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Abstract: To estimate the responses of forest ecosystems, most relationships in biological systems
are described by allometric relationships, the parameters of which are determined based on field
measurements. The use of existing observed data errors may occur during the scaling of fine-scale
relationships to describe ecosystem properties at a larger ecosystem scale. Here, we analyzed the
scaling error in the estimation of forest ecosystem biomass based on the measurement of plots (biomass
or volume per hectare) using an improved allometric equation with a scaling error compensator. The
efficiency of the compensator on reducing the scaling error was tested by simulating the forest stand
populations using pseudo-observation. Our experiments indicate that, on average, approximately
94.8% of the scaling error can be reduced, and for a case study, an overestimation of 3.6% can be
removed in practice from a large-scale estimation for the biomass of Pinus yunnanensis Franch.

Keywords: aggregation error; allometric equation; error compensation; scaling error; variable
allometric ratio

1. Introduction

Most relationships in biological systems are nonlinear between two organs, subsystems, and
groups [1]. These relationships are usually described as allometric [2–4] and their parameters can
be determined by regression analysis based on observations [5,6]. That is, our ecological knowledge
mostly comes from small, easily measured sample plots [7,8]. These plot observations and estimates
can be extrapolated to large-scale estimates [9] and global changes [10,11]. The technology of upscaling
using allometric relationships was developed gradually. Originally, the allometry theory was used to
study individual living bodies, e.g., single tree, and the relative growth of their different organs [2].
This theory has been widely applied in various fields, from biology to sociology [12,13]. In the research
field of forest ecosystems, allometric equations were further extended for depicting the relationship
between different tree parts in order to address various issues [5,14,15]. Since the 1980s researchers have
compiled several large databases across the world [16–18] according to field measurements of forest
biomass which had been converted from tree level to plot level by measurers. These hectare-based
data provide the opportunity to test allometric relationships at both the plot-scale and larger scales.
Using this methodology of model testing, the analysis in our study was carried out based on plot
measurements (biomass or volume per hectare) rather than individual trees—that is, to extrapolate
biomass from plot-scale to large-scale.
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When describing the properties of a large-scale ecosystem using existing fine-scale knowledge,
the scaling error occurs during the transforming processing [19–21] (also see Appendix A). This causes
prediction bias on large-scales [20] because of the method of weighted mean [19,22]. Specifically, during
the scaling of ecological properties from field plots up to a region, the variability among the plots can be
aggregated [23] by using a nonlinear equation that only reflects the behavior of the plots [23–25]. The
scaling errors usually include two types that respectively correspond to two stages in forest biomass
estimation. The first stage is volume prediction, which is carried out based on large sampling and
hierarchical data structure in national forest inventories (NFI) [26], in which the sampling error would
exist [27]. Following it, the second stage converts forest biomass from volume information (m3 ha−1)
released in NFI reports. As a simple conversion, the biomass expansion factor (BEF) and biomass
conversion expansion factor (BCEF) are generally used to estimate forest biomass [28]. For more
accurate estimations, the volume-based biomass equations were also frequently employed in past
decades [29–34]. This requires removing the scaling error at the regional level. Our study focuses on
the second stage and second scaling error. This stage is implemented especially for those regions or
countries that have NFI without biomass data. In this stage, the scaling error is not involved with trees
because upscaling is only based on the means per unit area.

According to the computational principle, the form of the allometric equation affects the magnitude
of scaling error [23]. Zhou et al. [25] have reported a quantitative analysis to reduce scaling error caused
by power-law equations. However, besides the general power-law equation, an improved allometric
equation [35] has not been addressed. The improved equation incorporates a variable allometric ratio
(VAR) instead of a constant ratio. It is more complex in form than conventional power-law equations.
Because it can explain statistically significant variation and give well-fitting curves according to field
measurements [35,36] for some special species [37], this equation increases the accuracy of biomass
estimates, particularly for the species (Pinus yunnanensis Franch.) addressed in our study. Our analysis
adopted the improved allometric equation and presented a quantitative approach on the issues of
scaling error and error compensation. The presented method provides guidance for statistical and
mechanistic analyses of errors for scaling forest biomass from fine-scale to large-scales.

Our objectives are to test the margin of scaling error, to derive a user-friendly compensator, and to
examine its ability in correcting scaling error in the application of the improved allometric equation for
large-scale estimation of forest ecosystem biomass. We only focus on correcting the scaling error itself
and leave out other types of errors in the biomass estimation.

