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Abstract: Microbes, as important regulators of ecosystem processes, play essential roles in ecosystem
recovery after disturbances. However, it is not clear how soil microbial communities and functions
change and affect forest recovery after clear-cutting. Here, we used metagenome sequencing
to systematically analyse the differences in soil microbial community composition, functions,
and nitrogen (N) cycling pathways between primary Korean pine forests (PF) and secondary
broad-leaved forests (SF) formed after clear-cutting. Our results showed that the dominant phyla
of the two forest types were consistent, but the relative abundance of some phyla was significantly
different. Meanwhile, at the genus level, the fold-changes of rare genera were larger than the
dominant and common genera. The genes related to microbial core metabolic functions, virulence
factors, stress response, and defence were significantly enriched in SF. Additionally, based on the
relative abundance of functional genes, a schema was proposed to analyse the differences in the
whole N cycling processes between the two forest types. In PF, the stronger ammoniation and
dissimilatory nitrate reduction (DNRA) and the weaker nitrification provided a genetic explanation
for PF dominated by ammonium (NH4

+) rather than nitrate (NO3
−). In SF, the weaker DNRA,

the stronger nitrification and denitrification, the higher soil available phosphorus (AP), and the lower
nitrogen to phosphorus ratio (N/P) comprehensively suggested that SF was faced with a greater degree
of N limitation. These results offer insights into the potential relationship between soil microbes and
forest recovery, and aid in implementing proper forestry management.
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1. Introduction

Forest ecosystems provide important ecological services. In recent years, research on in situ forest
ecological functions affected by human interference (fire, logging) has drawn much attention. Soil is a
highly dynamic and heterogeneous environment, and its changes are of great significance for forest
ecological functions. During ecological succession, soil habitat, vegetation, and microbial communities
all undergo synergistic changes. Soil microbial community structure and functions present signs of
resilience during the recovery of disturbed forest [1]. The impacts of soil microbes on the microhabitats
of woodlands become more complicated due to the diversity of vegetation, litter, climate, terrain,
and landforms. During forest transitions, changes in aboveground vegetation drive variation in soil
microbial community composition and functions [2]. Conversely, soil microbes are an important
link between aboveground and underground ecosystem processes [3], governing the biogeochemical
cycling [4,5] and affecting plant growth and community succession.

The Korean pine and broad-leaved mixed forests located in north-eastern China are important
components of boreal forests in the world [6]. They represent a typical independent dominant forest
type with the most complicated community structure. In the 1960s, as zonal vegetation, large areas of
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primary Korean pine and broad-leaved mixed forests were cleared. After nearly 60 years of recovery
succession, some of them have been replaced by young and middle-aged secondary broad-leaved
forests. Understanding the recovery process of secondary broad-leaved forests and their changes in
ecological functions is a focus of current research. Soil N supply limits net primary productivity of
forests and affects the capacities for recovery of forests after disturbances [7]. In fact, temperate forests,
including Korean pine and broad-leaved mixed forests, are generally limited by N [8,9]. There are
differences in the degree of N limitation at different forest stand composition and community succession
stages [10]. In addition, regeneration of constructive species is the key to the restoration of zonal
community in the process of forest recovery. In the case of sufficient seed sources, the soil nutrition
habitat of establishment of seedlings is a key limiting factor for the regeneration of constructive species.

Changes in soil microbial community structure and functions affect the stability of forest
communities and forest resilience to various disturbances [4]. Deforestation and disturbances
alter N transformations [2], including nitrification [11], dissimilatory nitrate reduction (DNRA),
and denitrification [12], which affect the available N supply and N balance among plants, microbes,
and ecosystems. N cycling is a key process supporting forest productivity and ecosystem functions
and services [13,14]; its restoration is essential for the recovery of forest ecosystems. However, studies
regarding changes in soil microbial community composition and functions, and their effects on forest
recovery after disturbances, are still limited. Therefore, we proposed two hypotheses: (1) There are
differences in the soil microbial community composition between primary Korean pine forests (PF)
and secondary broad-leaved forests (SF), and shifts in the community structure may mean potential
functional changes, and (2) the changes in microbial community structure and functions of the two
different forest types provide an explanation for soil nutrition habitat of constructive species. In order to
test the above hypotheses, we compared PF and SF, focusing on soil microbial community composition
and functions, especially the key processes of N cycling, and evaluating the effects of soil microbes
on forest ecological functions. These results offer insights into soil microbes in maintaining forest
productivity and driving forest recovery.

