™ forests MBPY

Review

Interactions between Climate and Nutrient Cycles on
Forest Response to Global Change: The Role of
Mixed Forests

Ester Gonzalez de Andrés

Departamento de Ciencias, Universidad Publica de Navarra, Campus de Arrosadia, Pamplona,
31006 Navarra, Spain; ester.gonzalez@unavarra.es; Tel.: +34-948-169-156

check for
Received: 24 June 2019; Accepted: 22 July 2019; Published: 24 July 2019 updates

Abstract: Forest ecosystems are undergoing unprecedented changes in environmental conditions due
to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and
the subsequent climate change are affecting forest functions at different scales, from physiology and
growth of individual trees to cycling of nutrients. This review summarizes the present knowledge
regarding the impact of global change on forest functioning not only with respect to climate change,
which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions
among them. The carbon dioxide (CO5) fertilization effect on tree growth is expected to be constrained
by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing
water deficit, which interact in a complex way. At the community level, responses to global change
are modified by species interactions that may lead to competition for resources and/or relaxation
due to facilitation and resource partitioning processes. Thus, some species mixtures can be more
resistant to drought than their respective pure forests, albeit it depends on environmental conditions
and species’ functional traits. Climate change and nitrogen deposition have additional impacts on
litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental
ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees” adaptability
to stress or decomposition rates. As stoichiometry of different ecosystem components are also
influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment
of traditional forest management is needed in order to cope with global change. Proposed silvicultural
systems emphasize the key role of diversity to assure multiple ecosystem services, and special
attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying
mechanisms governing the relationships between diversity and different ecosystems functions, such
as productivity and stability, is provided.

Keywords: atmospheric carbon dioxide (CO;) concentration; drought; N deposition; species
interactions; ecosystem stoichiometry; adaptive management; diversity—functioning relationships

1. Introduction

Worldwide, forests cover 4.03 billion hectares, Ca. 30% of Earth’s total land area. They account
for 75% of terrestrial gross primary production, 80% of Earth’s total plant biomass, and contain more
carbon in biomass and soils than is stored in the atmosphere [1]. Globally, they support over half of all
described species and provide a range of valuable goods and ecosystem services, including food, fiber,
timber, medicine, clean water, aesthetic and spiritual values [2]. Forests play a particularly significant
role in climate regulation, owing to their low albedo and high rates of evapotranspiration [3,4]. Forest
ecosystems are associated with the regulation of 57% of total water runoff and about 4.6 billion people
depend for all or some of their water on supplies from forests [5].
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Human appropriation of land and water for agriculture and other purposes; emission of extraneous
compounds to the atmosphere and water, extraction of food, fuel, and fiber from natural ecosystems;
and transport of species around the globe, have pervasively influenced Earth’s climate, hydrology,
biogeochemistry, land cover, and species diversity [6,7]. The Earth and its ecosystems are undergoing
rapid global change, driven by natural and human-induced factors, that is expected to influence
plant species” dominance and distribution, primary productivity, and nutrient cycles worldwide [5,8].
Demographic, economic, socio-political, cultural, scientific, and technological factors (i.e., indirect
drivers) cause physical and biological changes (i.e., direct drivers) in ecosystems. Global change
involves the simultaneous and rapid alteration of several key environmental parameters that control
the dynamics of forests [9,10]. Hence, forest ecosystems are currently facing unprecedented shifts
in environmental conditions, with implications for biodiversity patterns, ecosystem functions, and
services [4,11].

In this study;, I first provide a brief description of the alteration of carbon (C) and nitrogen (N)
cycles and the subsequent climate change that may affect forests. Second, a review of possible responses
of forests to global change impacts is presented at three different scales: (i) individual tree level
physiology and growth, (ii) influence of species’ interactions at the community level, and (iii) nutrient
cycling and stoichiometry of forests at the ecosystem level. Finally, bases for forest management in the
face of global change are succinctly discussed with the focus on mixed-species forests as an adaptation
strategy. In order to provide a comprehensive insight into the current state-of-the-art, an exhaustive
review of existing bibliography has been conducted.

2. Alteration of Biogeochemical Cycles and Global Climate

The post-industrial planet has experienced a striking increase in atmospheric concentrations of
the greenhouse gases carbon dioxide (CO,), methane (CHy), and nitrous oxide (N;O), which have
substantially exceeded the highest concentrations recorded in ice cores during the past 800,000 years.
In 2014, atmospheric CO, concentration (Ca) surpassed the threshold of 400 p.p.m. and this
concentration may double in the 21st century relative to concentrations recorded prior to 1850 [12].
From 1750 to 2011, anthropogenic CO, emissions released 555 Gt CO, year~! (GtC) and are mainly
attributed to fossil fuel combustion, cement production, and land use changes such as deforestation
(Figure 1A) [13]. The steep rise in Ca and other greenhouse gases has been associated with ocean
acidification and alteration of global climatic regimes. Mean global surface temperature has raisen on
average by 0.85 °C since the late 19th century, and this warming has been particularly marked since the
1970s (Figure 1B). Furthermore, air temperatures are projected to continue increasing globally, possibly
by as much as 4.8 °C by 2100 [12].

