North-Eastern Portugal triggered the highest concentrations
in the atmosphere of Olea pollen and Ole e 1 allergens.
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1. Introduction

An ongoing global intensification of the incidence of pollen allergy diseases over the last half
century was observed [1]. Allergies became a major public health problem in the urban atmosphere
of the industrialized and emergent countries, recognized as an important global pandemic with a
considerable impact on the worldwide economy [1,2]. In Europe, it was estimated that 20% of the
citizens suffer from pollen Type I sensitive reactions [3], which increased in the most developed countries
with incidences above 30% [4,5]. In addition, a higher prevalence of pollen-related sensitization cases
in urban environments in comparison with rural spaces was detected [6,7]. Among the possible causes
that have enlarged the allergenic content in the air of the urbans areas, the “heat island effect” of the
cities prompts an increase of plants’ pollen production and shifts pollen seasons to an earlier onset and
lengthier durations [8]. Furthermore, urban atmospheric chemical contaminants favor a higher vegetal
biomass growth and the increase of the allergenic protein content on pollen grains [9–11]. The greater
occurrence and intensity of pollen allergic symptomatology in hypersensitized people during recent
years was related with the increase of pollen production by plants [1,10]. Additionally, this situation is
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aggravated by the allergy problems derived from an inappropriate ornamental vegetation planning
and design of green areas in cities [12]. The ornamental flora planted at gardens, parks or streets present
a low biodiversity with a massive use of few species from the same families, mainly Oleaceae and
Betulaceae in the case of Ourense, which can lead to cross-reaction processes between their allergens
in sensitized people [12,13]. Besides the abovementioned, the assessment of pollen emissions from
forestry or cultivations surrounding the urban environment should be also considered [14].

The most important allergenic taxa of the Ourense city, which constitute the 50% of the total of
airborne pollen, are arboreal species from Alnus, Fraxinus, Platanus, Betula and Olea genus, which flower
in winter and spring. Alnus glutinosa (L.) Gaertner is a widely represented tree in the riverside forests
of Northern Spain. The pollen from alder causes the first occurrence of allergy symptoms along the
year due to their major allergen Aln g 1 [15]. Alnus pollen type has been reported to be one of the main
causes of pollinosis in Central and Northern Europe [16], with an increased rate of sensitization against
their main allergen Aln g 1 during recent years [17]. In Northwestern Spain between 9% and 20% of
hay fever sufferers are allergic to Alnus pollen [18]. Fraxinus angustifolia Vahl belongs to the Oleaceae
family and is a tree largely extended in the North-Western Spain as natural species of river-bank
vegetation [19] and as ornamental plants in green urban spaces [20]. In temperate zones of North and
Central Europe the sensitization to ash pollen is a recognized problem, even more important than birch
in some areas [21]. Around 18–34% of allergy sensitization rates can be attributed to the ash tree in
Central Europe [22]. Fra e 1 is the main allergen for the ash sensible people [23]. Platanus hispanica
Miller ex Münchh is the main source of the low biodiversity in urban areas since it is broadly planted
as ornamental species in urban green areas and streets of the South European cities [24]. The plane
pollen allergenic capacity has been attributed to the expression of their major allergen Pla a 1 [24].
Plane trees have an important allergological interest in Central and Southern European cities [16,25,26].
In Spain the prevalence of positive skin pick test varies from the 8–9% sensitized people in the Northern
cities [27] to the 52–56% in Madrid [28]. Pollen from Betula pendula Roth represents one of the main
sources of spring hay fever and asthma in Europe [29]. A study conducted in the Northwestern Spain
noted that of 41.89% patients with a positive SPT (skin-prick-test) for Betula alba L. allergens, 10.75%
were monosensitized [28]. Increases in allergen-specific therapy demand have been observed in years
with Betula pollen in high concentrations [30]. The principal allergen of the birch pollen is the Bet v 1
protein [31]. In addition, it is demonstrated that people suffering oral allergy syndrome (OAS) showed
oral symptoms before Betula pollinosis symptoms [32]. A large number of children are polysensitized
to birch, ash and grass pollen in central Europe [33]. Important rates of olive pollen sensitization up to
29.7% of the allergic patients are recorded along the Mediterranean basin [34]. The northern limit of
the olive tree distribution in the Iberian Peninsula is the Eurosiberian bioclimatic region where only 8%
of the pollinosis people show positive effects to Olea pollen [35]. Common olive group 1 was the major
allergen with 16-kDa [36]. The urban allergic population to the Betula and Olea pollen could display
allergy responses in the winter months (as consequence of ash and alder pollen allergens), in the early
spring because the Bet v 1 allergens or late spring due to Ole e 1 tree pollen related allergens.