2. Materials and Methods

2.1. Experimental Sites

Soil samples were collected from Liangshui National Natural Reserve of Yi Chun City in
Heilongjiang Province. The region is located in the southeast of the Lesser Khingan Mountains
(47◦12′57′′ N–128◦52′17′′ E, 47◦12′49′′ N–128◦52′12′′ E). PF and SF were a continuous region with
primary Korean pine forests before the 1960s. However, in 1961, due to clear-cutting, virtually all
trees and shrubs at SF site were removed. The current secondary broad-leaved forests (Korean pine
(Pinus koraiensis Siebold et Zuccarini) disappeared) at SF site had been formed over nearly 60 years.
This region had not been significantly disturbed since clear-cutting occurred in 1961. The basic
information of sample sites (location, altitude, area, and major tree species) is described in Table 1.
The two sites are adjacent to each other, and their ecological factors such as climatic conditions,
elevation, slope, and soil parent material are similar.

This region has a temperate continental monsoon climate with windy and low precipitation in the
spring. Due to the higher latitude, the mean annual air temperature is −0.3 ◦C, and the mean annual
maximum and minimum air temperatures are 7.5 ◦C and −6.6 ◦C, respectively. The annual typical
precipitation period ranges from 120 to 150 d, and the mean annual rainfall is 676 mm. The mean
annual evaporation is 805 mm, and the mean annual relative humidity is 78%. The snow period lasts
from 130 to 180 d. According to American Soil Taxonomy, the forest soil is classified as Humaquepts or
Cryoboralfs. The detailed information regarding monthly rainfall amount and air temperature of the
sample sites in 2018 is shown in Figure S1.
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Table 1. Overview of the sample sites.

Forest Type Location Altitude (m) Area (hm2) Main Tree Species

PF 47◦12′57” N,
128◦52′17” E 402 11.7

Pinus koraiensis Siebold & Zucc., Fraxinus mandschurica Rupr.,
Tilia mandschurica Rupr. & Maxim., Tilia amurensis Rupr.,
Acer mono (Maxim.) H.Ohashi, Acer ukurunduense Trautv. &
Mey., Acer tegmentosum Maxim., Ulmus laciniata (Trautv.) Mayr,
Syringa reticulata (Blume) H.Hara, Padus racemosa L.,
Betula costata Trautv., Abies nephrolepis (Trautv.) Maxim.

SF 47◦12′49” N,
128◦52′12” E 390 9.3

Fraxinus mandschurica, Tilia amurensis, Phellodendron amurense
Rupr., Acer mono (Maxim.) H.Ohashi, Padus racemosa L.,
Syringa reticulata (Blume) H.Hara, Ulmus laciniata (Trautv.) Mayr

PF: Primary Korean pine forests, SF: Secondary broad-leaved forests.

2.2. Sample Collection, Soil Physicochemical Analyses, and In Situ Soil N Mineralization

In May 2018, five 20 m × 20 m independent plots were designed at each site (PF and SF);
typical tree species, canopy cover, and typical understory vegetation were considered in the plot
to avoid unrepresentative areas [15]. Ten sampling cores were randomly selected from each plot;
mineral soil was taken from 0 to 10 cm depth and composited into a sample for better catching
within-plot heterogeneity [2] (two sites × five replicates per site × six sampling periods). Sampling was
conducted once a month and at the end of each month from May to October. All fresh samples were
placed in sterile bags, transported to the lab on ice, and then sieved to 2 mm to remove litter, roots,
and stones. Each soil sample was divided into two subsamples. Subsamples for molecular analyses
were frozen at −80 ◦C. Subsamples for soil physicochemical analyses were air dried. Only samples
collected in July were used for subsequent molecular analyses. First, high-throughput 16S rRNA
sequencing was performed on ten soil samples. Then, six representative samples which best reflected
the overall differences between the two forest types were selected for metagenome sequencing using
MicroPITA analysis (microbiomes: Picking Interesting Taxonomic Abundance) [16] (Figure 1).
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The main soil physicochemical properties were determined, such as soil moisture content (Mc), pH,
soil bulk density (Bd), total carbon (TC), total nitrogen (TN), soil organic matter (SOM), NH4

+, NO3
−,

total phosphorus (TP), available phosphorus (AP), and dissolved organic carbon (DOC). The detailed
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methods for extraction and determination are described in the Supplementary Material. The soil
properties of the two forest types are shown in Table S1.