On the other hand, modification of the global hydrological cycle has been spatially heterogeneous,
with precipitation increases in mid- and high-latitude land areas of the Northern hemisphere, while for
other latitudinal zones precipitation trends have been less consistent [14]. Occurrence of extreme
weather and climatic events has also increased since the middle of the 20th century, such as increases
in either the frequency or intensity of heavy precipitation in North America and Europe, or drought
events in the Mediterranean and West Africa [12,15]. Precipitation patterns are predicted to undergo
further changes, with most arid and semiarid areas becoming drier and with an increase in heavy
precipitation events, leading to an increased incidence in floods and droughts [12]. Furthermore,
there is evidence that main large-scale atmospheric—oceanic circulation patterns, such as the North
Atlantic Oscillation (NAO), which affects the severity of winter temperatures and precipitation in
Europe and eastern North America, and the El Nifio — Southern Oscillation (ENSO), which has large
regional effects around the world, are behaving in unusual ways that appear to be linked to global
warming [16].

Despite the growing concern for climate change impacts, global change is not restricted to climate
since other drivers exert dramatic pressures on the ecosystems [8]. Burning fossil fuels, the advent of
the Haber-Bosch process to create reactive N from atmospheric N as fertilizer inputs, human-caused
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biological fixation of atmospheric N; by cultivated leguminous crops and rice, as well as an increase
in mass transportation and livestock numbers have drastically altered the global N cycle [6,17-19].
The consequent formation of nitrous oxides has resulted in a widespread increase in the N deposition,
which has tripled since 1860 (Figure 1C) [6,20,21]. N deposition mostly impacts northern ecosystems,
especially around densely populated areas, but will likely extend to the tropics during the 21st
century [20,22,23]. Annual anthropogenic N deposition amounts to roughly 165-259 Mton N year~!,
and only ca. 22% of these inputs ends up accumulating in the soil and biomass [24]. Although in some
regions, such as Europe and North America, N deposition levels are declining since the last decades [21]
due to emission abatement policies and economic transformation [25]. N deposition from agricultural
activities remain high and a large percentage of ecosystems are at risk of eutrophication [26]. Long-term
N loading has been shown to alter soil nutrient cycling and promote soil acidification and leaching of
nitrate and soil cations [27,28], and it is one of the greatest threats to global plant diversity [6,29].
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Figure 1. (A) Fossil fuel and cement CO, emissions by category, estimated by the Carbon Dioxide
Information Analysis Center (CDIAC) based on UN energy statistics for fossil fuel combustion and
US Geological Survey for cement production [30]. (B) Global average land-sea temperature anomaly
relative to the 1961-1990 average temperature: grey lines represent upper and lower 95% confidence
intervals [31]. (C) Anthropogenic reactive nitrogen inputs to the biosphere by sources [17].
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The complex interactions among altered biogeochemical cycles, climate change, land-use
changes, introduced species, and further global change drivers make it extremely difficult to
forecast ecosystem changes [32], which can have both short-term or ecological and long-term or
evolutionary consequences [13]. In addition, the interactions among different impacts of global change
frequently generate non-additive effects on ecosystems that cannot be predicted based on single-factor
studies [8,33-36]. The following section summarize the combined effect of C and N altered cycles and
the consequent climate change at three levels of forest ecosystems’ organization: (i) tree physiology
and growth, (ii) tree-to-tree interactions, and (iii) nutrient cycles.

3. Impacts of Global Change on Forest Ecosystems

3.1. Tree Physiology and Growth

One of the main concerns is how elevated Ca could affect forests productivity [37]. Despite the
significant rise in Ca, current levels do not suffice to saturate photosynthesis of unstressed C3 tree
species [38,39]. Thus, increasing Ca will enhance the rate of carboxylation by the photosynthetic
enzyme system and reduce photorespiration [40,41]. Increased Ca might also induce a partial closure
of stomata, reducing water loss by transpiration, which results in an increase in the ratio of the carbon
gain to water loss, i.e., water-use efficiency (WUE) [42—44]. In addition to direct leaf biochemical
effects, indirect effects have been associated to rising Ca, such as soil moisture savings due to reduced
transpiration and changes in leaf area index [45]. The combined direct and indirect effects have been
commonly referred as CO; fertilization [46].

As a consequence of such fertilization effect, an enhancement of forest productivity is expected to
occur [37]. Many tree-ring studies have reported either positive [47-51], or neutral to negative [52-58]
growth responses to rising Ca. Such inconsistent results reveals the existence of other factors that may
influence tree growth [37,40,59]. There are also concerns that CO, fertilization detected by tree-rings is
an artifact of sampling bias [60].