The pollen concentration in the aerosol and their time-based sequence are the most traditional
information offered for pollinosis patients [37]. Nevertheless, mismatches between the symptoms’
appearance and the period of pollen presence in the atmosphere were detected in recent years at
different regions [38]. Allergy symptoms can be triggered even at low pollen concentrations, so that
several investigations highlighted the assessment of pollen and aeroallergens as a necessary instrument
to establish the actual airborne allergenic load [10,39].

Our study sought to evaluate the tree-related aeroallergen content as a source of pollution in
urban atmospheres with the aim to assess the real load of allergens in the air and the causes of potential
allergenic hazard episodes for sensitized people.
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2. Materials and Methods

The research was conducted in the city of Ourense located in the North-Western part of the Iberian
Peninsula, an altitude of 454 m a.s.l. and a geographical location 42◦20′ N–7◦52′ W. The climate of
this area is described as Oceanic with Mediterranean features, with an annual average temperature of
14 ◦C and a total precipitation of 772 mm in a year [40].

Aerobiological sampling of tree pollen and allergens during the years 2017 and 2018 was conducted
using two volumetric traps placed on the roof of the Science Faculty building, approximately at 15 m
above the ground level and near to the town center. Pollen was monitored using a Hirst-type Lanzoni
VPPS-2000 volumetric sampler (Lanzoni s.r.l., Bologna, Italy) [41] with a pressure flow rate of 10 L/min,
simulating the human breathing. Melinex adhesive tape was used as a pollen grain capture surface.
Pollen quantification was conducted applying the methodology proposed by the Spanish Aerobiological
Network (REA) [42], based on four longitudinal transects along the slides. The Main Pollen Season
(MPS) was stablished using the Andersen method [43], which defines the MPS as the period from the
day 2.5% of total annual pollen concentrations were reached to the date when 97.5% is accomplished.
The classification recommended by the REA [30] was followed to categorize the pollen concentrations,
as well as for the calculation of the thresholds of allergy hazard. For the quantification of the allergenic
fraction, a Burkard Multi-Vial Cyclone Sampler (Hertfordshire, UK) with 16.5 L/min of aspiration flow
rate was used. The bioaerosol particles were sampled into Eppendorf vials every 24 h and analyzed
with the Takahashi et al. method [44] modified by the Moreno-Grau et al. method [45]. The 2-site ELISA
methodology was used for the quantification of the aeroallergen content in the bioaerosol samples in
four steps [12,46]. The antibodies Ole e 1 and Pla a 1 (Roxall S.A) were used for the determination
of the allergen content of Fraxinus, Olea and Platanus allergens, and the Bet v 1 specific monoclonal
antibody (ALK-Abelló) was used to quantify the Betula and Alnus allergen content in the aerosol.
The absorbance was measured at 492 nm.

Meteorological data were acquired from the Galician Institute for Meteorology and Oceanography
METEOGALICIA “Ourense” station, placed at 300 m of the pollen and allergen samplers. The measured
parameters were temperature (◦C), relative humidity (%), precipitation (mm) and wind speed (km/h)
(Figure 1).

Spearman’s non-parametric correlation test and Principal Component analysis (PCFA) were
applied to evaluate the association between the pollen and the allergen concentrations in the air
with the main weather parameters. A regression equation between the pollen and allergen data was
conducted in order to obtain the aeroallergens thresholds and the amount of days with potential hazard
of allergy prompted, both for pollen and allergens. The STATISTICA 7 program was used for the
statistical analysis.

HYSPLIT back trajectories were assessed to study the daily pollen and allergen higher
concentrations. The models led us to stablish the provenance (latitude, longitude and elevation) in the
selected days of air masses using meteorological data at the 250, 500 and 700 m heights from the earth
surface [47].
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Figure 1. Meteorological variables: Maximum Temperature (black lines), Rainfall (black bars), 
Relative humidity (grey lines) and Wind speed (grey lines). 