In May–October 2018, two points were randomly selected in each plot, and two PVC tubes (25 cm
in height and 5 cm in diameter) were simultaneously inserted into the soil to a depth of 20 cm at
each point (the organic layer was removed). One was taken out immediately and brought back to the
laboratory for indoor analyses. The original structure of the soil in the second tube was preserved
as much as possible; the upper mouth was covered with breathable and non-water permeable file,
the lower mouth was wrapped with gauze and tied with a thin iron wire, and the tube was re-inserted
into the original hole and retrieved after 30 d (Figure S2). Simultaneously, the next batch of tubes was
arranged near the previous culture point as described above. The NH4

+ and NO3
− content to calculate

net ammonification rate, net nitrification rate, and net N mineralization rate was determined from the
top 10 cm of soil collected from each soil core [17,18].

2.3. Metagenome Sequencing

Microbial total DNA was extracted from 0.5 g fresh soil through the FastDNA® SPIN Kit
for Soil (MP Biomedicals, Santa Ana, CA, USA) following manufacturer’s instructions. The DNA
concentration, purity, and integrity were detected by TBS-380 (Turner BioSystems, Sunnyvale, CA, USA),
NanoDrop2000 (Thermo Fisher Scientific, Waltham, MA, USA), and 1% agarose gel electrophoresis,
respectively. The genomic DNA of soil samples was sheared to approximately 300 bp fragments using
the Covaris M220 Ultrasonic Crusher (Gene Company Limited, Hong Kong, China). Subsequently,
a paired-end library of metagenome was constructed using the NEXTFLEX Rapid DNA-Seq Kit
(Bioo Scientific, Austin, TX, USA) with relevant instructions and sequenced on the Illumina NovaSeq
platform (Illumina, San Diego, CA, USA).

2.4. Raw Sequences Processing

After quality control, clean reads were assembled to contigs for subsequent gene prediction based
on open reading frames (ORFs) of each contig. The predicted gene sequences of all samples were
clustered for construction of a non-redundant gene catalogue. The method of reads per kilobase per
million mapped reads (RPKM) was used to calculate gene abundance, which reduced the impact
of different sequencing depth and gene length between samples [19]. The non-redundant gene
catalogue was aligned to related databases for taxonomic annotations and functional annotations.
Detailed descriptions are shown in the Supplementary Material.

In this study, six soil samples were used for metagenome sequencing, which resulted in about
108 Gbp raw base, 764,170,458 clean reads, 14,473,672 contigs, and 18,241,758 ORFs. The constructed
non-redundant gene catalogue had 12,250,083 genes. Raw data of the metagenome were stored in the
NCBI Sequence Read Achieve database (SRA) with an accession number (SRP250876).

2.5. Data Analysis

The data were checked for normality (Shapiro–Wilk test) and homogeneity of variance (Levene test)
before statistical analysis. The differences in soil physicochemical properties, inorganic N content
(NH4

+, NO3
−), N transformation rates, microbial community and functional alpha diversity, abundance

of genes related to stress response and defence, and abundance of total functional genes of VFDB
database between two forest types were compared by Student’s t-test. The influences of forest types,
months, and their interactives effects on NH4

+, NO3
−, net ammonification rate, net nitrification rate,

and net mineralization rate were estimated by two-way ANOVA. Statistical significance of differences in
the relative abundance of microbial composition (microbial bacterial domain and phyla, order involved
in N cycling), functional categories of EggNOG, metabolic pathways of KEGG level3, and functional
genes related to N cycling between the two forest types were evaluated using Welch’s t-test with
Benjamini–Hochberg FDR correction. The differences in soil microbial community structure, functions,
and metabolic pathways between the two forest types were analysed using Principal Coordinates
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Analysis (PCoA) based on Bray–Curtis distances with permutational multivariance analysis of variance
(PERMANOVA) test (999 permutations). Statistical significance level was fixed to p < 0.05. The analyses
were performed using the SPSS 20.0 (SPSS Inc., Chicago, IL, USA) and R version 4.0.0.