On one hand, long-term elevated Ca exposure studies suggest that a reduction of photosynthetic
capacity occurs over time [44,61]. Down-regulation has been associated with several processes
such as a reduction in the capacity of dark reactions to process CO, due to the decrease in leaf N
concentrations [62], or long-term anatomical and physiological adaptations for adjusting intercellular
CO; concentration to rising Ca, including changes in stomatal density [63]. On the other hand,
when trees are exposed to increased Ca, different co-occurring circumstances not related to CO,
fertilization, such as temperature increase, drought events, or nutrient limitation, may become more
important, thus modifying trees’ ability to increase growth rates [9,64,65].

Nutrient limitation is hypothesized as a primary cause for the reduced or lacking CO; fertilization
effect [66-68]. N constrains net primary production in terrestrial ecosystems. As a critical component of
many important structural, genetic, and metabolic compounds in plant cells, N is required in relatively
large quantities in connection to all growth processes [44]. Trees growing under rising Ca will increase
the N demand and enhance N sequestration in long-lived biomass and soils, thus N availability
will progressively decline [69]. As a consequence, long-term tree growth responses to increased Ca
could be reduced due to N limitations, as predicted by the progressive N limitation hypothesis [66].
This hypothesis would be particularly important in temperate and boreal forests, whose young soils
have been traditionally considered as N-limited and where N mineralization can be limited by low
temperatures [70,71].

The synergistic effect of increased Ca and rising N deposition is expected to stimulate forest
productivity [72], as has been reported in some boreal and temperate forests [73-79]. Such tree growth
enhancement may be related to increases in foliar N content that can lead to improved photosynthetic
capacity by enhanced photosynthetic enzyme activity and/or increasing leaf area [80,81]. Nevertheless,
changes in C allocation from fine roots and mycorrhizal fungi to woody components rather than
increasing photosynthesis have been also detected in long-term N-fertilization experiments [82].
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Indeed, higher aboveground investments and increased shoot-root ratios have been found with
increasing nutrient availability [83]. However, other studies report decreasing or negative growth
responses, particularly at high N deposition rates [53,79,84-86], and even tree mortality under N
saturation [77,87]. Such findings fit the N-saturation hypothesis [85,88], according to which tree
growth responds unimodally to increasing N deposition (Figure 2A). Low to moderate levels of N
deposition will relieve trees from growth limitation due to originally widespread N shortage. A critical
threshold of N saturation is reached when N availability exceeds microbial and plant demands.
Prolonged high N availability eventually leads to substantial leaching, growth decreases, and damage
to forests due to nutrient imbalances, soil acidification, and increased susceptibility to biotic and abiotic
stresses [9,17,84]. Thus, it is expected that high polluted forests may benefit from current declining
trends in N deposition [19,89].
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Figure 2. (A) Hypothetical responses of temperate forest ecosystems to long-term external N inputs
in terms of foliar N, net primary production (NPP), and N biogeochemical processes, including N
mineralization, nitrification, and leaching losses (adapted from [88]). (B) Expected relationships
between water-use efficiency (WUE) and tree growth (adapted from [56]). When increased WUE,
resulting from rising atmospheric CO, concentrations and/or water stress can override the physiological
response to stress, a CO, fertilization effect on growth is expected (Fertilization). Conversely, if water,
nutritional, or other type of stress is too strong, a negative growth-WUE would occur (Stress). No change
is expected when CO, stimulation compensates for stress (Compensation).

Whereas boreal and temperate forests have been globally considered N-limited, older and highly
leached tropical soils are usually phosphorus (P) depleted [70], as well as in Mediterranean areas due to
the interaction with water availability [90]. Increases in P limitation and deterioration of tree P nutrition
in temperate forests have been already observed [17,91-93], and may arise from nutrient imbalances
related to high N deposition rates [17,19,88]. N surplus can induce P limitation through enhancement
of nutrient requirements to maintain growth under N fertilization [24], and reduced investment in
fine root biomass and mycorrhizal interactions [92,94]. This deterioration in the P nutritional status is
expected to limit tree response to rising Ca and N deposition [79,95].

