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Abstract: Phenylalanine ammonia-lyase (PAL) is the crucial enzyme of the phenylpropanoid pathway,
which plays an important role in plant disease resistance. To understand the function of PAL
in Picea asperata, in this study, the full-length cDNA sequence of the PAL gene from this species
was isolated and named PaPAL. The gene contains a 2160-bp open reading frame (ORF) encoding
720 amino acids with a calculated molecular weight of 78.7 kDa and a theoretical isoelectric point
of 5.88. The deduced PaPAL protein possesses the specific signature motif (GTITASGDLVPLSYIA)
of phenylalanine ammonia-lyases. Multiple alignment analysis revealed that PaPAL has high
identity with other plant PALs. The tertiary structure of PaPAL was predicted using PcPAL from
Petroselinum crispum as a template, and the results suggested that PaPAL may have a similar function
to that of PcPAL. Furthermore, phylogenetic analysis indicated that PaPAL has a close relationship
with other PALs from the Pinaceae species. The optimal expression condition of recombinant PaPAL in
Escherichia coli BL21 (DE3) was 0.2 mM IPTG (isopropyl β-D-thiogalactoside) at 16 ◦C for 4 h, and the
molecular weight of recombinant PaPAL was found to be approximately 82 kDa. Recombinant PaPAL
was purified and exhibited high PAL activity at optimal conditions of pH 8.6 and 60 ◦C. Quantitative
real-time PCR (qRT-PCR) showed the PaPAL gene to be expressed in all tissues of P. asperata tested,
with the highest expression level in the needles. The PaPAL gene was induced by the pathogen
(Lophodermium piceae), which caused needle cast disease, indicating that it might be involved in
defense against needle cast disease. These results provide a basis for understanding the molecular
mechanisms of the PAL gene in the process of P. asperata disease resistance.
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1. Introduction

To adapt to changes in the ecological environment and related biotic and abiotic stresses, conifers
have evolved a diverse defense system as one of their main strategies for survival [1]. The conifer
defense system synthesizes a variety of secondary metabolites when attacked by pathogens, mainly a
variety of phenolic compounds, including highly polymerized physical barriers such as lignin, which
prevent the invasion of pathogens [2]. These phenolic defense compounds are primarily synthesized
by the phenylpropanoid pathway, an important secondary metabolic pathway that produces various
key molecules required for the plant defense system and systemic resistance [3–5]. For example,
phytoalexins are compounds with antimicrobial activity biosynthesized by the phenylpropanoid
pathway that inhibit infectious disease when plants are attacked by pathogens [6,7]. Rosmarinic acid is
synthesized from the precursor molecules L-phenylalanine and L-tyrosine, which may play a role in
plant defense against fungal and bacterial infections [8]. Salicylic acid is produced by a branch of the
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phenylpropanoid pathway and plays an important role in the local and systemic induction of plant
resistance to pathogens [9–11]. Lignin functions as a physical barrier reducing damage to the plant cell
wall by cell wall-degrading enzymes produced by invading pathogens [2,12–14]. In mango plants,
a large number of secondary metabolites are produced by induction of the phenylpropanoid pathway
in stem tissue, which increases resistance to Ceratocystis fimbriata [15]. In addition, induction of key
enzymes in the phenylpropanoid pathway, including phenylalanine ammonia-lyase, enhances the
defense of chickpea plants against ascochyta blight disease [16].

Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the first and key enzyme in the phenylpropanoid
pathway, catalyzes the conversion of phenylalanine to trans-cinnamic acid and ammonia by
non-oxidative deamination [17,18], which is the key regulatory point of the connection between
primary metabolism and secondary metabolism in plants [19]. Due to the importance of PAL in
the phenylpropanoid pathway, it has always been a hot research topic [20]. PAL is present in
all higher plants studied, and it has also been found in some fungi [21,22], cyanobacteria [23]
and Streptomyces maritimus [24]. Nevertheless, PAL has not yet been found in eubacteria, archaea
or animals [19,25]. PAL genes have been cloned and studied from a variety of plants, such as
Ginkgo biloba [26], Lycoris radiata [27], sugarcane [28] and buckwheat [29]. The relationship between
PAL and plant disease resistance is also a focus of research. In tomato plants, expression of PAL genes is
positively induced by Verticillium dahliae [30]. OsPAL4 is associated with resistance to bacterial blight,
sheath blight, and rice blast in rice [31]. Silencing of CaPAL1 in pepper plants attenuates resistance to
Xanthomonas campestris pv. vesicatoria, and overexpression of CaPAL1 in Arabidopsis increases resistance
to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis [11]. Moreover, overexpression
of GmPAL2.1 in transgenic soybean plants enhances resistance to Phytophthora sojae [25]. In addition,
knockout of four PAL genes in Arabidopsis resulted in susceptibility to Pseudomonas syringae [32].
Therefore, the PAL gene is believed to play a positive role in plant disease resistance.

