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Abstract: Urban forests are an important component of the urban ecosystem. Urban forest types
are a key piece of information required for monitoring the condition of an urban ecosystem. In this
study, we propose an urban forest type discrimination method based on linear spectral mixture
analysis (LSMA) and a support vector machine (SVM) in the case study of Xuzhou, east China.
From 10-m Sentinel-2A imagery data, three different vegetation endmembers, namely broadleaved
forest, coniferous forest, and low vegetation, and their abundances were extracted through LSMA.
Using a combination of image spectra, topography, texture, and vegetation abundances, four SVM
classification models were performed and compared to investigate the impact of these features
on classification accuracy. With a particular interest in the role that vegetation abundances play
in classification, we also compared SVM and other classifiers, i.e., random forest (RF), artificial
neural network (ANN), and quick unbiased efficient statistical tree (QUEST). Results indicate that
(1) the LSMA method can derive accurate vegetation abundances from Sentinel-2A image data, and the
root-mean-square error (RMSE) was 0.019; (2) the classification accuracies of the four SVM models
were improved after adding topographic features, textural features, and vegetation abundances one
after the other; (3) the SVM produced higher classification accuracies than the other three classifiers
when identical classification features were used; and (4) vegetation endmember abundances improved
classification accuracy regardless of which classifier was used. It is concluded that Sentinel-2A image
data has a strong capability to discriminate urban forest types in spectrally heterogeneous urban
areas, and that vegetation abundances derived from LSMA can enhance such discrimination.

Keywords: urban forest; Sentinel-2A; LSMA; SVM

1. Introduction

Urban forests are important carriers of urban ecosystems [1,2], which can improve the urban
microclimate, maintain the surface water–heat exchange balance [3,4], mitigate rainstorm runoff [5,6],
and provide a comfortable habitat for urban residents [7]. Discriminating urban forest types has
fundamental implications for planning, management, and protection of urban forests, as well as for
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forestry studies [8]. It also provides a basis for the estimation of above-ground biomass of urban
vegetation [9,10]. Since it was first introduced by Jorgensen (1986) [11], urban forestry received
increasing attention from scholars. However, the scope of urban forests was defined from a variety of
research perspectives [12–14]. An urban forest can refer to all the trees in an urban area, including forest
parks, and public and private woodlands [15], while Miller (1996) [16] and other researchers [17,18]
consider urban forests as the sum of all the vegetation in the city, not only trees, but also park vegetation
and private vegetation. In this study, we adopt the broader definition given by Miller—who also uses
urban vegetation and urban forests interchangeably—and refer to an urban forest as a sum of trees in
groups or individual trees, shrubs, and grassland within an urban area. Previous studies on urban
forests focused on their release of oxygen and carbon [19], cooling and humidification effects [20],
and landscape patterns [21,22]. However, discrimination of urban forest types was little studied despite
being considered essential for urban forestry.

Field-based inventorying is the traditional and the most accurate method for vegetation survey
and monitoring [23], but its use is restricted because it is time-consuming, expensive, and slow in
updating [22]. As such, a quick and reliable approach is needed, which now can be addressed by
applying remote-sensing (RS) technology. RS provides multi-source earth observation data at varying
spatial resolutions from repeated visits, which allows forests to be surveyed and mapped rapidly and
dynamically [24]. Based on the source of data used, an RS classification-based discrimination approach
can be roughly divided into two categories [8]. One involves urban forest vegetation classification based
on optical remote-sensing data, including moderate-resolution Landsat TM (Thematic Mapper)/ETM+

(Enhanced Thematic Mapper Plus) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
imagery [25–27], and (very) high-resolution IKONOS, Worldview, airborne, and UAV (Unmanned
Aerial Vehicle) imagery [28–31]; the other involves making use of radar data (including spaceborne
and airborne radar) [32–35]. Some researchers also worked on an integrated use of these multi-source
remote-sensing data for discriminating urban forest types [36]. Dalponte et al. (2012) [8] combined
very-high-resolution multispectral/hyperspectral imagery and LiDAR (Light Detection and Ranging)
data to classify forest vegetation in the Southern Alps, and distinguished five forest types. Liu et al.
(2017) [37] identified 15 urban vegetation species types based on an aeronautical hyperspectral and
airborne LiDAR point cloud. These studies used either free relatively coarse-resolution image data or
purchased high-resolution image data, but none took advantage of the latest free multispectral image
data with increased spatial resolution, such as Sentinel-2A.