2. Methods

2.1. Derivation

Ruark et al. [35] presented an improved allometric VAR equation y = rxke−ux where y denotes total
biomass density (t ha−1), x is stand stocking volume (m3 ha−1), and r, k, and u are parameters greater
than zero. The error compensator for this equation is derived by expanding the scaling error expression
(error = Y1 − Y2, see Appendix A) as Taylor series, and utilizing the central moment method to solve
the items in Taylor series. Eventually the difference of scaling error before and after compensation
is proved by an analytical expression. This expression includes two parameters that are used in the
allometric equation. The variables in the expression reflect the feature of the estimated forest ecosystem,
i.e., nonlinearity of volume-to-biomass relationship.

2.2. Simulation

To test the algorithm and efficiency of the error compensator, we construct a pseudo population,
and compare our biomass estimate with the true value of the population. The error compensation is
simulated by scaling tree biomass from stand level up to a large region consisting of 100 stands with
different stages of development (see Supporting Information). The area and volume of the 100 stands
are produced by pseudo-random number generator under uniform probability distribution. The area
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ranges from 1.0 to 10.0 ha and stand stocking volume ranges from 15 to 300 (m3 ha−1). Thus, the true
value of the total amount of regional forest biomass is recognized by accumulating all stand biomasses.
Based on the pseudo population, numerous trials provide a uniform distribution that gives how much
error can be reduced and information on how many times the convergence of compensated percentage
will be reached.

2.3. Data for Case Study

A case study of forest biomass estimation is carried out to test the difference that could come from
scaling error at the provincial scale. We estimated the biomass of Pinus yunnanensis in Yunnan province
of China. This province is located in the southwest border of China, between latitude 21◦8′32”–29◦15′8”
N and longitude 97◦31′39”–106◦11′47” E. The total forested area and stem volume for the species is
2.92 million ha and 222.43 million m3 in the province [38]. The data of area and volume were classified
as different age groups: young, middle, near-mature, mature, and over-mature. The range of mean
stocking volume was estimated according to a literature review [38–40]. The variance of stocking
volume is computed as the between-group variance (refer to 3.3. Comparison), yet the within-group
variance could not be computed because the detailed data are not released to public in China. The field
measurements used in the case study were collected from a published database [18]. This database
compiled 34 plot measurements reported by 24 studies that carried out field studies in different years.
Due to the costly destructive measurement of forest biomass, each of the studies only addressed one or
a few plot works. All measurements have been scaled from tree-level to plot-level and hectare-based
values by data measurers. All biomass values are measured by oven-drying different parts of tree
samples [18].

3. Results and Discussions

3.1. Error Compensator

All symbols and their descriptions refer to Table 1. The improved allometric equation g(x) = xke−ux

can be approximated at x = µ as

g(x) ≈

2∑
q=0

[(1/q!) g(q)
(µ)(x− µ)

q], (1)

by using a 2nd-order Taylor series expansion and omitting the remainder term. Taking expectations on
both sides, then we see that

µg ≈ E{
2∑

q=0

[(1/q!) g(q)
(µ)(x− µ)

q]}, (2)

After expanding the right side of Equation (2), and then substituting g(x) = xk e−ux into the
expansion, it gives the following expression:

µg ≈ µ
ke−uµ + 0.5µk - 2 e−uµ(k2

− 2kuµ − k + u2µ2)σ2, (3)

By substituting µg into error = Ar (µg − µk e−uµ), it leads to a simple form (also refer to Appendix A)

error ≈ 0.5Arµk − 2e−uµ(k2
− k − 2kuµ + u2µ2)σ2, (4)

for any probability distribution. Then we have the simple form of the error per unit area as:

Φ(µ, σ2) = 0.5rµk − 2e−uµ (k2
− k − 2kuµ + u2µ2)σ2, (5)
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This is the compensator for correcting the scaling error. Thus, the ratio |Φ(µ, σ2)|/(rµ
ke−uµ) of

regional biomass density becomes:

η(µ, σ2) = 0.5 µ−2(k2
− k − 2kuµ + u2µ2)σ2, (6)

Table 1. Symbols and their descriptions.