The fertilization effects of CO, and N on tree growth are also modulated by climatic conditions.
Observed and projected increasing temperatures coupled with rising Ca are expected to enhance tree
growth directly through the influence on xylogenesis activity [96], or lengthening of the growing
season [97]. However, despite the concurrent effects of temperature and WUE improvement, resulting
from rising Ca and reduced water availability [42,44,98], no clear evidence of positive tree growth
response has been found in the last decades [53,56,99]. Instead, global growth response patterns in
relation to temporal changes in WUE have been proposed to be dependent on water stress following
a latitudinal gradient [56]. In cold regions, where water availability is usually not a limiting factor,
the synergistic effect of warming and elevated Ca stimulates tree growth, as it has been observed in high
altitude and high latitude regions [59,64,100]. The growth-WUE relationship becomes progressively
more negative in Mediterranean, arid, subtropical, and tropical forests [52,54,58,99,101,102]. In warm
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regions, higher temperatures often lead to increased leaf-to-air vapor pressure deficit, with the
subsequent reduction of stomatal conductance [98,103]. Stomatal closure prolongs survival on limited
water supply by reducing transpiration and the risk of hydraulic failure, but this situation also reduces
photosynthesis and growth [104-106]. If water deficit is long and/or intense enough, drought-induced
mortality may occur by means of hydraulic failure or hydraulically mediated C starvation, and
subsequent predisposition to attack from biotic agents [105,107].

Hence, CO; fertilizer effect, and the subsequent beneficial influence of enhanced WUE, can be
cancelled out by physiological stress (Figure 2B), including water deficit or nutritional interactions.
Water availability has been found to modify tree growth responses to N deposition in boreal and
temperate conifers and deciduous species [82,108,109]. This fact is supported by modeling and forest
inventory-based studies, which stated that sensitivity of forest productivity to N input depends on
climate variability and P nutrition [95,110]. High nutrient availability pre-disposes trees to experience
greater water stress as they likely intensify water demand and reduce uptake capacity [35,82,108],
and increases vulnerability to hydraulic failure under intensive water stress [111]. Meanwhile, trees
growing under low nutrient availability will be more strongly affected by decreased nutrient availability
and uptake during a drought event [112], thus increasing probabilities of C starvation under long-term
water stress.

Furthermore, both situations may be modified by biotic agents. In fact, alterations in temperature
and precipitation regimes have an impact on herbivore and pathogen survival, reproduction, dispersal,
and distribution [32]. Wide areas of forests worldwide have been reported to have been affected by
insect pests [113], which may cause regional mortality events [114]. Elevated nutrient availability
results in low C:N ratios, thus increasing palatability to biotic agents [115]. On the contrary, low
nutrient availability situations can lead to reduced production of N-based defense compounds [111],
whose mobility may be limited by water stress [115].

Multiple interactions among Ca, N deposition, and climate over the physiological and growth
responses of trees may occur. Interactions among different drivers introduce further complexity,
because their effects can be synergistic or antagonistic, and not simply additive [36,116]. Understanding
the dependencies among different impacts of global change is highly relevant in order to develop
proper models that predict structure and functioning alterations of forest ecosystems in the face
of global change [17,92]. Growth responses to environmental shifts are difficult to infer from tree
responses to single factors [117]. However, observational or experimental multifactor studies in forests
are still scarce (refer to [35,95,108,109,118]).

In addition, the nature of the combined effect of N deposition and drought on tree response to
CO; fertilization is not only dependent on the physiological response of individual trees but is greatly
modified by competing neighbors and stand structure [34,108,119,120]. The importance of species’
interactions on the influence of global change is addressed in the following section.

3.2. Species Interactions

Tree-to-tree interactions can have greater influence on forest functioning than climate [102,121-123].
In forests, trees compete for light, water, and nutrients. When different tree species are present in a stand,
forest performance can be modified from that expected from the performance of single-species forests
by biodiversity effects. It has been found that trees exposed to intraspecific competition grew worse
than trees in interspecific neighborhoods [102,122,124]. Two main processes contribute to positive
biodiversity effects: facilitation (positive effect exerted by one species on the functioning of cohabiting
species [125]), and resource partitioning (differences in functional traits that reduce competition for
resources [126]). Both processes refer to biological mechanisms that modify the environment and the
degree of stress experienced by trees [127], and generally are difficult to differentiate [128], so they are
collectively named as relaxation (sensu [129]). Light, water, nutrient, and biotic related mechanisms
underlie biodiversity effects (Figure 3). A thorough list of such mechanisms can be found in [128]
and [129].
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Changes in environmental conditions may lead to different situations regarding species
interactions [129]. First, greater complementarity (variation of functional traits that enables a permanent
association of species that enhances collective performance [130]) can develop as one or more species
become less dominant. Second, changes in competitive balance among species can lead to a shift in
species dominance and composition from an initial pool of species by means of selection effects [127,130].
Although tree biodiversity experiments support that positive mixing effects mostly result from selection
effects [131,132], there is also empirical evidence that complementarities occur in tree mixtures that
enhance productivity [133,134]. Finally, one or more species could migrate to a new area and establish
novel interactions with species already established there.
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Figure 3. Illustration of underlying mechanisms that may lead to biodiversity effects divided into
facilitation (A) and resource partitioning (B). Different colors represent processes related with nutrients
(orange), water (blue), light (yellow), and biological agents (purple).