3. Results

3.1. Seasonal Dynamics of Soil Inorganic N and N Transformation Rates

During the period from May to October, the soil NH4
+ content of PF and SF varied with the month.

However, they all reached the peak in July. The difference of NH4
+ between the two forest types was

the largest, and the NH4
+ of PF was significantly higher than that of SF in July (Table S2). The changes

in the NO3
− content of the two forest types with the month also differed, but the NO3

− from July
to September differed greatly between the two forest types and reached significant levels (Table S2),
all of which were higher in SF (Figure 2A). The forest types, the months, and their interactions had a
significant effect on soil inorganic N dynamics (Table S3).Forests 2020, 11, x FOR PEER REVIEW  6 of 17 
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secondary broad-leaved forests (SF), respectively. Ramm: Net ammonification rate. Rnit: Net nitrification
rate. Rmin: Net mineralization rate.

This study analysed the seasonal dynamics of in situ soil N transformation rates in the two
forest types (Figure 2B). The soil N transformation rates of the PF and SF varied with the month
and fluctuated more greatly in the early period of growth (May–July). The forest types, the months,
and their interactions had a significant effect on soil N transformation rates (Table S3).

3.2. Variations in Soil Microbial Community Composition and Potential Functions between Two Forest Types

Taxonomic and functional alpha diversity (Shannon) of microbial communities differed
significantly between the two forest types (p < 0.05, p < 0.01). The higher taxonomic diversity
and the lower functional diversity were observed in SF. However, there was no significant difference in
soil microbial richness (p > 0.05) (Figure S3). Soil microbial community structure (genus), functions
(genes, eggNOG), and metabolism pathways (level 3, KEGG) differed between the two forest types
(Figure S4).

Bacteria of PF and SF determined by metagenome sequencing accounted for 98.92% and 98.48%
of the total microbiome, respectively, and the differences in the relative abundance of bacteria between
the two forest types were significant (Table S4). A total of 128 phyla were detected in the two forest
types, and the dominant phyla were nearly identical, but the relative abundance of these phyla was
slightly different. Further analysis of the top 14 phyla with relative abundance greater than 1% revealed
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that 13 were significantly different in the relative abundance between PF and SF. Proteobacteria,
Actinobacteria, and Verrucomicrobia were significantly enriched in PF; however, Acidobacteria,
Chloroflexi, unclassified_d_Bacteria, Firmicutes, Gemmatimonadetes, Candidatus_Rokubacteria,
Nitrospirae, Planctomycetes, Cyanobacteria, and Candidatus_Tectomicrobia were significantly enriched
in SF (Figure 3A). Proteobacteria (44.15%, 40.79%), Actinobacteria (26.96%, 24.66%), and Acidobacteria
(7.99%, 9.21%) were the most abundant categories in the two forest types, accounting for 79.46%
and 74.66% of the total microbiome, respectively. Similar results were observed in the taxonomic
classification of 16S rRNA sequencing data with spearman correlation coefficient r > 0.80 (Figure S5).
At the genus level, a total of 2939 genera were detected and divided into dominant genera (>1%),
common genera (0.1–1%), and rare genera (<0.1%) based on their relative abundance [20]. Fold-changes
calculated based on relative abundance of genera were compared. We found that the fold-changes in the
dominant genera and the common genera were smaller (−1 < fold-changes < 1), while the fold-changes
of some rare genera were larger. Among the rare genera, considerable increases (fold-changes < −2)
were seen in the relative abundance of 96 rare genera in SF, and even included a fold-change of <−29
(Figure 3B).Forests 2020, 11, x FOR PEER REVIEW  7 of 17 
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Figure 3. (A) The comparison of phyla with the relative abundance greater than 1% between primary
Korean Pine forests (PF) and secondary broad-leaved forests (SF). Different colours denote different
forest types. (B) Fold-changes in the relative abundance of genera. Fold-change is defined as (PF-SF)/PF,
in which PF is the relative abundance of genera in the primary Korean Pine forests and SF is the relative
abundance of genera in the secondary broad-leaved forests. Red, fold-changes > 2. Dominant genera:
> 1%, Common genera: 0.1–1%, Rare genera: < 0.1%. p < 0.05 indicates significant differences between
the two different forest types. p < 0.05 *, p < 0.01 **, p < 0.001 ***.