Symbol Description Unit

A Total forested area in a region, A =
∑

ai. ha
ai The area of ith stand. ha

Cs
j

The combination. Cs
j = j!/[s!(j − s)!]. j represents the total number of elements,

and s is the number of elements being chosen at a time.
-

Dm The maximum variance, which is a function of expectation. m6 ha−2

E The mathematical expectation operator. -
g(x) The function of random variable x, g(x) = xke−ux. -

i Stand number, i = 1, 2, . . . , n. -
k Parameter, 0 < k ≤ 1. -
n The number of stands. -
q Derivative order, q is set up to 4 in this study. -
r Parameter, r > 0. -
u Parameter, u > 0. m−3 ha

wi Weight or the probability of occurrence of ith stand, wi = ai/A. -
x Stocking volume of a fine-scale area, e.g., a stand. m3 ha−1

xi Stand stocking volume of ith stand. m3 ha−1

xmax The maximum possible value of x in the forest inventory. m3 ha−1

xmin The minimum possible value of x in the forest inventory. m3 ha−1

Y1 Regional total biomass ideally supposed to accumulate from all stands. Mg
Y2 Regional total biomass calculated from A and µ, Y2 = Arµke−ux. Mg
yi Stand biomass density of ith stand or sample plot, yi = r xi

k e−ux. Mg ha−1

z Intermediate parameter (0~1), the percentage of the samples at the point of xmax
to total samples. -

Φ(µ, σ2) The compensator of scaling-up error. Mg ha−1

η(µ, σ2) The compensation rate; η(µ, σ2) = Φ(µ, σ2)/(Y2/A) = Φ(µ, σ2)/(rµ
ke−ux). -

µ (xs) The expectation of xs, µ (xs) = E(xs), s = 1, 2. -
µ The expectation of x. It denotes regional stocking volume. µ =

∑
wixi = E(x). m3 ha−1

µg The expectation of g(x), µg = E[g(x)]. -

νs
sth-order central moment, νs = E[(x − µ)s]=

∑
Cs

j µ(xj) (−µ)s−j, sigma from j = 0 to
s, s = 1, 2.

-

σ2 Variance of random variable x. m6 ha−2

Rewrite it, we have:

η(µ, σ2) = 0.5µ−2k(k − 1)σ2 + u(0.5u − kµ−1)σ2, (7)

where the domains are xmin ≤ µ ≤ xmax, 0 ≤ σ2
≤ Dm, and 0.8 ≤ k ≤ 1 (in this study). Notes: (1) Dm is

derived by assuming that xi has the largest variance for a given expectation if and only if xi equals
either xmin or xmax; (2) µ (x

s
) and νs are used for calculating µg.

For a distribution between xmin and xmax, the definition of variance implies that a variance will be
largest for a given expectation while all samples (xi) are either xmin or xmax. The maximum variance
can be expressed as

Dm = −(µ − xmin)2 + (µ − xmin) (xmax − xmin), (8)

where µ represents regional stocking volume. This is for any probability distribution where xmin and
xmax are known. Here µ and Dm define a parabola going downwards in the µ − σ2 plane. Dm becomes
a boundary of the curved surface η(µ, σ2) (Figure 1). The derivation of Dm is detailed in Appendix A.
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Figure 1. The percentage of scaling error compensated for Pinus yunnanensis Franch. η is the error
compensation percentage given by Equation (7), in which this example uses parameters r = 2.7468,
k = 0.7623 and, u = 0.000536. µ is the weighted mean of xi (stand stocking volume), and is also the
mean regional volume. It is assumed to range from xmin (10 m3 ha−1) to xmax (250 m3 ha−1). σ2 is the
variance of xi.

3.2. Efficiency of Reducing the Error

The efficiency and ability of the compensator to reduce scaling error is tested by 5000 trials. The
mean of total biomass amount (true value) and the mean of modelled biomass amounts in the pseudo
region are 44.7 and 46.3 (t), respectively (Figure 2a). It shows an approximate 3.5% overestimate due
to the scaling error. After compensating, around 94.8% of the scaling error is reduced on average.
The average level illustrates that compensation rate tends to become stable with the increase of trials.
When trials approach 4000 times, Figure 2b indicates a convergence. This implies that most of the
scaling error should be removed using the compensator.

The parameters in Equation (7) can explain how the scaling error is removed for the VAR equation
(y = rxk e−ux). Equation (7) contains two terms. The first is the same as the compensation rate for the
typical allometric equation y = rxk, and the second is an addition for applying to the VAR equation.
Both k and u affect the extent of error compensation. Because the VAR equation has a larger curvature
than the typical allometric equation [35], the absolute value of η(µ, σ2) generally increases after adding

the second term u(0.5u − kµ−1)σ2 to the first term in Equation (7). It means that the scaling error
is larger using VAR than typical allometric equation. In extraordinary instances for some case, the
volume-to-biomass relationship was considered as linear [33]. This makes u and k become zero and 1.0
respectively, and no scaling error will be caused in large-scale biomass estimation.