Picea. asperata from the Pinaceae family, the major afforestation tree in the subalpine forests of
southwestern China, is very important in the conservation of water sources and soil as well as in
water conservation and regional ecological balance. In recent years, many P. asperata plantations have
suffered from needle cast disease, and the molecular mechanism of disease resistance is still unclear.
In view of the important role of PAL in plant disease resistance, it is necessary to perform research on
the role of this gene in the prevention of needle cast disease in P. asperata. However, to our knowledge,
there is no report on the study of PAL from P. asperata; additionally, in Picea, the PAL gene has only
been reported in Norway spruce [33,34]. Therefore, to understand the function of PAL in P. asperata
and further explore the relationship between the PAL gene and needle cast disease resistance, we
cloned the full-length cDNA of the PAL gene from P. asperata and characterized the molecular features,
phylogenetic evolution and enzyme activity properties of the recombinant PAL protein. Furthermore,
we analyzed the expression profiles of PAL in different tissues and during pathogen infection.

2. Materials and Methods

2.1. Plant Materials

P. asperata (approximately twenty years old) was grown under natural field conditions on a forest
farm of Erlang Mountain in Sichuan, China. Roots, phloem, young needles, young fruits and seeds were
collected from healthy P. asperata. In addition, young needles were collected from healthy P. asperata
and P. asperata infected by the pathogen (Lophodermium piceae, its information is shown in Figure S1
of Supplementary Material) causing needle cast disease in May (preinfection), July (early stage of
infection), September (middle stage of infection) and November (late stage of infection). The details of
the P. asperata collection are shown in Supplementary Material Table S1. All samples were immediately
frozen in liquid nitrogen and stored at −80 ◦C for RNA isolation.
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2.2. RNA Isolation and cDNA Synthesis

Total RNA was isolated from all samples using a Quick RNA Isolation Kit (Huayueyang Biotech
Co., Ltd., Beijing, China) following the manufacturer’s instructions. The RNA was incubated with
RNase-free DNaseI (TaKaRa Bio Inc, Dalian, China) to eliminate genomic DNA. The quality and
concentration of the RNA was determined by 1% (M/V) agarose gel electrophoresis and using a
BioMate 3S UV-visible spectrophotometer (Thermo, Waltham, MA, USA). First-strand cDNA was
synthesized with a PrimeScriptTM RT Reagent Kit (TaKaRa Bio Inc, Dalian, China) according to the
manufacturer´s instructions. The cDNA was stored at −20 ◦C for cDNA cloning and quantitative
real-time PCR (qRT-PCR) analysis.

2.3. Cloning of the Full-Length PaPAL cDNA

A pair of specific primers (PaPAL-F1: 5′-GAGGAGTTCAGGACAGG-3′ and PaPAL-R1:
5′-TCAGAATGGACCAGGCGTT-3′) was designed using Primer Premier Version 5.0 software
(PREMIER Biosoft International, Palo Alto, CA, USA) according to the nucleotide sequence of
PAL from Picea sitchensis (GenBank: EF085404.1). The full-length cDNA was amplified in a 25-µL PCR
reaction with 1 µL cDNA, 12.5 µL Trans Taq® High Fidelity (HiFi) PCR SuperMix (2 ×) (TransGen
Biotech Co., Ltd., Beijing, China), 1 µL each of 10 µM PaPAL-F1 and PaPAL-R1 primers, and 9.5 µL
ddH2O. The reaction conditions were as follows: Pre-denaturing at 94 ◦C for 4 min; followed by
35 cycles of 94 ◦C for 40 s, 57 ◦C for 40 s, and 72 ◦C for 2 min 40 s; and a final extension at 72 ◦C
for 10 min. The PCR product was assessed by 1% (M/V) agarose gel electrophoresis and the target
fragment was purified with a TIANgel Midi Purification Kit (Tiangen Biotech Co., Ltd., Beijing, China).
The purified products were cloned into the pMD19-T vector (TaKaRa Bio Inc, Dalian, China) and then
transformed into competent cells of Escherichia coli DH5α. The transformed bacteria were screened by
blue/white screening and identified by PCR. Positive colonies were sequenced by Shanghai Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.4. Bioinformatics Analysis of PaPAL