To identify soil microbial functional categories, all reads were annotated by means of categories in
the eggNOG, KEGG, and VFDB database. Firstly, in functional categories of the eggNOG database,
there were 39.25% and 39.80% of the total reads in PF and SF associated with metabolism, respectively,
and the differences between the two forest types reached significance (p < 0.01). Further analyses
showed that there were 22 functional categories, 18 of which were significantly different in percentage
abundance between PF and SF (p < 0.05). Amino acid transport and metabolism (E), energy production
and conversion (C), signal transduction mechanisms (T), cell wall/membrane/envelope biogenesis (M),
translation, ribosomal structure, and biogenesis (J), post-translational modification, protein turnover,
chaperones (O), coenzyme transport and metabolism (H), defence mechanisms (V), nucleotide transport
and metabolism (F), intracellular trafficking, secretion, and vesicular transport (U), cell cycle control,
cell division, chromosome partitioning (D), cell motility (N), chromatin structure and dynamics (B),
and cytoskeleton (Z) were significantly enriched in SF. However, replication, recombination and repair
(L), inorganic ion transport and metabolism (P), transcription (K), and lipid transport and metabolism
(I) were significantly enriched in PF (Figure 4A). Secondly, at the metabolic pathways of KEGG level 3,
there were a total of 26 metabolic pathways with the percentage abundance greater than 1%, 13 of which
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were significantly different in the percentage abundance between the two forest types. Glyoxylate
and dicarboxylate metabolism was significantly overexpressed in PF. While, the biosynthesis of amino
acids, carbon fixation pathways in prokaryotes, pyrimidine metabolism, oxidative phosphorylation,
glycolysis/gluconeogenesis, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis,
alanine, aspartate and glutamate metabolism, TCA cycle, 2-oxocarboxylic acid metabolism, cysteine and
methionine metabolism, and amino sugar and nucleotide sugar metabolism were overexpressed
significantly in SF (Figure 4B). Overall, most of the gene sequences related to the microbial core
metabolic functions were significantly enriched in SF, indicating that soil microbes in SF exhibited
stronger metabolic capabilities. Finally, in the VFDB database, the virulence factor-related genes of PF
and SF accounted for 9.18% and 9.29% of the total annotated genes, respectively, and the differences
in the percentage abundance between the two forest types were significant (p = 0.035). Furthermore,
the genes related to stress response (0.45%, 0.45%) and defence (1.97%, 2.08%) were more abundant in
SF (p = 0.037, p = 0.003). These results indicated that interspecific competition of soil microbes was
more intense in SF.Forests 2020, 11, x FOR PEER REVIEW  8 of 17 
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Figure 4. Comparison of functions between primary Korean pine forests (PF) and secondary
broad-leaved forests (SF) in the eggNOG and KEGG databases. (A) Functional categories of the
eggNOG. (B) Metabolic pathways with relative abundance greater than 1% at the KEGG level-3. p < 0.05
denotes significant differences between the two forest types. p < 0.05 *, p < 0.01 **, p < 0.001 ***.
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3.3. Variations in Soil Microbial N Cycling between the Two Forest Types

At the order level, there were a total of 14 orders involved in N cycling with the relative abundance
greater than 2%, 10 of which were significantly different in the relative abundance between the two
forest types (Figure 5A, Table S5). Rhizobiales were the dominant groups responsible for N cycling
and the relative abundance was the highest. Moreover, the relative abundance of orders involved
in each process of N cycling was also significantly different between the two forest types (Figure 5B,
Figure S6). Rhizobiales were responsible for denitrification, assimilatory nitrate reduction, and DNRA.
Burkholderiales, Myxocaccales, Acidobacteriales, and Nitrospirales, etc. were also responsible for
multiple N cycling processes, and their contributions in different processes were different. However,
the Nitrospirales contributed up to 90% of the total detected genes in nitrification, and their relative
abundance might determine the strength of nitrification. Microbes involved in N fixation with low
abundance were not shown in Figure 5B.
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Figure 5. (A) Comparison of orders involved in N cycling with relative abundance greater than 2%
between primary Korean pine forests (PF) and secondary broad-leaved forests (SF). (B) Taxonomic
groups involved in the major N cycling processes. Only the top 10 most abundant microbial orders are
shown in the figure. Assimilatory: Assimilatory nitrate reduction. Dissimilatory: Dissimilatory nitrate
reduction. p < 0.05 *, p < 0.01 **, p < 0.001 ***.