Spearman’s non-parametric correlation test and Principal Component analysis (PCFA) were 
applied to evaluate the association between the pollen and the allergen concentrations in the air with 
the main weather parameters. A regression equation between the pollen and allergen data was 
conducted in order to obtain the aeroallergens thresholds and the amount of days with potential 
hazard of allergy prompted, both for pollen and allergens. The STATISTICA 7 program was used for 
the statistical analysis. 

HYSPLIT back trajectories were assessed to study the daily pollen and allergen higher 
concentrations. The models led us to stablish the provenance (latitude, longitude and elevation) in 
the selected days of air masses using meteorological data at the 250, 500 and 700 m heights from the 
earth surface [47]. 

3. Results 

Two periods of important tree pollen concentrations were recorded throughout the studied year 
(Figure 2). The first was consequence of the Alnus and Fraxinus blooms during January and February. 
The second, the quantitatively most important period, was mainly due to the pollination of Betula, 
Platanus and Olea during the spring months. The last period had a great impact on sensitization 
processes due to the flowering of trees with a high recognized allergy potential mainly in urban 
environments.   
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Figure 1. Meteorological variables: Maximum Temperature (black lines), Rainfall (black bars),
Relative humidity (grey lines) and Wind speed (grey lines).

3. Results

Two periods of important tree pollen concentrations were recorded throughout the studied
year (Figure 2). The first was consequence of the Alnus and Fraxinus blooms during January and
February. The second, the quantitatively most important period, was mainly due to the pollination
of Betula, Platanus and Olea during the spring months. The last period had a great impact on
sensitization processes due to the flowering of trees with a high recognized allergy potential mainly in
urban environments.
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Figure 2. Pollen grain concentrations (grey area), allergen concentrations (black line), maximum 
temperature (points line) and rainfall (bar) for Alnus, Betula, Fraxinus, Olea and Platanus during the MPS. 
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Figure 2. Pollen grain concentrations (grey area), allergen concentrations (black line), maximum
temperature (points line) and rainfall (bar) for Alnus, Betula, Fraxinus, Olea and Platanus during the MPS.
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The occurrence of Alnus pollen in the Ourense atmosphere was observed from the second fortnight
of January to the end of February. We registered a total airborne pollen of 2692 and 6368 pollen grains
in 2017 and 2018, respectively, during a MPS with a length of 40 and 52 days. The highest alder pollen
value was recorded on 24 January with 867 pollen/m3. The total annual integral of Aln g 1 was 9.200 ng
and 7.386 ng in 2017 and 2018, respectively, with a peak observed on 1 February 2017 with 1.868 g/m3,
one day after the pollen peak. Although both peaks were recorded during a period of lack of rainfall,
the Aln g 1 peak was observed during an increase (2.5 ◦C) in maximum temperatures (Table 1, Figure 2).
The Fraxinus flowering occurred from January to early March. A total amount of 563 and 1575 pollen
grains were recorded in 2017 and 2018, respectively, during the flowering period, with a duration of
57 and 66 days. The peak pollen concentration occurred on 17 January 2018 with 160 pollen and the
allergen peak was recorded on 23 January 2018 with 0.660 ng/m3, 6 days after the pollen maximum
values. A period of rainfall absence and low temperatures coincided with the pollen and allergen
maximums around 14.7 ◦C (Table 1, Figure 2).

The Betula pollen was detected in the atmosphere from the second fortnight of April until the first
of May with a short MPS of 33 and 28 days in 2017 and 2018, respectively. The total airborne pollen
was 3103 and 8397 pollen grains in 2017 and 2018, respectively, recording the pollen peak on 25 April
2018 with 1283 pollen/m3. The annual integral of Bet v 1 allergen was 9.513 ng and 8.354 ng in 2017
and 2018, respectively, with a maximum concentration of 0.925 ng/m3 on 19 April 2017. Both peaks are
coincident with a period of rainfall absence; however, the Bet v 1 peak also coincided with a maximum
temperature rise (from 22 ◦C on 14 April to 27 ◦C on Bet v 1 peak day) (Table 1, Figure 2). The Platanus
MPS was also short from early April to early May. The seasonal plane pollen integral varies from
7290 in 2017 to 5399 in 2018, with a pollen peak registered on March 29th where 1549 grains/m3 were
registered in 2017. A total of 13.927 ng and 5.072 ng of Pla a 1 were detected during 2017 and 2018,
respectively, in the atmosphere, and the maximum concentration was identified on 21 March 2017 with
1.157 ng/m3. Both peaks coincided with the presence of precipitations and a decline of the maximum
temperature around of 17 ◦C (Table 1, Figure 2).