The open reading frame (ORF) was identified by the ORF Finder tool (https://www.ncbi.nlm.
nih.gov/orffinder/). The amino acid sequence of PaPAL was deduced using DNAMAN Version 6.0
software (Lynnon, Pointe-Claire, QC, Canada). The fundamental physiochemical properties of the
protein were predicted by the online tool ProtParam (https://web.expasy.org/protparam/). Analysis
of sequence homology was carried out by Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple
sequence alignments were produced with ClustalW version 1.83 [35]. Conserved domains in the
protein were detected using the NCBI (National Center for Biotechnology Information) server (https:
//www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Modification sites and conserved residues of
the protein were found by PROSITE (Database of protein domains, families and functional sites)
(https://prosite.expasy.org/prosite.html) and InterPro (http://www.ebi.ac.uk/interpro/), respectively.
The secondary structure of the protein was predicted by SOPMA (Self-Optimized Prediction Method
with Alignment) (https://npsa-prabi.ibcp.fr). Predictions of signal peptide and transmembrane regions
in the protein were performed with SignalP-5.0 Server (http://www.cbs.dtu.dk/services/SignalP/)
and TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), respectively. Homology
modelling was carried out by SWISS-MODEL (https://swissmodel.expasy.org/). A phylogenetic tree
was constructed based on the neighbor-joining (NJ) method in MEGA version 6.0 [36].

2.5. Expression and Purification of PaPAL in E. coli

The coding sequence of PaPAL was amplified using the primers PaPAL-F2 (5′-GGACTAGT
ATGGTTGCAGCTGCAGC-3′, the SpeI restriction site is underlined) and PaPAL-R2 (5′-CCGCTCGAG
TCAGAATGGACCAGGCG-3′, the XhoI restriction site is underlined). The PCR products were digested
with SpeI and XhoI and then inserted into the pET28a (+) expression vector (TaKaRa Bio Inc, Dalian,
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China). The positive recombinant plasmid (named pET28a (+)-PaPAL) was verified by sequencing
and transformed into the E. coli BL21(DE3) strain. A transformant containing pET28a(+)-PaPAL was
collected and grown in 3 mL of Luria Bertani (LB) culture medium with 50 µg/mL kanamycin at 37 ◦C
until the OD600 (optical density) reached 0.6–0.8. Protein expression was then induced by the addition
of 0.6 mM (final concentration) isopropyl β-D-thiogalactoside (IPTG, Merck) at 37 ◦C. To obtain optimal
expression conditions of PaPAL in E. coli, various temperatures (16, 25, 30 and 37 ◦C), concentrations
of IPTG (0, 0.2, 0.4, 0.6, 0.8 and 1.0 mM), and durations of induction (0, 2, 4, 6, 8 and 10 h) were
tested. The protein expression level was assessed by 12% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and visualized by Coomassie Brilliant Blue R-250 staining. After optimal
induction, cells were collected by centrifugation and lysed by sonication. The recombinant protein
was purified using a His-tag Protein Purification Kit (Beyotime Biotechn Co., Ltd., Shanghai, China).
The purity of the purified protein was analyzed by 12% SDS-PAGE, and its concentration was detected
by the Coomassie Brilliant Blue G-250 method.

2.6. Enzyme Activity Assay for Recombinant PaPAL

The enzyme activity of recombinant PaPAL was assayed according to a previous method, with
slight modification [37]. The reaction mixture contained 2 mL of 100 mM borate buffer (pH 8.6),
1 mL of 10 mM L-phenylalanine and 100 µL of purified protein; ddH2O replaced the protein in the
negative control reaction. The reaction mixture was incubated at 40 ◦C for 30 min and stopped by
incubation on ice. Activity was monitored by measuring the formation of trans-cinnamic acid by
increased absorbance at 290 nm in a spectrophotometer (BioMate 3S UV-visible, Thermo, Waltham,
MA, USA). One unit (U) of enzyme activity was defined as the amount of PAL that catalyzed the
formation of 1 µmol of trans-cinnamic acid from L-phenylalanine per minute. To determine the optimal
pH, the reaction mixtures were assayed at 40 ◦C in various borate-buffered solutions (pH 8.0, 8.2, 8.4,
8.6, 8.8 and 9.0). To determine the optimal temperature, reactions were carried out with the optimal
pH at varying temperatures (30, 40, 50, 60, 70 and 80 ◦C).