Forests 2019, 10, 602 6 of 12

Forests 2019, 10, x FOR PEER REVIEW 6 of 11 

 

become zero and 1.0 respectively, and no scaling error will be caused in large-scale biomass 

estimation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The efficiency of scaling error compensator based on statistic simulation. (a) Comparison 

between true value and modelled value of total amount of forest biomass in the pseudo region 

consisting of 100 stands (n = 100). (b) Percentage of compensated scaling error depending on trials. It 

becomes convergent after trials approach 4000 times. Note: the curve indicates the compensated 

scaling error in percentage, which is averaged from the trials. 

3.3. Comparison 

The results of the case study exhibit the percentage of scaling error that may occur from a 

biomass estimation of provincial scale forest ecosystem. The volume-to-biomass equation is 

parameterized using field measured data (Figure 3) for this estimation. After compensating scaling 

error, mean biomass density declines by 3.6% and becomes 69.1 (Mg ha−1). This can result in a total 

forest biomass of 201.8 (106 Mg) for this species in the province (Table 2). The amount of reduced 

scaling error is 7.7 (106 Mg) using  =1721 m6 ha−2. The fine dotted line (Figure 3) denotes the curve 

from the power-law equation. It cannot properly fit the measurements especially when the volume 

exceeds 200 m3 ha−1. 

Table 2. A case study of biomass estimation for Pinus yunnanensis at the provincial scale. 

  Forest Age Groups 
Sum or Ave. 

 Unit Young Middle Near-Mature Mature Over-Mature 

Total forested area A (data) 106 ha 1.051 0.955 0.480 0.341 0.096 2.92 

Total volume V (data) 106 m3 41.18 68.62 45.62 44.56 22.45 222.4 

Area proportion (p) - 0.360 0.327 0.164 0.117 0.033 1.0 

Mean stocking volume x and   m3 ha−1 39.2 71.9 95.1 130.8 233.8 76.1 

p(x − 76.1)2 for calculating * m6 ha−2 490.3 5.9 59.0 348.7 817.3 1721 

   

0.0

0.5

1.0

44 45 46 47

Total biomass amount in pseudo region (10
3
 Mg)

P
ro

b
a
b
ili

ty

Accumulated from all stands Modelled by regional mean

(a)

92

94

96

0 1000 2000 3000 4000 5000

Trials

C
o
m

p
e
n
s
a
te

d

s
c
a
lin

g
 e

rr
o
r 
(%

)

(b)

Figure 2. The efficiency of scaling error compensator based on statistic simulation. (a) Comparison
between true value and modelled value of total amount of forest biomass in the pseudo region consisting
of 100 stands (n = 100). (b) Percentage of compensated scaling error depending on trials. It becomes
convergent after trials approach 4000 times. Note: the curve indicates the compensated scaling error in
percentage, which is averaged from the trials.

3.3. Comparison

The results of the case study exhibit the percentage of scaling error that may occur from a biomass
estimation of provincial scale forest ecosystem. The volume-to-biomass equation is parameterized
using field measured data (Figure 3) for this estimation. After compensating scaling error, mean
biomass density declines by 3.6% and becomes 69.1 (Mg ha−1). This can result in a total forest biomass
of 201.8 (106 Mg) for this species in the province (Table 2). The amount of reduced scaling error is 7.7
(106 Mg) using σ2 = 1721 m6 ha−2. The fine dotted line (Figure 3) denotes the curve from the power-law
equation. It cannot properly fit the measurements especially when the volume exceeds 200 m3 ha−1.
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Figure 3. Stand stocking volume versus stand biomass density for parameterizing the
volume-to-biomass equation y = rxk e−ux. The parameters estimated by nonlinear regression were
r = 2.7468, k = 0.7623 and u = 0.000536 (m−3 ha) for Pinus yunnanensis. The fine dotted line is a
conventional power-law curve (y = rxk, r = 2.6526, k = 0.7742, R2 = 0.7428). Under the condition of the
Jensen inequality 0 ≤ x ≤ (k +

√
k)/u, the range of x must be 0 ≤ x ≤ 3051 (m−3 ha). In practice, x is not

greater than 500 (m−3 ha). The condition is met.