Some empirical studies indicate that more diverse forests tend to be less affected by droughts [135-138],
although others did not find any beneficial effect [120,139,140]. After reviewing 28 studies that
included 151 tree species, [141] stated that drought impacts on forests are modulated by tree diversity.
However, the response is not necessarily positive, and it is dependent on multiple factors, including
scale, environmental conditions, species identity, or management practices. Spatial changes in the
interactions between a given combination of species have been found in many forests [142]. For instance,
Fagus sylvatica L. underwent changing levels of stress in different regions of Europe with the same
companion species [143]. Similarly, growth improvement of Pinus sylvestris L. with the admixture of
F. sylvatica was dependent on site-specific conditions [102]. So environmental conditions in general, and
climate in particular, play a key role determining the direction and magnitude of mixing effects on forest
functioning [144-148]. Climate can modulate interactions among species directly by influencing the
relative performance of each species [149], and indirectly through its effect on forest structure [150,151].
Among climatic factors, the study in [145] identified water availability as the most important factor
modulating biodiversity effects.

It has been proposed that drought resistance is enhanced in mixed-species forests as long as net
water-use partitioning or water-related facilitation processes take place [120], which depends on the
functional traits of species involved in the mixture. The fact that responses to shifts in environmental
conditions are mainly driven by species’ identity effects rather than species diversity per se has been
supported by recent studies [108,109,124,131,143,152-154]. Species-specific trade-offs between water
conservation and C uptake [56,57,120,143,155], as well as responses to N deposition in terms of growth,
succession, and mortality [77,87,108] have been broadly described.

In contrast to climate, studies assessing the influence of diversity on forest responses to N
deposition are scarce. However, soil nutritional status has major influence on forests” growth and
mortality responses to climate [109,111]. Such response is species-specific [109], conferring different
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competitive advantages and influencing species’ interactions. From a grassland field experiment, the
study in [156] shows that species-rich communities have greater growth response to the combined
effect of rising Ca and N deposition than species-poor communities. However, whether such results
can be extrapolated to forests’ ecosystems is difficult to discern. For instance, the study in [108]
identified different growth responses to N input as a function of the species” assemblages. Frequent
shifts in understory and tree species composition has been also observed due to advantages for certain
N-demanding species [29,77]. Hence, selection effects might be important in mixtures exposed to high
N deposition rates.

In addition, changes in the ratio of elements of tree biomass and other ecosystem compartments
resulting from high N external inputs likely affect competitive interactions [157]. Conversely: there is
empirical evidence that biodiversity influences nutrient cycling [158]. Therefore, to understand and
predict forest responses to global change is important to consider nutrient availability, which in turn is
affected by global change. A review of the influence of global change drivers on different phases of
cycle of nutrients in forests is introduced in the following section.

3.3. Nutrient Cycling

Biogeochemical cycles of key elements such as C, N, or P determine productivity, respiration,
and decomposition in terrestrial ecosystems [17,71]. At the same time, C storage in forest ecosystems
is controlled by the biogeochemical cycles of N and P. Living organisms require elements in strict
proportions to catalyze metabolic reactions and synthesize essential compounds with specific element
ratios: i.e., stoichiometry of organisms [159]. Thus, biogeochemical cycles are biologically coupled
due to conserved elemental stoichiometry of plants and microorganisms that drive C, N, and P
cycles [160]. Elemental stoichiometry can be associated with important ecological processes and
ecosystem traits, such as ecosystem composition and diversity [161], the ability of trees to adapt to
environmental stress [36,162], composition of decomposer communities and litter decomposition
rates [163-166], or growth rate properties [159]. The latter are reflected in the growth rate hypothesis,
which states that organisms must increase the relative allocation of P to P-rich ribosomal RNA to meet
the demands for protein synthesis required for rapid growth, which is possible under low N:P ratios in
the environment [159].

However, global change has drastically affected the biogeochemical cycles of C and nutrient
elements of Earth’s ecosystems [6]. Rapid environmental shifts have induced the imbalance among
C, N, and P in ecosystems owing to different degrees of control by biological and geochemical
processes [24,160]. Figure 4 summarizes possible mechanisms by which stoichiometry of trees can be
modified as a consequence of increasing Ca, climate change and high N inputs. Forest disturbances
derived from extreme events such as fires or droughts may also have strong impacts on nutrient
cycling [32]. Forest fires are a global phenomenon and over 300 million ha of forested lands are annually
burned [113]. Nutrient-related effects of fires include acceleration of nutrient cycling, soil erosion,
and volatilization of soil nutrients [32]. Forest susceptibility to fire depends on forest composition and
structure [167]. Furthermore, the structure of litter layer and its decomposition dynamics are related to
their flammability, so affecting fire spread and intensity [34].