The Olea flowering took place from the latest May until early July with a MPS length of 32 and
41 days in the two years of study. Wide variations in the annual pollen and allergen integral were
detected between the two years of study with an amount of 1389 and 233 pollen grains and 0.604 ng
0.117 ng in 2017 and 2018, respectively. During the year 2018 both maximum allergen and pollen
diurnal peaks were detected in the same day, whereas in 2017 with a difference of 15 days (Table 1,
Figure 2).
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Table 1. Date of the start, end and length of the main pollen season (MPS) (days), mean pollen (pollen/m3), date of the pollen peak (day), pollen (pollen) and allergen,
allergen peak of the MPS (ng/m3), date of the allergen peak (day) and Pollen Allergen Potency (AP) (ng/pollen).

2017 2018

Fraxinus Alnus Platanus Betula Olea Fraxinus Alnus Platanus Betula Olea

MPS start 3-January 10-January 16-March 26-March 4-May 4-January 17-January 6-April 18-April 23-May
MPS end 28-February 2-March 20-April 27-April 4-June 10-March 25-February 8-May 15-May 2-July

MPS length 57 52 36 33 32 66 40 33 28 41
Mean pollen 10 52 203 94 43 24 159 164 300 6
Pollen peak 37 408 1549 307 199 160 867 932 1283 35
Peak date 17-February 31-January 29-March 10-April 4-May 17-January 24-January 6-April 25-April 24-June

Pollen 563 2692 7290 3103 1389 1575 6368 5399 8397 233
Fra e 1 Aln g 1 Pla a 1 Bet v 1 Ole e 1 Fra e 1 Aln g 1 Pla a 1 Bet v 1 Ole e 1

Mean allergen 0.039 0.177 0.387 0.288 0.019 0.045 0.185 0.195 0.298 0.003
Allergen peak 0.241 1.868 1.157 0.925 0.101 0.660 1.320 0.535 0.624 0.019

Peak date 17-February 1-February 21-March 19-April 21-May 23-January 18-February 15-April 6-May 24-June
Allergen 2.237 9.200 13.927 9.513 0.604 2.970 7.386 5.072 8.354 0.117

AP (ng/pollen) 0.0040 0.0034 0.0019 0.0031 0.0004 0.0019 0.0012 0.0009 0.0010 0.0005
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With the aim of determining the effect of the meteorological parameters in the pollen and
allergen airborne content, a non-parametric Spearman’s correlation test was conducted. Generally,
spring-flowering trees showed positive correlations between airborne pollen and allergen concentrations
and temperature, and negative with relative humidity (p < 0.01) (Table 2). Overall, the highest significant
correlation coefficients were obtained among the allergen or the pollen and the average temperatures,
with the greatest positive degree of association for the Olea pollen and the Ole e 1 allergen (p < 0.01).
In addition, negative significant correlations between pollen concentrations with mean, maximum and
minimum temperatures and positive with relative humidity were recorded with Alnus and Fraxinus
pollen, as well as with Aln g 1 and Fra e 1 allergens, the winter bloom trees. For the rest of the
studied parameters, we obtained positive significant correlations between pollen and allergens of
Betula, Olea and Platanus and wind speed (Table 2).

Table 2. Spearman correlations between pollen or allergen and the main meteorological variables
(* p < 0.05; ** p < 0.01).

Fraxinus Alnus Platanus Betula Olea

Average Temperature −0.444 ** −0.416 ** 0.120 ** 0.250 ** 0.306 **
Maximum Temperature −0.383 ** −0.373 ** 0.158 ** 0.291 ** 0.257 **
Minimum Temperature −0.472 ** −0.432 ** ns 0.138 ** 0.318 **

Relative Humidity 0.229 ** 0.199 ** −0.277 ** −0.373 ** −0.161 **
Rainfall ns ns ns −0.108 ** ns

Wind Speed −0.201 ** −0.129 ** 0.278 ** 0.279 ** 0.245 **
Allergen 0.704 ** 0.689 ** 0.712 ** 0.719 ** 0.810 **

Fra e 1 Aln g 1 Pla a 1 Bet v 1 Ole e 1

Average Temperature −0.410 ** −0.387 ** ns ns 0.202 **
Maximum Temperature −0.405 ** −0.354 ** ns 0.107 ** 0.170 **
Minimum Temperature −0.376 ** −0.370 ** −0.142 ** −0.092 ** 0.201 **