Table 2. A case study of biomass estimation for Pinus yunnanensis at the provincial scale.

Forest Age Groups
Sum or Ave.

Unit Young Middle Near-Mature Mature Over-Mature

Total forested area A (data) 106 ha 1.051 0.955 0.480 0.341 0.096 2.92
Total volume V (data) 106 m3 41.18 68.62 45.62 44.56 22.45 222.4
Area proportion (p) - 0.360 0.327 0.164 0.117 0.033 1.0

Mean stocking volume x and µ m3 ha−1 39.2 71.9 95.1 130.8 233.8 76.1
p(x − 76.1)2 for calculating * m6 ha−2 490.3 5.9 59.0 348.7 817.3 1721

Mean biomass Y † Mg ha−1 71.7
Total biomass (71.7 × A) 106 Mg 209.5

Corrected Y Mg ha−1 69.1
Removable scaling error ‡ % 3.6
Total biomass (69.1 × A) 106 Mg 201.8

* Variance is calculated based on stocking volume of each age group (data of A and V refer to the reference [38]).
† Biomass density is calculated using y = rxkeux; parameters refer to the caption of Figure 3. ‡ Scaling error is
calculated based on Equation (7).

The 3.6% overestimate is a remarkable percentage in this biomass estimation for the 2.92 (106 ha)
forested area of Pinus yunnanensis. This error percentage is not necessarily for all species [22]. Pinus
yunnanensis is a frigidly temperate coniferous forest species distributing from 23◦1′ to 28◦23′ N and
97◦46′ to 105◦54′ E in the province. It sustains drought and poor soils, widely adapts to extreme natural
environmental conditions [41], and experiences fast growth on branch and leaves in middle-age [42,43].
This may result in its volume-to-biomass curve showing higher curvature than other species [23]. We
found that the improved allometric VAR equation y = rxke−ux is more feasible than the conventional
power-law equation for Pinus yunnanensis. This finding implies that the stand condition is decisive for
the curvature of the compensator in Equations (5) and (7), including parameters k and u. The values of
parameters k (0.7623) and u (0.000536) are lower than the values for many species. This slowed growth
under the poor site conditions is one of the possible reasons that the scaling error was reduced largely
in the case study.

3.4. Uncertainty Analysis

As Equation 7 expressed, the estimate of variance σ2 is a key variable that affects the bias of the
compensator. To evaluate the variance and the detailed situation is difficult for large-scale forests [38].
If the variance is unknown, it is necessary to assume a distribution of the stocking volume, for instance,
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uniform distribution. This would decrease the accuracy of compensation due to the bias of variance
estimate. In the worst case, the variance bias could be Dm − σ2, which can be derived as follows. We
utilize σ2 = (xmax − xmin)2/12 for calculating the variance of uniform distribution, and rewrite Equation
(8) as Dm = (µ − xmin)(xmax − µ). The relative error of variance becomes

(Dm − σ
2)/Dm = (2/3)(µ − xmin)/(xmax − µ), (9)

As we have µ = (xmin + xmax)/2 for the uniform distribution, it leads to (Dm − σ2)/Dm = 2/3. This
implies that around 66% scaling error may be under-compensated by assuming a uniform distribution.

However, the worst condition is an extremity, in which the maximum variance Dm is only for the
distribution having all stands located at either xmin or xmax. This stand structure does not exist in real
forests. Practically, the distribution and forest structure are complex on tree height, stocking volume,
and age group [39,44,45]. In our case study, we found that the distribution of stocking volume was
close to an exponential curve on the area proportion (Table 2). Young stands have the largest area for
Pinus yunnanensis [38]. Thus, the practical variance (σ2 = 1721) is less than the variance of uniform
distribution (σ2 = 3158), which results in an estimate of 195.7 × 106 Mg. Comparing with the correct
estimate (201.9 × 106 Mg) of total biomass on true distribution, an over-compensation could occur.
This implies that the uniform distribution may not be a proper assumption for some regions in which
large afforestation and reforestation have been promoted for long term.

4. Conclusions

A large-scale analysis of forest ecosystems is usually based on fine-scale allometric relationships
or equations. Depending on the nonlinear strength of the equations, a scaling (or aggregation) error
may result, where regional applications using the stand level volume-to-biomass relationship need to
conduct error compensation to detect and remove the possible scaling error.