Litterfall constitutes a major proportion of nutrient cycling between plant and soils in
forest ecosystems [168]. Climatic conditions are closely linked to variations in litterfall annual
production [169-173], seasonal patterns [118,171,174-176], and nutrient composition [118,177-180].
Hence, projected increasing temperatures and alterations of precipitation regimes will have striking
consequences on litterfall dynamics. Altered soil nutrient availability, due to impaired N and P
deposition [17], has been also found to modify litterfall composition through the impact on nutrient
uptake, allocation, and resorption processes [112,181-183].

Decomposition rates are driven by multiple factors, such as soils, climate, decomposer community,
and litter quality [163,184]. Litter quality has been identified as the most important factor controlling
decomposition in two global meta-analysis [185,186]. Stoichiometric relationships of leaf litter are
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mainly the product of green leaves ratios and resorption [187,188], which undergo significant variations
as a response to global change [157]. Under high Ca C:N and C:P ratios generally increase [189], and
evidences of positive relationships between rising Ca and N:P ratios have been found [190]. High N
deposition rates are clearly associated with foliar N:P increases [17], and with decreases in N resorption,
thus boosting litter N:P ratios [191,192]. Warming and drought have been proposed to increase C:N
and C:P ratios due to mechanisms associated with water conservation and increased nutrient use
efficiencies [189], as well as, N:P ratios [157]. Globally, moist and warm conditions reduce and enhance
N and P resorption efficiencies, respectively [178,193]. Furthermore, moisture conditions largely
modulate the effect of rising Ca and N deposition on the stoichiometry of nutrient recycling [118,192].
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Figure 4. Conceptual diagram of the impacts of global change on processes controlling stoichiometry
of trees. Yellow hexagons are global change drivers: increasing atmospheric CO, concentration (Rising
Ca); climate change leading to drier and warmer conditions and high rates of atmospheric nitrogen (N)
deposition; rectangles represent nutrient pools; and ellipses indicate biogeochemical processes.

The consumer-driven nutrient recycling theory predicts that the balance between litter
stoichiometry and microbial element use efficiency directly determines nutrient recycling ratios [159].
Since soil microbes are largely homeostatic in terms of elemental stoichiometry, the stoichiometric
imbalance between litterfall and microbial communities results in microbial activity limitation by
a nutrient, and thus its immobilization in microbial biomass [192]. Decomposition rates have been
negatively associated with high litter N:P ratios [194-196], hence the above-mentioned global change
impacts on litter stoichiometry are expected to slow down nutrient return to soils. In fact, such
phenomena has already been observed [197]. Furthermore, litterfall stoichiometry has been found to
influence soil microorganism’s diversity [164,166].

Nutrient mineralization is further affected by drought since reduced soil water availability
decreases microbial activity in soils and ion mobility [112]. Water status also determines the CO,
impact on mineralization [198]. Furthermore, warming increases net N mineralization and nitrification,
and reduces soil P availability [199,200]. Finally, N deposition is known to impair litter decomposition,
although the direction and degree of such response is dependent on interactions among deposition
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rates and litter quality [201]. High external N inputs also contribute to acidification and eutrophication
of forest soils, thus leading to increased mineral nutrient losses by leaching to surface and ground
waters (Figure 2A) [88,202].

4. Forest Management under Global Change Scenarios

4.1. A Paradigm Shift

Historically, forest management has been focused on a single dominant objective, most commonly
timber production. In addition, an emphasis on increasing management efficiency by simplifying
and homogenizing forest structures and operations has prevailed [203]. However, global change
drivers and their interactions have boosted variability and uncertainty regarding future environmental,
biological, and social conditions [204], together with a likely increase in the frequency and severity of
disturbances and the appearance of new combinations of disturbances (see previous sections) [11,32].
Increased concerns about the provision of an assortment of ecosystem goods and services have led to a
shift in focus of the attention from timber towards a wide range of economic, social, and ecological
objectives [5,205]. They include conservation of biological diversity, maintenance of the productive
capacity of forest ecosystems, maintenance of ecosystem health, conservation and maintenance of
soil and water resources, maintenance of forest contribution to global C cycles, or maintenance and
enhancement of long-term multiple social and economic benefits [206]. Hence, forest management and
silvicultural practices need to be re-evaluated as the record of historical conditions cannot provide a
straightforward guide for future silvicultural practices [207].

Industrial plantations are managed for maximum productivity and profitability, therefore,
mono-cultures are preferred due to the uniform nature of the trees, ease of harvesting, wood quality
attributes, processing of timber, accurate yield estimates, and other industry-related reasons. Instead,
forests have been proposed to be managed as complex adaptive systems, because they are heterogeneous,
highly dynamic, and contain many biotic and abiotic elements which interact across different levels of
organizations with various feedback loops [208,209]. Forests are non-linear systems, highly sensitive to
initial conditions, which makes precise predictions about their future behavior very difficult. They also
show a hierarchical organization: elements at different levels interact to form an architecture that
characterizes the system [210]. Adaptation of forest management to deal with global change is a
dynamic process which involves system resilience and adaptability, not only from the ecological point
of view but also from that the social, political, and economic. Thus, it shifts the importance away
from exclusively direct aspects of productivity [11,211]. As future uncertainty increases, as it has
been predicted under global change, the increased emphasis on resilience and adaptation will become
more important.