In the NCycDB database (a curated integrative database for fast and accurate metagenomic
profiling of N cycling genes) [21], a total of 39 functional genes related to N cycling were annotated,
21 of which were significantly different in the relative abundance between the two forest types.
We proposed a schema to analyse the whole N cycling (Figure 6), including organic N metabolism,
N fixation, nitrification, denitrification, assimilatory nitrate reduction, DNRA, and anammox. Five gene
families directly related to organic N metabolism were analysed, including nitroalkane oxidase (NAO),
nitrate monooxygenase (NMO), Glutamate dehydrogenase (GDH), urease (URE), and glutamine
synthetase (GS). Among them, GDH, URE, and GS mainly catalysed ammoniation. Compared with
SF, the relative abundance of nao, ureB, and ureC in PF was significantly higher, and other genes did
not change significantly between them. In this study, we only found the molybdenum dependent
nitrogenase system regulated by the NIF gene families to catalyse N fixation. nifD and nifK were
more abundant in SF, while nifH did not change significantly between PF and SF. Nitrification and
denitrification are a series of biological processes that oxidize NH4

+ to NO3
−, and then reduce it to

gaseous N compounds (NO, N2O, and N2). The abundance of amoBC and nxrB involved in nitrification
and narGHIJ, napA, nirK, and norBC involved in denitrification in PF were significantly lower than
those in SF, while the nosZ responsible for denitrification was the opposite, and other genes were not
significantly changed between them. The abundance of nasB and NR responsible for assimilatory
nitrate reduction and nirB responsible for DNRA were significantly higher in PF. The abundance of
hzsC involved in anammox was significantly higher in PF, while Hdh was not detected.
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Figure 6. The schema characterizes soil microbial N cycling network. The histogram denotes the
differences of the relative abundance of functional genes involved in N cycling pathways between the
two different forest types. Dark grey and light grey represent the PF and SF, respectively. The gene
families on the abscissa are marked in different colours. Red indicates that the gene is significantly
enriched in SF. Green indicates that the gene is significantly enriched in PF. The values on the ordinate
represent the percentage abundance of functional genes in total N cycling genes (%). Different colours
of lines represent different N cycling processes. PF: Primary Korean pine forests, SF: Secondary
broad-leaved forests. p < 0.05 *, p < 0.01 **, p < 0.001 ***.

3.4. Relationship between Soil Microbial Community Composition and Functions

Linear regression analysis was used to analyse the correlation of soil microbial functional similarity
and community composition similarity. The results showed that there was a significant correlation
between functional similarity and community composition similarity (p < 0.001), and the fitting degree
was very high (Figure S7A). The same results also applied to microbes involved in N cycling (Figure S7B).
The changes in microbial community composition might alter the functional composition. The results
of PERMANOVA showed that AP, TP, TN, NH4

+, NO3
−, and pH were the major environmental

factors which were closely related to soil microbial community structure and functional composition
(including microbes involved in N cycling) (Table S6).

4. Discussion

4.1. The Characteristics of Soil Microbial Communities and Functional Changes in the Two Forest Types

Changes in soil microbial community composition and functions are closely related to forest
recovery after disturbances [22]. We analysed the phyla, genera, and microbial potential functions
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in the two forest types. Forest soil microbial dominant phyla are generally consistent [23], which is
in agreement with our findings. The significant differences attracted our attention in the relative
abundance of Proteobacteria, Actinobacteria, and Acidobacteria between PF and SF. Proteobacteria
and Actinomycota are mostly eutrophic groups [24,25], while Acidobacteria has a large number of
oligotrophic members [26], which are more abundant in soil with low available carbon [27]. In SF,
Proteobacteria and Actinomycota were relatively less, while Acidobacteria were significantly enriched,
indicating that the soil in SF had a lower available carbon content. This was supported by the lower
SOM and DOC content measured in SF (Table S1).