Our simulation indicates that, on average, approximately 94.8% of the scaling error can be
reduced. We have shown that significant overestimates of biomass (~3.6%) can be removed from a
provincial estimate for Pinus yunnanensis. However, various allometric equations will need different
error compensators. We suggest assessing the effects of scaling errors on large-scale estimations of
spatial and temporal distribution of forest biomass and carbon.
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Appendix A.

Appendix A.1. Problem Background of Scaling Error

(a) Example

Supposition 1: A region includes two stands. The total area and volume are known for every
stand (2 ha, 200 m3; 3 ha, 100 m3). If an allometric function is y = 2.7x0.7 e−0.0005x where x denotes
stocking volume, we calculate the regional biomass as follows:

Y1 = 2[2.7(200/2)0.7e−0.0005(200/2)] + 3[2.7(100/3)0.7e−0.0005(100/3)] = 221.8 (Mg ha−1), (A1)

Supposition 2: Only total area and volume are known for the region (5 ha, 300 m3). The regional
biomass may be calculated as

Y2 = 5[2.7(300/5)0.7e−0.0005(300/5)] = 230.1 (Mg ha−1), (A2)

This is an erroneous result, which shows an over-estimate by disregarding scaling error.

(b) Analysis

The improved allometric equation was presented as y = rxk e−ux [35] where r, k, and u are
non-negative parameters. According to the actual situation, let x > 0 and k < 1.0. To apply the classical
Jensen inequality for deriving scaling error, the function y must be a concave function. If letting g(x) =

xke−ux and y = rg(x), the second derivative of g(x) should be equal to or less than zero, i.e., u2x2
− 2kux –

k + k2
≤ 0. Then we can obtain the condition to apply the Jensen inequality: 0 ≤ x ≤ (k +

√
k)/u.

The total biomass can be calculated through two different ways (Y1 and Y2):

Y1 =
∑

aiyi =
∑

ai(rxi
k e−uxi), (A3)

Y2 = Arµk e−ux, (A4)

where ai represents area of ith stand, and xi denotes total stand stocking volume (both variables are
unknown); A is region area including numerous stands, and µ represents mean total stocking volume
of an entire region. A and µ are known variables that can be obtained easily from the forested area and
total volume provided by the inventories.

For computing, the first way Y1 is precise and correct without scaling error since Y1 is added up
from all stands. However, this expression is not applicable since ai and xi are unknown for each single
stand in a large region. Therefore, the second way Y2 becomes the only choice to convert large-scale
biomass directly from the mean stocking volume (m3 ha−1). We can rewrite Y1 and Y2 as follows:

Y1 =
∑

aiyi =
∑

[A(
ai
A
)yi] =

∑
[Awi (rxi

ke−uxi)] = Ar
∑

[wi(xi
ke−uxi)], (A5)

Y2 = Arµk e−ux = Ar(
∑

wixi)k e−u
∑

wixi, (A6)

where the random variable x is discrete with wi. According to convex inequalities, e.g., weighted
Jensen inequality, we have

∑
f(wixi) ≤ f(

∑
wixi) and Y1 ≤ Y2, i.e., an error (error = Y1 − Y2) exist. this

error is caused by scaling forest biomass from stand-scale up to large-scale. To solve the error, let µg =∑
[wi(xi

ke−uxi)], it leads to error = Ar (µg − µk e−uµ). Hence the issue becomes to find the unknown µg

using known µ and σ2. The step-by-step process is detailed in the results section.
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Appendix A.2. Derivation of Dm

Assuming n samples move from xmin to xmax one by one, the samples that are present at the point
of xmin and xmax at any time are n − nz and nz respectively. Further, z is the percentage of the samples
that have reached the point of xmax. Thus, we have

µ = [(n − nz)xmin + nz xmax]/n, (A7)

µ(x2) = [(n − nz)(xmin)2 + nz(xmax)2]/n, (A8)

Simplifying them leads to:
µ = (1 − z)xmin + z xmax, (A9)

µ(x2) = (1 − z)(xmin)2 + z(xmax)2, (A10)

Then we convert Equations (A9)–(A11):

z = (µ − xmin)/(xmax − xmin), (A11)

Substitute Equations (A10) and (A11) into the variance formula σ2 = µ(x2) − µ
2, we have:

σ2 = −(µ − xmin)2 + (µ − xmin)(xmax − xmin), (A12)

Thus, the maximum variance is expressed as:

Dm = −(µ − xmin)2 + (µ − xmin)(xmax − xmin), (A13)

where Dm is the boundary of variance. represents the regional stocking volume. This is for any
distribution where xmin and xmax are known.
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