2.7. Expression Properties of PaPAL by qRT-PCR

The transcript levels of PaPAL in different tissues of P. asperata and in young needles
from the healthy P. asperata and infected P. asperata collected at various time points during
pathogen infection were analyzed by qRT-PCR using a CFX96TM Real-Time System (Bio-Rad,
Hercules, CA, USA). Amplification primers (PaPAL-F3: 5′-AAGCAGATTGTTTCTCAAGTAGCCA-3′

and PaPAL-R3: 5′-GCAGGGATCGTCGATGTAGGA-3′, the amplification product is 141 bp)
were designed based on the coding sequence of PaPAL. The elongation factor-1 alpha gene
(GenBank: AJ132534.1, the primers EF-F: 5′-AACTGGAGAAGGAACCCAAG-3′ and EF-R:
5′-AACGACCCAATGGAGGATAC-3′, the amplification product is 114 bp) [38] and translation
initiation factor 5A gene (GenBank: DR448953, the primers TIF5A-F: 5′-GGTCTTTCCCCTCATCAA-3′

and TIF5A-R: 5′-GAGGATGGTTTTGTTAGCC-3′, the amplification product is 118 bp) [39] were used
as two internal references. qRT-PCR was performed in a 25-µL reaction volume containing 2 µL of
10-fold diluted cDNA, 12.5 µL of TB GreenTM Premix Ex TaqTM II (TaKaRa Bio Inc, Dalian, China), 1 µL
of (10 µM) forward primer, 1 µL of (10 µM) reverse primer and 8.5 µL ddH2O. The reaction conditions
were as follows: 1 cycle of 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s,
with a final melt curve analysis performed from 65–95 ◦C. ddH2O instead of cDNA was used as a
negative control. The tissue with the lowest expression level was selected as the control and assigned a
nominal value of 1.0; healthy needles at different stages of infection were selected as the control for the
expression characteristics assays. The expression results were analyzed using the comparative cycle
threshold (Ct) method and quantified relative to the control (2−∆∆Ct) [37,40].
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The qRT-PCR assays were performed in three independent replicates. The data analysis was
carried out using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). The significance of differences was
assessed by Duncan´s multiple range test (p ≤ 0.05) and the T test (p ≤ 0.05). Data are presented as the
mean ± standard error (SE).

3. Results

3.1. Cloning and Characterization of the PaPAL Gene

Using specific primers (PaPAL-F1 and PaPAL-R1), the full-length cDNA sequence of PAL was
amplified from cDNA of P. asperata young needles by RT-PCR. The product was found to be 2303 bp in
size (Figure 1) and was designated PaPAL (GenBank accession No. MK770350).
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Figure 1. The PCR amplification product of the PaPAL gene. M: DNA molecular weight standards; 1:
The PCR product of full-length cDNA.

The PaPAL gene contains a 140-bp 5′-untranslated region and a 2160-bp open reading frame
(ORF) encoding 720 amino acids (Figure S2). ProtParam analysis showed that the deduced PaPAL
protein has a calculated molecular weight of 78.7 kDa and a theoretical isoelectric point of 5.88.
Blast and multiple alignment analysis by ClustalW revealed that PaPAL has high identity with
other reported plant PALs in GenBank, sharing 99.44% identity with PsPAL from Picea sitchensis
(ABK24709.1), 94.44% identity with LkPAL from Larix kaempferi (AHA44840.1), and 84.97% identity
with GbPAL from Ginkgo biloba (ABU49842.1) (Figure 2). NCBI analysis showed that PaPAL contains a
phenylalanine ammonia-lyase conserved domain at position 24–720 that belongs to the phenylalanine
ammonia-lyase superfamily. Many sites essential for PAL activities were identified by PROSITE
and InterPro in PaPAL (Figure S2 and Figure 2). For example, the phenylalanine and histidine
ammonia-lyase signature sequence (GTITASGDLVPLSYIA) is present at positions 204–219, containing
a key active site motif, Ala-Ser-Gly (208–210), for 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO)
group formation [41]. In addition, strictly conserved amino acid residues are present in the PaPAL
protein, such as Y116, G117, V118, T120, F122, Q137, L140, P257, K258, E259, G260, L261, N265, Y356,
R359, N389 and H401. Conserved deamination sites (L213, V214, L261 and A262) and conserved
catalytic active sites (N265, G266, NDN387-389, H401 and HNQDV491-495) were also found in PaPAL.
Furthermore, PROSITE analysis showed that PaPAL contains 16 N-myristoylation sites, 13 casein
kinase II phosphorylation sites, 8 protein kinase C phosphorylation sites, 4 N-glycosylation sites and
1 tyrosine kinase phosphorylation site.
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Figure 2. Multiple alignment of the deduced PaPAL protein with other plant phenylalanine
ammonia-lyase (PAL) proteins. The sequences are from Picea sitchensis (PsPAL, ABK24709.1), Larix
kaempferi (LkPAL, AHA44840.1) and Ginkgo biloba (GbPAL, ABU49842.1). Completely identical
amino acid sequences are indicated with white words and red backgrounds. Highly conserved amino
acid sequences are represented with black words and yellow backgrounds. Non-conserved amino
acid sequences are shown with grey words and white backgrounds. α-Helices are displayed as large
squiggles and η-helices as small squiggles. Strict β-turns are shown with TT letters and β-strands as
arrows. Strictly conserved amino acid residues are shown asF.
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3.2. Analysis of Secondary Structure and Tertiary Structure of the PaPAL Protein