It is noted that, because urban forests are often disturbed by human activity and, in a spectrally
heterogeneous urban context, do not spread continuously like natural forests, it is challenging for
traditional supervised classification methods to acquire highly separable training samples and get
a satisfying classification accuracy of urban forest type discrimination [38]. Linear spectral mixture
analysis (LSMA)—which is frequently used for estimating spectral endmember abundances from
hyper- or multispectral images—offers an alternative to obtaining training samples for classifying
urban vegetation [39,40]. In addition, machine learning algorithms such as support vector machines
(SVM) and random forests (RF) can extract effective features from large feature datasets and produce
higher classification accuracy than ordinary maximum-likelihood and K-means classifiers [41,42].
These promise a possible improvement in urban forest mapping and discrimination.

In order to contribute to the general objective of estimating the above-ground biomass in urban
areas, this study assesses the possibility of mapping urban forest types from a single Sentinel-2A
image. We, therefore, propose in this study an innovative method by combing linear spectral mixture
analysis (LSMA) and an SVM machine learning algorithm in Xuzhou, east China. Specific objectives
were (1) to investigate the capability of Sentinel-2A data and LSMA for extracting urban forest
vegetation endmembers; (2) to find out the optimal feature combination for mapping urban forests;
and (3) to identify whether vegetation abundances are similarly effective in improving classification
accuracy when different machine learning classifiers are performed.
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2. Study Area and Data

2.1. Study Area

Bordering the provinces of Shandong, Henan, and Anhui in a counterclockwise direction, Xuzhou
(33◦43′–34◦58′ north (N), 116◦22′–118◦40′ east (E)) is located in the northwestern part of Jiangsu
province with an average altitude below 400 m (Figure 1). It has a warm temperate semi-humid
monsoon climate and a frost-free period of 200–220 days, with an average annual temperature of
13–16 ◦C and an average annual precipitation of 800–900 mm [43]. In 2017, the forest coverage area
of Xuzhou was 336,300 ha—a forest coverage rate as high as 30.12%, which ranked Xuzhou first in
Jiangsu. It is one of the “National Forest Cities” (awarded in 2012) and the “National Ecological Garden
Cities” (awarded in 2016).
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Figure 1. The location of the study area: (a–c) field photos illustrating three different urban forest types;
(d) sites for field investigation (yellow for low vegetation, green for broadleaved forest, and purple
for coniferous forest), the border of the study area, and a true-color composition of the Sentinel-2A
image used for classification. Labels 1O– 4O refer to the hills of Zhushan, Yunlong, Zifang, and Jiuli,
respectively; (e) study area in Xuzhou.

The study area is within the Sanhuan Road of Xuzhou, covering an area of approximately
108.51 km2. The northern, eastern, and southern parts of the study area are hilly lands (labeled 1O– 4O
in Figure 1d), dominantly covered by Platycladus orientalis (L.) Franco, whereas the central part is for
commercial and residential purposes. Based on our prior knowledge coupled with field observations,
urban forests in the study area were concentrated and tended to be fragmented. Different vegetation
types exist mostly independent of each other. Therefore, we divided the land cover of the study area
into five types: broadleaved forest, coniferous forest, low vegetation (including shrubs, grasslands,
and suburban farmlands), water bodies, and non-vegetation area (excluding water bodies).