A range of silvicultural systems to adapt forest management to global change have been
proposed [212,213]. One example is the systemic silviculture management, whose strategies are
based on an adaptive approach and continuous monitoring of the natural responses of each forest
stand to silvicultural interventions [214]. Another proposal is the ‘close-to-nature” approach, which
promotes diversity regarding species mixtures, age structure, spatial scales, and heterogeneous stand
structures as opposed to even-aged intensive industrial plantations [204,215]. Such silvicultural
developments are focused on diversity and heterogeneity, which are more likely to cope with new
conditions when subject to unpredictable stress or disturbance, and thus have been proposed for
dealing with global change [216]. They imply different stand level adaptation measurements regarding
forest regeneration, thinning, or harvesting. Thinning has been shown to partially mitigate the
negative impacts of more arid conditions [122,217-219]. Enrichment sowing and planting in naturally
regenerated stands, tending, or small-scale harvesting are adaptation options that can promote genetic
and structural diversity and mixed species forests [213]. Mixed forests have been proposed as an
adaptation strategy to cope with global change [209,220] because they are considered more resistant
to disturbances and extreme events [34,136,221], and may provide ecosystem goods and services
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more effectively than pure stands [222,223]. Mechanisms leading to greater multifunctionality under
higher unpredictability in environmental conditions, as well as, some management considerations,
are reviewed in the following section.

4.2. Mixed-species Forests as Adaptation Strategy

There is increasing evidence supporting that biodiversity fosters forest productivity on both
regional [224-229] and global scales [146,230,231]. This increased productivity in mixtures compared
to the weighted contribution of each species in pure stands is commonly referred as overyielding.
In a global meta-analysis, the study in [230] found that mixtures are 24% more productive than
pure forests, although a later study reported a global growth increment of 15% based on a more
conservative analysis [146]. The diversity—productivity relationship represents an asymptotic
curve [226,231], and it has been found to be highly dependent on other factors such as climate,
local conditions, stand density and evenness, stand age, functional traits involved in the mixtures,
etc. [56,102,120,128,143,150,230,232-234].

Mixing effects vary along spatial gradients of resource availability [142] and over time due to
environmental fluctuations [235] or changes in resource acquisition and species interactions with
stand development [236]. Different responses to environmental shifting of the diversity—productivity
relationships have been reported: increasing relaxation under more stressful conditions [135,145,237]
and increasing relaxation with improved site quality or climate conditions [102,139,227]. However,
such contrasting findings can be explained under the theoretical framework proposed by [128]. It is an
extension of the stress gradient hypothesis [125], and states that when species interactions improve the
availability, uptake or use efficiency of the resource that is becoming more limiting along a spatial or
temporal gradient, relaxation also tends to increase along that gradient [142,238,239]. See Figure 3 for
examples of mechanisms of relaxation regarding different resources.

Therefore, positive biodiversity effects on forest productivity arise only when relaxation processes
occur in regard to the more limiting factor, which depends on the functional traits of species included
in a mixture (see Section 3.2. for further discussion). In general, if underlying mechanisms of species
interactions result in improved availability, uptake, or water (nutrient) use efficiency, biodiversity effects
will become more positive along decreasing gradients of water (nutrients) availability. Otherwise,
forests productivity will increase as soil properties or climate improve and denser canopy can develop
if light interception is enhanced as a result of species interaction (Figure 5) [128,142]. As a case in
point, the authors in [102] found in a tree-level study that although the admixture of F. sylvatica
increased WUE of P. sylvestris, it only translated into growth improvements under mesic conditions.
Growing together with F. sylvatica increased light absorption of P. sylvestris [240] as a result of enhanced
morphological variability, crown extension, and canopy space filling [151,241]. It is likely that such
beneficial light-related mixing effects on P. sylvestris were overridden by competition for water resources
with F. sylvatica in drought-prone environments as faster depletion of soil water and higher canopy
interception have been reported in mixtures [139,219]. Such results are in agreement with other
studies [122,219,242] and they are supported by stand-level simulations at longer time scales [243].