Relative Humidity 0.309 ** 0.231 ** −0.182 ** −0.272 ** −0.131 **
Rainfall ns ns ns −0.073 * ns

Wind Speed −0.203 ** −0.187 ** 0.175 ** 0.168 ** 0.205 **
Pollen 0.704 ** 0.689 ** 0.712 ** 0.719 ** 0.810 **

Furthermore, a principal component analysis (PCFA) was conducted with the aim to better
understand the meteorological influence in the pollen and allergen airborne concentrations as PCFA
showed the influence of all consider weather variables as a whole. The purpose of the analysis is
to obtain a small number of linear combinations of the selected variables which account for most
of the variability in the data. Three components have been extracted for each taxon, since they had
eigenvalues greater than or equal to 1.0 and they account for together between 79% and 84% of the
variability in the original data. The three PCs were correlated as follows: Component 1 temperatures
and relative humidity, Component 2 pollen and allergen values and Component 3 wind speed and
rainfall (Figure 3). To better understand the relationship between pollen/allergens and meteorological
parameters, a plot with the PC explaining the higher variability PC1 vs. PC2 was conducted (Figure 3).
The results obtained reinforced the correlation analysis results registering a high positive degree of
association between the pollen counts and the allergen levels (Figure 3).
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Figure 3. Plot and Factors of principal components and factor analysis (PCFA) for each taxon,
meteorological parameters: Mean, Maximum and Minimum temperatures (Mean T, Maximum T and
Minimum T), Relative humidity (RH), Rainfall (Rain) and Wind speed (Ws) (a-Fraxinus. b-Alnus.
c-Platanus. d-Betula and e-Olea).

The Pollen Allergen Potency (AP) index was calculated for each taxon, which represented the rate
between the allergen and pollen grain concentrations. The highest value was 0.004 ng/pollen registered
for Fraxinus and the lowest for Olea with 0.0004, both during the first year of study (Table 1).

Regression equations were performed to identify the aeroallergen thresholds for low, moderate
and high hazard of symptomatology appearance on sensitized people (Table 3).

Table 3. Regression equations developed between the pollen concentrations (pollen/m3) and allergen
values (ng/m3) during the main pollen season of the assessed taxa.

Regression Equation Adj. R2 p

Fraxinus Fra e 1 = 0.0002 + 0.002 × Fraxinus (pollen/m3) 0.609 0.000
Alnus Aln g 1 = 0.009 + 0.001 × Alnus (pollen/m3) 0.289 0.000

Platanus Pla a 1 = 0.011 + 0.001 × Platanus (pollen/m3) 0.625 0.000
Betula Bet v 1 = 0.011 + 0.001 × Betula (pollen/m3) 0.512 0.000
Olea Ole e 1 = 0.0003 + 0.0003 × Olea (pollen/m3) 0.737 0.000

The pollen threshold concentrations suggested by the REA were followed to obtain the equivalent
aeroallergens thresholds (Table 4). Values of the adjusted R2 coefficients in the performed equations
oscillated between 0.289 for Alnus and 0.737 for Olea (Table 3) The obtained thresholds were applied in
order to ascertain the number of days with possible allergy hazard for sensitive patients. Considering
the pollen data, the taxa that registered a higher quantity of days with moderate potential hazard for
allergenic suffers were Alnus and Platanus with a sum of 22 and 27 days in both years, respectively
(Table 4). In the case of the allergen airborne moderate levels, the great amount of days was registered
for Platanus and Betula with a total of 30 and 31 days, respectively, during the two years of study
(Table 4). Some discordances were also observed in the case of the episodes of high potential hazard
on sensitive patients. Alnus and Betula registered the most important quantity with a sum of 55 and
58 days detected for the Aln g 1 and Bet v 1 allergen concentration during the period of the study
(Table 4).
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Table 4. Thresholds of allergenic risk for each taxon considering the pollen (Galán et al., 2007) and
the allergens. Number of days with allergy risk periods for pollen or allergen. Total number of days
during the period of study of high risk by means the combination of pollen and allergen data.