2.2. Data

2.2.1. Satellite Data

Data used for mapping and discriminating urban forest types involved a single Sentinel-2A
image acquired on 24 July 2017 with little cloud contamination (1.74%) and downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home). The Sentinel-2 satellite was
launched by the European Space Agency (ESA) in mid-2015 aimed at earth observation. It travels in
a sun-synchronous orbit with an orbit height of 786 km and an inclination angle of 98.5◦, providing
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image data of 290 km in width [44]. The Sentinel-2A satellite carries a multispectral instrument (MSI),
providing a total of 13 bands from visible light to shortwave infrared (four bands at 10 m, six bands at
20 m, and three bands at 60 m; for more details about Sentinel-2A bands, please refer to the overview
introduction of Sentienl-2 MSI images on the website of the ESA [45]).

Compared with Landsat and SPOT (Systeme Probatoire d’Observation de la Terre) data, Sentinel-2
images have more advantages in discriminating urban forest types due to their increased multispectral
bands, increased spatial resolution, and shorter revisit period [46,47]. They are characterized by
three unique “vegetation red-edge” bands (bands 5, 6, and 7), which are valuable for remote sensing
of vegetation. Although it was widely used in the monitoring of fires [48], vegetation biophysical
estimation [49,50], and surface feature extraction analysis [51], the potential of Sentinel-2 data to
discriminate urban forest types remains to be fully acknowledged.

The product level of the Sentinel-2A image used in this study was Level-1C, which means that
geometric correction, radiation calibration, and top of atmosphere (TOA) correction were already
applied [52].

Preprocessing of Sentinel-2A Level-1C products includes atmospheric correction, resampling,
and clipping. The atmospheric correction was conducted in the Sen2cor plugin, a Python-based
atmospheric correction tool used in SNAP® (Sentinel Application Platform), which is an open-source
application developed by ESA for processing Sentinel-1 to -3 data and is freely available from ESA’s
website. Through atmospheric correction, the Level-1C data were converted into Level-2A data,
such as bottom of atmosphere (BOA), aerosol optical thickness images, and water vapor images [52].
In our study, 10-m bands and 20-m bands were independently corrected before the 20-m bands were
resampled to 10-m bands using the nearest neighbor method in SNAP. In total, ten bands were used,
except for bands 1, 9, and 10, because they are not relevant to vegetation. Clipping (i.e., extracting
the study area from the image) and other data processing (e.g., layer stacking and spectral mixture
analysis) were done in ENVI® (remote sensing software by US-based Harris Geospatial Solutions. Inc.,
Broomfield, Colorado, CO, USA).

2.2.2. Fieldwork

In order to identify forest types on the field and collect validation data for image classification
accuracy assessment, we conducted fieldwork from October to December 2017. Despite being three
months later than the acquisition data of the Sentinel-2A image, this is considered acceptable for a
study area where vegetation does not change much over three months.

A total of 192 sites for fieldwork were randomly selected on the corrected Sentinel-2A image
(Universal Transverse Mercator Projection WGS84-50N) in ArcGIS® (geographic information system
software by US-based Esri Inc., Redlands, CA, USA). Then, we localized these pre-selected sites on the
field using hand-held Hi-Target® Hi-Q5 GPS devices (by China-based Hi-Target Surveying Instrument
Co. Ltd, Guangzhou, China), which have a maximal horizontal accuracy of 0.5 m when connected
with the continuously operating reference stations (CORS) network of Xuzhou. Due to restricted
accessibility of some areas in Xuzhou (such as special education schools, military zones), the number
of effective sites was 140 (35 coniferous forest sites, 73 broadleaved forest sites, and 32 low vegetation
sites; see Table A1, Appendix A), down from the pre-selected 192.

On the field, we recorded tree species and other parameters, such as tree height, diameter at
breast height (DBH), crown width, and vegetation coverage for our further research on urban biomass
estimation, within a 10 m × 10 m rectangle centered at the site’s coordinates. The size of the rectangle
allows a spatial match with a Sentinel-2A pixel.