Higher stability of mixed forests against environmental fluctuations than single-species forests
has been reported in empirical [244-246] and modeling approaches [247,248]. Ecological stability
involves several concepts, such as resilience, resistance, or persistence of ecosystem properties [249].
The diversity—stability relationship, which assess temporal stability of productivity, may arise from
different mechanisms. Asynchrony in the species response to environmental fluctuations has been
identified as a key factor in the stabilizing effect of diversity [250,251] and it is in accordance with the
insurance hypothesis [252]. Species asynchrony generates asynchronous population dynamics that
enables productivity compensation among species and promote productivity stability at community
level [251]. Competitive reduction and facilitation resulting from species interactions also contribute to
stability through the overyielding effect, because increased abundance or biomass reduced the risk of
stochastic demographic dynamics [250].
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Species’ interactions may also promote resistance against natural disturbances such as
drought [136,253,254], but see [120,139,143]; fire [255]; windstorms [256]; or insect herbivory [257].
Several mechanisms have been proposed to enhance the resistance of mixed forests. These include
complementarity on resistance traits, reduction of fuel and food resources, or diminished accessibility
to target trees [34]. Likewise, increased resilience to extreme events have been reported in more
diverse forests [136,258]. Further forest functions and services that appear to improve under increasing
diversity comprise C storage capacity [259], ecosystem health and vitality [220,221], or reduced
economic risks [260].

Species interactions
improve water/nutrient
availability
c
.0
©
>
L
Q
o
Low . High
water/ . Gradient of L water/
nutrient environmental conditions nutrient
availability availability

Figure 5. Conceptual framework for variation of mixing effects along spatial or temporal gradients of
resource availability (based on [142] and [128]). If species” interactions enhance relaxation (sensu [129])
regarding water or nutrients, positive biodiversity effects will increase along decreasing gradients of
water or nutrients availability (solid dark red line). On the contrary, light-related interactions will result
in increased forest productivity as site quality and climate improve (dashed orange line).

However, despite the important benefits described above, managing mixed forests can be more
complex than managing pure plantations because the provision of multiple services needs to be
optimized, such as productivity, sustaining biodiversity, or climate change mitigation. Managing
forests in a mixed condition requires more complicated operations, there are very few instructions for
designing and managing mixtures, and the right combination of species and site conditions need to be
achieved [261]. Indeed, the selection of the adequate species combination with different functional traits
that enhance relaxation regarding the more limiting factor of a given site appears to be more important
than increasing only the number of species in the stand [34,129,243,258]. Spatial scale is a further issue
to be considered when planning mixed forest management. Positive biodiversity effects have been
associated with local neighborhood species interactions rather than processes acting at stand level [229].
Hence, mixing configurations with close inter-specific intermingling can maximize benefits of species
mixing, which has been supported in field studies [262] and modeling approaches [263], instead of
mixing pure patches at the stand or landscape level. Moreover, planting schemes and/or thinning
operations can control stand density in managed mixed stands. The degree and intensity of species
interactions is modulated by stand density, so that at low densities interactions may not be strong
enough to impact productivity, while at high densities competition can outweigh relaxation [128,150].
Designing management plans for mixtures may become even more complicated due to the lack of
long-term field studies covering the whole lifespan of forest stands, the spatial and temporal changes
in species interactions, and the uncertainty in changing environmental conditions. As a consequence,
forest growth models represent a useful means of understanding and predicting forest functioning and
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they are a valuable decision-support tool in forest management [264]. Hybrid models, which combine
ecological processes and empirical data, are able to simulate the effect of species interactions of novel
species combinations and proportions under novel environmental conditions, disturbances regimes,
and/or management interventions [265].

5. Conclusions

Human-induced factors have led to the alteration of global biogeochemical cycles and climate.
Increasing uncertainty is predicted regarding future environmental conditions with significant impacts
on forests functioning and the range of services provided by forests. A multidisciplinary approach
is needed to understand the complex effects of global change drivers on different levels of forests’
organization. Studies downscaled to small levels of organization (i.e., organs, individuals) are important
to elucidate mechanisms underlying community or landscape level patterns [129].

Nutritional status, C metabolism, and water balance of trees are affected by global change, so forest
functions, such as productivity or drought resistance, will be likely modified. It is noteworthy that
such tree and stand response is modulated by interactions among species. In general, enhanced
performance of more diverse forests has been reported, although it depends on species combination,
rather than on the number of species. Environmental conditions also impact species” interactions and
the concomitant effect of rising CO, concentration, increasing drought frequency and intensity, and
high N deposition rates, which alter population and community dynamics. Complex interactions
among global change impacts have been also described on ecosystem processes that control the transfer
of matter and cycling of nutrients. Thus, highlighting the importance of multi-factor studies using
both empirical and modeling approaches.

Therefore, forest management must adapt to hardly predictable future environmental conditions,
and so the emphasis shifts from productivity towards forests” resistance and resilience. Encouragement
of mixed forests, which enhance functional diversity and structural heterogeneity, has been proposed as
an adaptation strategy to cope with global change. It is supported by the positive relationships found
between diversity and productivity, stability, resistance, or resilience of forests. Nonetheless, there are
important issues to consider when designing management plans of mixed forests, such species identity,
mixing patterns, or stand density.
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