A large number of highly diverse and low-abundant populations constituted the so-called
“rare biosphere”. These rare taxa have been increasingly recognized as the driver of key functions in
the terrestrial ecosystems, and their ecological roles may be more important than abundant taxa [28].
It is those low-abundance populations that determine biodiversity and have the potential to occupy
a particular ecological niche [29]. The higher the genetic diversity of the community, the greater the
ability to combat disturbance events. This directly implies that low-abundance taxa have profound
implications in maintaining and enhancing ecosystem functions [20]. At the genus level, we found
that the fold-changes in the rare genera were larger than that in dominant genera and common genera
(Figure 3B). Although shotgun metagenome sequencing has certain limitations for determining the
relative abundance of rare taxa, we paid more attention to the comparison of fold-changes of different
microbial taxa. Therefore, we speculated that the rare genera might be the key to microbial community
recovery of SF in the future.

The study found that there were significant differences in the relative abundance of 18 functional
categories and 13 metabolic pathways between the two forest types. Compared with PF, the gene
sequences related to the microbial core metabolic functions (nucleotide, amino acid metabolism,
energy metabolism, glycolysis/gluconeogenesis, TCA cycle, oxidative phosphorylation, coenzyme
transport and metabolism, cell division, and cell cycle) were significantly enriched in SF, indicating
that soil microbes in SF exhibited stronger metabolic capabilities. Compared with primary forests,
core metabolic genes are more abundant in disturbed environments [30]. This may be related to
the environmental conditions (light and humidity) after clear-cutting [31]. In addition, the greater
abundance of the genes related to virulence factors, stress response, and defence in SF implied that
interspecific competition of soil microbes was fiercer. The intense soil microbial competition increases
with the restoration of forest ecosystems after disturbances [2]. The above results indicated there were
some important changes in microbial composition and metabolic functions that could not be ignored
and supported our first hypothesis.

4.2. The Characteristics of Soil Microbial N Cycling Processes Changes in the Two Forest Types

Each process of soil N cycling is mediated by a series of highly diverse microbes [32]. The close
relationship between the microbial community composition and functions was observed (Figure S7B).
The differences in microbial community composition (Figure 5A and Figure S6) implied potential
changes in their functions. In addition, we found that the relative abundance of 21 N cycling
functional genes was significantly different between the two forest types, which were involved in
organic N metabolism, N fixation, nitrification, denitrification, assimilatory nitrate reduction, DNRA,
and anammox.

The availability of N is regulated by distinct N transforming processes with vastly different fluxes.
In PF, the ammoniation (ureB + 0.068%, ureC + 0.024%) and DNRA (nirB + 0.039%) were stronger and
generated more NH4

+, while nitrification (amoB − 0.003%, amoC − 0.004%, nxrB − 0.003%) was weaker
and slowed the conversion of NH4

+ to NO3
−. Other N cycling processes had small differences in the

relative abundance of genes between the two forest types and low N fluxes [33], their contributions to
soil inorganic N were negligible. Therefore, above results provide an explanation for the differences
in net accumulation of NH4

+ and NO3
− between the two forest types (PF soil was dominated by

NH4
+, SF soil was dominated by NO3

−, Figure 2A, Table S1). After clear-cutting and nearly 60 years
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of recovery, no seedlings of constructive species (Korean pine) have been found in SF. The lack of
seed sources [34,35] and the limitation of soil nutrition habitat of establishment of seedlings [36,37]
are the common reasons for the difficulty of natural regeneration of Korean pine. Obviously, in this
study, there is no shortage of seed sources of constructive species in the surrounding environment, so
soil nutrition habitat becomes the primary consideration. Korean pine typically shows the apparent
preference for NH4

+ during long-term adaptation of “N nutrition habitats” [38]. Therefore, SF was
dominated by NO3

− rather than NH4
+, which meant that lower NH4

+ content might cause certain
nutritional restriction on the establishment of Korean pine seedlings [39] and inhibit the natural
regeneration of constructive species. This study provided a good explanation for the changes in
the soil nutrition habitat of establishment of seedlings of constructive species from the perspective
of microbiology.