The secondary structure of the PaPAL protein was predicted by the SOPMA tool. The results
indicated that PaPAL consists mainly of α-helices (57.64%) and random coils (29.44%) as well as a few
extended strands (7.08%) and beta turns (5.83%) (Figure 3a). To better understand the structure and
function of the PaPAL protein, the tertiary structure was predicted using SWISS-MODEL based on the
crystal structure of Petroselinum crispum PAL (PDB: 1W27) [42]. The model covered the amino acids
31–720 of PaPAL, and its secondary structure is shown in Figure 2. In particular, the tertiary structure
of PaPAL consists of four subunits that assume a seahorse shape (Figure 3b) [41]. In addition, each
subunit is composed of an MIO domain, a core domain and an inserted shielding domain. The highly
conserved Ala-Ser-Gly triad, which acts as an active site for cyclization and dehydration for MIO group
formation, was also found within the MIO domain [5].
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3.3. Phylogenetic Analysis of PaPAL

To explore the evolutionary relationship between PaPAL and PALs from other plants, MEGA 6.0
was used to construct a phylogenetic tree by the neighbor-joining method. As shown in Figure 4,
the phylogenetic tree was in good agreement with the traditional taxonomy classification, with grouping
into four main clusters, similar to those reported by Zhu et al. [37] and Wu et al. [4]. These four main
clusters include angiosperm, gymnosperm, bryophyta and pteridophyta. Moreover, the dicotyledon
and monocotyledon species independently formed each of the subfamilies in the angiosperm family.
Interestingly, four lianas from different families in dicotyledon were clustered together. The PALs from
Rosaceae species and those from Pinaceae species were clustered together. The result grouped PaPAL
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with other PALs from Pinaceae species; a close relationship to PsPAL from Picea sitchensis was also
indicated. Comprehensively, the results suggested that PaPAL might have a common evolutionary
ancestor with other PALs and a similar function in the phenylpropanoid pathway.
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Figure 4. A phylogenetic tree between PaPAL and other plant PALs was constructed by the
neighbor-joining (NJ) method. Outer circle: Gymnosperm species are shown in green, bryophyta
species in red, pteridophyta species in yellow, angiosperm species in blue. The liana species are
represented in F. The monocot species and dicotyledon species are represented with � and �,
respectively. Inner ring: Rosaceae species are indicated with a blue background and Pinaceae species
with a green background.

3.4. Expression, Purification and Functional Characterization of Recombinant PaPAL

To confirm PaPAL protein expression in E. coli and determine its functional activities, a recombinant
plasmid was constructed using the pET28a (+) vector. In addition, induction expression conditions
were optimized to obtain the maximum amount of PaPAL protein. According to SDS-PAGE analysis,
the molecular weight of recombinant PaPAL was approximately 82 kDa, which was consistent with
the expected size of PaPAL (approximately 79 kDa) fused to a 3 kDa His-tag peptide (Figure 5a).
Moreover, the recombinant PaPAL protein was not detected in the negative controls (including
empty-vector pET28a(+) in E. coli BL21(DE3) with 0.6 mM IPTG added, empty-vector pET28a(+) in
E. coli BL21(DE3) with no IPTG added and pET28a(+)-PaPAL in E. coli BL21(DE3) with no IPTG added).
The highest expression level of recombinant PaPAL was detected by adding 0.2 mM IPTG (Figure 5a)
followed by incubation for 4 h (Figure 5b). Furthermore, the distribution of recombinant PaPAL in
the supernatant and precipitate was detected (Figure 5c). Most of recombinant PaPAL was found in
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inclusion bodies, and the proportion in the soluble fraction increased slightly with decreasing induction
temperature. Therefore, recombinant PaPAL was produced with induction of 0.2 mM IPTG at 16 ◦C
for 4 h. Recombinant PaPAL was purified by 6×His-tag affinity (Figure 5d), and the concentration of
the purified protein was 0.83 mg/mL.
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recombinant PaPAL; (b) optimal temperature analysis of recombinant PaPAL. The data represent 
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Figure 5. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of
recombinant PaPAL expression and purification. M: Protein molecular mass marker; A: pET28a(+)
in E. coli BL21(DE3); B: pET28a(+)-PaPAL in E. coli BL21(DE3); negative controls: pET28a(+) in
E. coli BL21(DE3) with 0.6 mM IPTG added, pET28a(+) in E. coli BL21(DE3) with no IPTG added and
pET28a(+)-PaPAL in E. coli BL21(DE3) with no IPTG added; (a) pET28a(+)-PaPAL in E. coli BL21(DE3)
was induced with different concentrations of IPTG (0.2–1.0 mM) at 37 ◦C for 6 h; (b) pET28a(+)-PaPAL in
E. coli BL21(DE3) was induced with 0.2 mM IPTG for 0, 2, 4, 6, 8 and 10 h at 37 ◦C; (c) pET28a(+)-PaPAL
in E. coli BL21(DE3) was induced with 0.2 mM IPTG for 4 h at different temperatures (16 ◦C, 25 ◦C, 30 ◦C
and 37 ◦C), and the total protein, supernatant and precipitate of cell lysate were analyzed; (d) purified
recombinant PaPAL.