Risk Level Pollen 2017 2018 Total Allergen 2017 2018 Total Pollen +
Allergen

Alnus
Low 1–30 89 97 186 0.011–0.039 28 17 45

64Moderate 31–50 13 9 22 0.040–0.059 5 6 11
High >50 17 27 44 >0.059 32 23 55

Fraxinus
Low 1–30 107 75 182 0.002–0.065 50 39 89

16Moderate 31–50 2 6 8 0.067–0.109 5 3 8
High >50 0 10 10 >0.109 4 8 12

Platanus
Low 1–50 67 78 145 0.012–0.058 13 12 25

34Moderate 51–200 18 9 27 0.059–0.201 22 8 30
High >200 6 8 14 >0.201 21 10 31

Betula
Low 1–30 57 96 153 0.013–0.038 0 3 3

59Moderate 31–50 5 3 8 0.039–0.055 13 18 31
High >50 17 19 36 >0.055 36 22 58

Olea
Low 1–50 50 39 89 0.001–0.0166 31 18 49

1Moderate 51–200 7 0 7 0.0169–0.065 10 1 11
High >200 0 0 0 >0.065 1 0 1

Furthermore, a back-trajectory analysis was conducted to explain the timing discrepancies
observed between the pollen and allergen peaks for all taxa. Only special situations were observed in
the case of Betula and Olea (Figure 4). The analysis led us to detect that the second pollen and allergen
Betula peaks were coincident with air masses from the high mountainous areas around the city of
Ourense. In the case of Olea and Ole e 1, the pollen and allergen maximum peaks were influenced by
continental air masses coming from the North of Portugal (Figure 4).
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4. Discussion

The occurrence of pollen grains in the atmosphere was recognized as a cause of important pollution
problems such as allergies to human health [48]. The most important tree allergenic taxa of the city,
which constituted the 50% of the total of airborne pollen, were studied to determine their importance in
the atmospheric allergenic load. Regarding the pollen season, Alnus and Fraxinus are arboreal species
that flower in winter whereas Betula, Olea and Platanus with spring flowering. Several studies reported
similar findings for Alnus in the same area and for other countries regarding the start, end date and
duration of the MPS, but with differences in the total amount of annual pollen [10,49,50]. Some authors
found that meteorological parameters, as mean temperature during the previous months to pollination,
affect the annual airborne pollen sum [51]. We registered a shorter birch pollen season duration with
higher total pollen amount than those reported by several studies for the same area [10,49] or in other
European countries like Portugal [47], Poland [51], Sweden [52] and Romania [53]. In the case of
Olea, a similar MPS duration was registered regarding the reported by studies carried out in the same
area [54] or in Portugal [47,55]. However, longer MPS with higher pollen number was observed in
Mediterranean areas because of the olive crops [56].

The classically information for hyper sensitized patients is the concentration of pollen grains in
the atmosphere and their timing [24]. Nevertheless, in the last years the period of pollen exposure
often did not coincide with the symptoms’ appearance in different regions [16,25]. In the present study
we detected a high atmospheric allergenic load [10] in the atmosphere coinciding with low levels of
airborne pollen because the presence of pollen allergens in the air. Although pollen allergens are firstly
carried in the atmosphere by pollen grains [37], they may also could be detected in the microaerosol
suspension which could remain for longer periods in the atmosphere [57]. Our results reinforced
the fact that pollen concentration data must be combined with the aeroallergen detection in order to
determine the real load of atmospheric allergenic particles and the development of complete and lasting
systems aimed to observe and gather environmental pollution information [11,47]. In spite of regression
equations between pollen counts and allergen protein registered high R2, several discordances were
detected between the days of aeroallergen and pollen allergy risk, as in some cases did not coincide.
Considering both together, the Alnus pollen and allergen data, the number of days with high allergenic
hazard raised to 64 compared with their assessment separately. For Fraxinus, when the pollen and
allergen concentrations were combined, the number of episodes with potential hazard raised to 16 for
high risk of symptomatology appearance. Additionally, lower discrepancies were observed in the case
of Platanus and Betula as the number of days with high potential hazard of allergy increased to 34 and
59, respectively, when the pollen and allergen data were considered together. No differences were
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observed in the case of Olea. The developed innovative tools for quantification of the atmospheric
allergenic load are especially useful and necessary for complementing the classic pollen counts to attain
an improvement and optimization of the clinical allergy treatments administration and a decrease in
medication consumption by the sensitized-to-pollen population [11,47]. The establishment of new
periods of allergen presence in the atmosphere will highlight novel perspectives in the epidemiological
study of respiratory allergy-related disorders and the biological pollution.