NH4
+ formed by DNRA is released to the environment; it is not only absorbed and utilized by

plants and microbes for alleviating the N limitation of the ecosystems [40], but also consumes excessive
reducing power for redox balance [41]. Therefore, DNRA affects the supply of N to a certain extent.
In this study, compared with PF, the DNRA decreased significantly in SF, which indicated that the
ability of SF to alleviate the N limitation of the ecosystem and maintain the balance of N cycling
declined. Temperate forests, especially disturbed forests, are generally faced with N limitation [42,43].
During forest recovery, plant growth provides more carbon sources to microbes and requires more
available N [44]. In SF, the high P availability and low N/P ratios of soil (Table S1) reflected the
high microbial demand for N [45]. Soil microbial communities competing with trees for limited N
exacerbate the N limitation of aboveground vegetation [46–49]. Additionally, we found that stronger
nitrification in SF increased the conversion of NH4

+ to NO3
−. It might aggravate the risk of NO3

−

leaching [50]. The stronger nitrification and denitrification in SF enhanced N2O production, and further
increased soil N loss [51]. In summary, the changes in soil N cycling pathways indicated that the SF
might face a greater degree of N limitation compared with PF, which usually affects forest primary
productivity [8,43,52] and may be a limiting factor for the recovery succession of SF. This was also
used to explain why the above-mentioned soil microbial species competition was more intense in SF,
namely, the limited N supply intensified the competition for N between microbial species. This study
also found that community structure and functions of soil microbes, including microbes involved in N
cycling, were mainly regulated by pH and nutrients (N and P) (Table S6), which is consistent with the
results of similar studies [53]. Obviously, with forest restoration succession, changes in forest types
cause shifts in the composition of litter and root metabolites, leading to the variation in soil nutrient
content [54], and affecting soil microbial communities and their ecological service functions. However,
soil microbes regulate the recovery of disturbed forests through their own adaptability and maintain
the balance of forest ecosystems.

Metagenome sequencing was used to systematically analyse the differences in soil microbial
community structure, functions, and relative abundance of functional genes of N cycling between
the two forest types. After nearly 60 years of forest recovery, a balance was expected to be achieved
among ecosystem, plant, and microbial communities [55,56]. The metagenome sequencing analysis
was done from soil samples taken in July because the monthly rainfall amount and the monthly mean
maximum and minimum temperature were the highest (Figure S1), and soil microbial activities were
generally the strongest [57–59]. Additionally, the differences between the soil NH4

+ and NO3
− content

of the two forest types were the largest and reached significant levels. The N transformation rates
also showed significant differences in July (Table S2). Therefore, changes of microbial community
composition and functions should provide insights into its potential response to the forest recovery
after clear-cutting. Of course, sampling at one time-point and fewer samples might have a certain
effect on statistical results. More accurate conclusions could be drawn from long-term observations of
the forest recovery process.
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5. Conclusions

In summary, after clear-cutting and nearly 60 years of forest recovery, important significant
differences in the soil microbial community composition and metabolic functions were observed
between the primary Korean pine forests and secondary broad-leaved forests. Compared with the
dominant genera and common genera, the rare genera with larger fold-changes were key to the recovery
of soil microbial communities in the secondary broad-leaved forests. Soil microbes had a stronger
metabolic capacity and more intense interspecific competition in the secondary broad-leaved forests.
The differences in the whole N cycling pathways between the two forest types not only provided a
microbiological explanation for changes in the soil nutrition habitat that affected the establishment
of constructive species (Korean pine) seedlings, but also indicated that the secondary broad-leaved
forests faced a greater degree of N limitation, which was likely a limiting factor for forest recovery.
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values in the legend are the relative abundance of the primary Korean Pine forests (PF, up) and the secondary
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analysis. The comparison of taxonomic groups involved in the major N cycling processes between PF and SF,
following by Welch’s t-test with Benjamini-Hochberg FDR correction. Only the top 10 most abundant microbial
orders are shown in the figure. Values indicate the relative abundance of order species in PF and/or SF. PF:
Primary Korean pine forests, SF: Secondary broad-leaved forests. Assimilatory: Assimilation nitrate reduction,
Dissimilatory: Dissimilatory nitrate reduction. p < 0.05 *, p < 0.01 **, p < 0.001 ***, Figure S7: Linear regression
analysis of the correlation of soil microbial functional (KEGG Module) similarity and community composition
(genus) similarity, based on β diversity. (A) soil microbes, (B) soil microbes involved in N cycling. The higher
determination coefficient R2, the higher consistency of β diversity between community and function, Table S1:
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involved in N cycling).
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