A high level of PAL activity was determined for the purified recombinant PaPAL protein.
The optimal pH was 8.6, with activity for converting L-phenylalanine to trans-cinnamic acid of
3224.10 U/mg at this pH (Figure 6a). In addition, the optimal temperature of recombinant PaPAL
activity was determined to be 60 ◦C, and its catalytic activity was 4536.14 U/mg at this temperature
(Figure 6b).
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Figure 6. Functional characterization of recombinant PaPAL. (a) Optimal pH analysis of recombinant
PaPAL; (b) optimal temperature analysis of recombinant PaPAL. The data represent the mean values of
three replicates ± standard errors (SEs). The different letters (a, b, c, d and e) on the SE line represent
statistically significant differences at p ≤ 0.05 (Duncan´s multiple range test).
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3.5. Transcriptional Profiles of PaPAL in Different Tissues and at Different Periods during Pathogen Infection

The expression levels of PaPAL in P. asperata were analyzed by qRT-PCR. PaPAL transcripts were
detected in all of the tissues examined (Figure 7a). The lowest expression level was found in the seed,
which was normalized to 1. The highest expression level was determined in needles, followed young
fruit. The expression levels of PaPAL in the root and phloem were similar.
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Figure 7. Transcription pattern of PaPAL. (a) Relative expression level of PaPAL in different tissues
of P. asperata; (b) relative expression level of PaPAL at different periods during pathogen infection.
The data represent the mean values of three replicates ± standard errors (SEs). The different letters
(a, b, c and d) on the SE line represent statistically significant differences at p ≤ 0.05 (Duncan´s multiple
range test and T test, respectively).

With the increase of infection time of needle cast disease during the year, proportion of needles
infected by Lophodermium piceae gradually increased, and September was the most serious period
of needle infection (Table S1). To evaluate PaPAL expression is induced by biotic stress, transcript
levels of PaPAL in P. asperata were examined during infection by the pathogen (Lophodermium piceae)
causing needle cast disease. As shown in Figure 7b, there was no difference in the expression levels of
PaPAL gene between healthy P. asperata and infected P. asperata in May (preinfection). However, PaPAL
transcript accumulation in infected P. asperata increased to 1.36-fold of that in the healthy P. asperata
in July (the early stage of infection). By September (the middle stage of infection), PaPAL transcript
accumulation in infected P. asperata increased significantly and reached the highest level (2.19-fold of
that in the healthy P. asperata). Subsequently, the PaPAL expression levels in both healthy P. asperata
and infected P. asperata decreased in November (the late stage of infection).