In addition, a great prevalence of pollen related incidence of allergy in urban environments
compared with the rural areas was detected [6]. It is noteworthy that the allergy incidence was prompted
by an inaccurate planning and design of the urban tree vegetation, with several plants of the same
family that can develop cross-reactions processes between their allergens, enhancing sensitizations in
sensitive people [12]. One of the major results of our study was the detection of the Fraxinus and Alnus
pollen related allergens in the air by using antibodies from another genus. This finding evidences the
cross-reactivity between the principal allergens of the Oleaceae and Betulaceae tree families, referred
as the capacity of several IgE antibodies to recognize diverse antigens [58]. Due to their resilience
and tolerance to adapt to urban conditions, both tree families are broadly planted as tree ornamental
vegetation in green areas of urban settings [59]. The urban allergic population to the Betula and Olea
pollen could display allergy responses in the winter months (as a consequence of ash and alder pollen
allergens), in the early spring because the Bet v 1 allergens or late spring due to Ole e 1 tree pollen
related allergens. Some authors pointed out that the people with oral allergy syndrome (OAS) showed
oral symptoms before Betula pollinosis symptoms [32], and this symptomatology may lead to people
think that with a lower concentration of Bet v 1 allergen there are symptoms. Patients allergic to birch
have previously suffered from the symptoms during the flowering of the alder, which is known as
priming effect.

Moreover, Long Distance Transport processes (LDT) could also justify that airborne pollen
concentrations are not always related with the actual exposure to their main allergens [60,61]. In the
case of Betula, the first peak of the pollen curve matched with the flowering of the birch populations
in the surroundings of the city, whilst the secondary was registered when the nearest Betula tree
had finished its flowering period [62]. Topographical characteristics must also be taken into account
when considering pollen transport. The HYSPLIT models showed that pollen originating from Betula
populations located in mountainous areas even at some distance from the city, which flowers some
weeks later due to its higher altitudinal distribution, could be transported through the channels
formed by the river crossing the Ourense city, increasing the secondary peaks of pollen and allergen
concentration. During the year 2017, the second peak pollen potency seems higher compared to the
first peak, possibly related to a possible transport of high-potency birch pollen from the most elevated
areas of the region, as it was observed for the olive pollen in South of Europe [60]. In addition, the back
trajectories during the maximum concentrations of olive and Ole e 1 in the air noticed the influence of
the air masses from the widespread olive orchards of North-Eastern Portugal in the amount of olive
related bio particles in the atmosphere. Betula and Olea pollen morphology favors its transport over
medium or long distances [60,63,64].

The analysis of the main meteorological variables, pollen and aeroallergen concentrations showed
different results depending on the taxa. In the spring flowering trees, a statistically significant positive
correlation between pollen or allergen occurrence and temperature [54] and wind speed was observed.
On the contrary, the association degree was positive with relation to humidity in the case of the
winter flowering trees and negative with temperatures, which presented negative correlations with
temperatures. Therefore, weather-related factors, such as mild temperatures, influenced the dispersion
of spring and fall pollen and allergens, as previously described by other authors [10,65,66].
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5. Conclusions

The major allergens of Alnus, Fraxinus, Betula, Platanus and Olea were detected in the atmosphere
of the Ourense city. Two peaks of important pollen concentrations were recorded throughout
the year. One of the major findings of our study was the detection of the Fraxinus and Alnus
pollen related allergen proteins in the air using antibodies from another genus, demonstrating the
cross-reactivity processes between the principal allergenic proteins of the Oleaceae and Betulaceae
families. The developed regression equations between pollen counts and allergen proteins registered
high R2 values. We observed high atmospheric allergenic load in the atmosphere coinciding with
low levels of airborne pollen because of the presence of pollen allergens in the air. The number of
days with a moderate and high hazard of allergy was higher when the pollen and allergen data were
assessed together. Considering the pollen data individually, the number of episodes of high allergy
symptomatology hazard were understated. The combination of pollen and allergen information
should be evaluated to ascertain the real biological pollution in the atmosphere and the actual potential
risk episodes for the sensitized population. Long Distance Transport processes (LDT) also explain
that airborne pollen levels could not appropriately represent the exposure to their main allergens.
The applied back trajectory analysis showed that pollen from Betula populations located in mountainous
areas increased their secondary peaks of pollen and Bet v 1 concentrations and southern air masses
from intensive plantations caused the highest airborne Olea concentrations.
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