4. Discussion

PAL-mediated catalysis is the rate-limiting step of the phenylpropanoid pathway, which controls
the biosynthesis of secondary metabolites in plants, such as lignins, flavonoids and phytoalexins, in
plants [3,27,43,44]. These compounds play an important role in plant resistance to pathogen infection
and insect attack [9,45–47]. In this study, the full-length cDNA sequence of PaPAL from P. asperata was
isolated and analyzed. The coding sequence of PaPAL is 2160 bp in size, which is larger than SmPALs
(2127–2133 bp) from Salvia miltiorrhiza [48], RgPAL (2121 bp) from Rhodotorula glutinis [49], and BoPAL1
(2139 bp) from Bambusa oldhamii [50] and smaller than PtPAL (2265 bp) from Pinus taeda [1] and FtPAL
(2166 bp) from Fagopyrum tataricum [44], and encodes 720 amino acids. Multiple alignment analysis
showed that the PaPAL protein sequence has high similarity with that of other reported PAL proteins,
indicating that the PAL protein has been highly conserved during evolution. The conserved motif
(GTITASGDLVPLSYIA), which is a specific signature sequence of phenylalanine ammonia-lyase [41,51],
was detected at positions 204–219 of the PaPAL protein. In addition, the active site sequence
(Ala-Ser-Gly), which is considered to be key for the formation of the MIO group [52], is present in the
conserved motif of PaPAL. Conserved deamination sites (L213, V214, L261 and A262) and catalytic
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active sites (N265, G266, NDN387-389, H401 and HNQDV491-495) are thought to play an important role
in the function of the PAL protein [3,19,53]. These sites were also found in the PaPAL protein, suggesting
that PaPAL has a similar function to that of other PALs. PaPAL contains five types of modification
sites, i.e., N-myristoylation, casein kinase II phosphorylation, protein kinase C phosphorylation,
N-glycosylation and tyrosine kinase phosphorylation sites, which are also reported for ObPAL [54].
The first tertiary structure of PAL was determined for that from Rhodosporidium toruloides [55], and the
first crystal structure was characterized for that from Petroselinum crispum [41]. Petroselinum crispum
PAL is a homotetramer, and each subunit assumes a seahorse shape [44]. The tertiary structure of
PaPAL was homology modeled using Petroselinum crispum PAL as a template, and four ‘seahorse shape’
subunits were also observed. Thus far, the seahorse shape has been reported for Melissa officinalis [56],
Solenostemon scutellarioides [37] and Ocimum basilicum [54]. The results suggest that PaPAL might
have catalytic functions similar to those of other PAL proteins. It is well known that monocotyledon
and dicotyledon PALs form independent each subfamilies [27,57]. Our phylogenetic tree also agreed
well with the genetic evolution of spermatophytes. PaPAL clustered together with other PALs from
Pinaceae species, such as Pinus taeda [1]. In addition, PaPAL shows the closest relationship with the
PAL of Picea sitchensis. We also found that lianas clustered together, even though they derived from
different families.

In most plants, PAL is encoded by a small family of 2–13 members, such as in Arabidopsis
thaliana [32,58,59], Pinus taeda [1], Salvia miltiorrhiza [60], Bambusa oldhamii [50] and Ginkgo biloba [26].
In this study, only one PAL gene from in P. asperata was isolated and characterized. However, as it
remains unknown whether a PAL gene family exists in P. asperata and how many family members
there are, further studies need to be conducted.

A heterologous protein of interest can be obtained by expressing a target gene in a prokaryote
such as E. coli, facilitating the study of the functional and enzymatic properties of the target protein [61].
The prokaryotic expression system has the advantages of high yield, easy operation, good stability
and low cost [62,63], providing an effective approach for examining the expression and functional
characteristics of the PaPAL protein. The recombinant PaPAL protein was successfully expressed in
E. coli using a prokaryotic expression vector, pET-28a(+), and its molecular weight was found to be
approximately 82 kDa by SDS-PAGE analysis. To obtain a large amount of PaPAL, expression was
optimized by testing different induction conditions. In general, high-level expression of recombinant
protein in E. coli results in the formation of inclusion bodies [64]. As expected, the recombinant
PaPAL protein was also found mainly in inclusion bodies. Higher culture temperature increases
the rate of recombinant protein synthesis and the concentration of polymeric intermediates, thereby
promoting the formation of inclusion bodies [65], whereas soluble proteins is promoted by a lower
culture temperature [66]. When expression of recombinant PaPAL was induced at 16 ◦C, we found that
the amount of soluble protein increased slightly in the supernatant. ObPAL from Ocimum basilicum
was expressed in E. coli using the pET-28a(+) vector, and the result showed that the content of
recombinant protein was also low [54]. In contrast, the content of recombinant RcPAL was increased in
the supernatant, also expressed in E. coli using the pET-28a(+) vector [67]. We suspect that the cause of
the difference in expression might be because the genes are from different species. The expression level
of soluble protein may be improved by assessing other effective expression vectors and expression
conditions. Other plant PALs have also been successfully expressed in vitro, such as those from
Jatropha curcas [52], Fagopyrum tataricum [44] and Solenostemon scutellarioides [37].

To demonstrate the function of the PaPAL protein, recombinant PaPAL was purified using a
Ni2+-agarose column, and the purified protein was obtained at a concentration of 0.83 mg/mL. When

L-phenylalanine was used as the substrate, the purified PaPAL protein exhibited high PAL activity,

as expected. In addition, the characteristics of PaPAL were further analyzed. The optimal pH of
recombinant PaPAL was 8.6, similar to that of PAL from Oryza sativa (8.5) [68] and within the range
known for plant PALs [49,69]. The enzyme activity of recombinant PaPAL was determined to be
3224.10 U/mg at pH 8.6. Moreover, the optimal temperature of recombinant PaPAL was 60 ◦C, which was
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the same as that of PALs from Salvia miltiorrhiza [60], Jatropha curcas [52], Solenostemon scutellarioides [37]
and Ocimum basilicum [54] and close to that of PALs from Petroselinum crispum (58 ◦C) [70] and
Zea mays (55–60 ◦C) [71] but higher than that of PALs from Bambusa oldhamii (50 ◦C) [50], Rhus chinensis
(45 ◦C) [67] and Arabidopsis thaliana (31–48 ◦C) [69]. The enzyme activity of recombinant PaPAL at
60 ◦C was determined to be 4536.14 U/mg.

To date, tissue expression of the PAL genes has been studied in a variety of plants [60,72–75].
In our study, the highest expression level was observed in the needles of P. Asperata, and the lowest in
the seeds. High expression levels of the PAL gene in leaves have been found in Petroselinum crispum [76],
Rehmannia glutinosa [75], Isatis indigotica [77], Salvia miltiorrhiza [60] and Solenostemon scutellarioides [37].
In addition, it has been reported that the transcription levels of GbPAL in Ginkgo biloba correlated
significantly with flavonoid accumulation, and the GbPAL gene was also highly expressed in leaves [26].
Therefore, high expression in needles may suggest a high rate of flavonoid biosynthesis in P. asperata. PAL
genes were also occasionally highly expressed in the roots of Nicotiana tabacum [78], Rubus idaeus [74] and
Astragalus membranaceus [79], which may be due to the high rate of lignification for root development [5].
Moreover, a high expression level of the PAL gene in stems [44,67] and flowers [52] has been reported.

Many studies have shown that expression of the PAL gene can be induced by pathogens [4,80].
In this study, qRT-PCR analysis revealed that PaPAL gene expression was upregulated during infection
of the needle cast disease pathogen Lophodermium piceae infection, which suggested that the PaPAL gene
is involved in the P. asperata defense response. With the gradual aggravation of needle cast disease
during this year, expression of the PaPAL gene in infected plants showed a pattern of increasing first
and then decreasing. The result was similar to the expression pattern of the HbPAL gene from the white
root rot disease-tolerant rubber clone PB5/51 during Rigidoporus microporus infection [3]. In addition,
a number of studies have found that the PAL gene exhibits a rapid response in the early stages of
pathogen infection [4]. However, expression of the PAL gene in flax showed a pattern of continuous
increase during pathogen infection [81]. In brief, the PaPAL gene can be induced by Lophodermium piceae,
and we speculated that PaPAL plays an active role in the defense against needle cast disease.

5. Conclusions

In this study, we successfully isolated and characterized the P. asperata PaPAL gene, which contains
the specific signature sequence and active site of phenylalanine ammonia-lyases. Bioinformatics
analysis showed that PaPAL has high sequence identity and structural similarity with other reported
plant PAL proteins. Furthermore, we successfully expressed and purified the PaPAL protein in vitro,
which exhibited high PAL enzyme activity. qRT-PCR analysis revealed that the highest expression level
of the PaPAL gene occurs in needles of P. asperata. In particular, our study demonstrates that the PaPAL
gene is involved in the response to needle cast disease pathogen (Lophodermium piceae) infection. This
work provides fundamental information for understanding the role of the PaPAL gene in P. asperata
and lays the foundation for further exploration of the function of P. asperata PaPAL in defense against
needle cast disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/8/613/s1,
Figure S1: The information of pathogen (Lophodermium piceae). (a) The ascoma of L. piceae on the needle of
Picea asperata; (b) The transverse section of L. piceae ascoma; (c) The ascospore of L. piceae; (d) The conidium
of L. piceae. L. piceae characteristic sequence Genbank ID: KX573897, Table S1: The details of the Picea asperata
collection conditions on a forest farm of Erlang Mountain in Sichuan, China, Figure S2: Nucleotide sequence and
the deduced amino acid sequence of the PaPAL gene. The start codon and stop codon are indicated by bold font
and an asterisk, respectively. The phenylalanine and histidine ammonia-lyase signature sequence is underlined.
The deamination sites are shaded in grey. The catalytic active sites are shown in boxes.
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