3. Methods

A technical flowchart is provided to better illustrate the methods of this study (Figure 2). The left
part shows the fieldwork, and the right part details the image processing, the features used for
classification, and the classification models.
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the dashed-line rectangle represents the four support vector machine (SVM) classification models
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digital elevation model, selected from terrain features; TF refers to the textural features; and VA refers
to the vegetation abundances.

3.1. Linear Spectral Mixture Analysis

Due to rapid urban expansion and human activity, urban forests are increasingly fragmented
and vegetated areas tend to be mixed pixels on satellite images. To address the mixed-pixel issue,
linear spectral mixture analysis (LSMA), which treats the pixel spectrum as a linear combination of
the endmember spectrums of the objects [53], can be used to extract vegetation endmembers and
vegetation abundances (i.e., the proportion of vegetation to the area of a pixel), and to acquire more
reliable training samples.

Three steps were required to perform LSMA on Sentinel-2A data. Firstly, a minimum noise
fractionation (MNF) transformation, which is superior to principal component analysis (PCA) [54], was
conducted to separate the band noise and minimize the intra-band correlations. In our study, the first
six MNF components contained 80.94% of the original spectral variability and were, therefore, used for
Cartesian coordinate system establishment and endmember selection in the second step. Vegetation
endmembers usually lie at the vertices of the feature space constructed by combining any pair of the
six MNF components. However, due to the similarity of spectral features between different forest
types [55], such selection is not sufficient to get reliable vegetation endmembers. In the last step, these
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pre-selected endmembers were imported into ENVI’s interactive n-D Visualizer tool to generate pure
pixels for spectral unmixing.

Fully constrained least squares (FCLS) is an LSMA method for endmember abundance calculation,
which can simultaneously satisfy non-negativity (each abundance ranging between 0 and 1) and
sum-to-unity (the sum of abundances for each pixel is 1) [53,56].

R(λi) =
m∑

k=1

f (ki)C(kλ) + ε(λi), (1)

m∑
k=1

f (ki) = 1 and f (ki) > 0, (2)

where R(λi) is the reflectance of the i pixel in the λ band, f (ki) is the proportion of the k endmember
in the i pixel, C(kλ) is the reflectance of the k endmember in the λ band, m is the number of bands,
and ε(λi) is the error value.

The root-mean-square error (RMSE) was used to assess the accuracy of FCLS in this study, which
is given by

RMSE =

√√
1
m

m∑
i=1

ε(λi)
2, (3)

where m and ε(λi) have the same meanings as in Equations (1) and (2).
Three vegetation endmembers (broadleaved forest, coniferous forest, and low vegetation) were

identified by trial and error, and their abundances were estimated through an FCLS spectral unmixing
plugin of ENVI. For detailed results and analysis, see Section 4.1.

3.2. Selection of Features for Classification

For image classification, we preliminarily considered 126 features in total, ranging from spectral
features and vegetation abundances to topographic features and textural features (Table 1). In addition
to each spectral band, spectral features also included 30 spectral indices such as normalized difference
vegetation index (NDVI) and normalized difference water index (NDWI). The features and their
indicators are listed in Table 1. The abundances of the three vegetation endmembers (B1–B3 in Table 1)
were coniferous forests, broadleaved forests, and low vegetation, which were obtained by the LSMA
method (Section 4.1). Terrain features included a digital elevation model (DEM), and a DEM-derived
slope and aspect. The textural features included eight types of textures such as mean, variance,
and homogeneity, and were calculated using the gray-level co-occurrence matrix (GLCM) in ENVI.
A total of 80 textural features in 10 bands (shown in Table 1, from D1–D80) were finally obtained.

Table 1. Potential features for classification and their indicators.

Features Indicators Features Indicators Features Indicators

A1 Blue A19 SR3 A37 NDII
A2 Green A20 SR4 A38 EIBI
A3 Red A21 SR5 A39 NDBI
A4 VRE1 A22 SR6 A40 BAI
A5 VRE2 A23 SR7 B1 Low vegetation abundance
A6 VRE3 A24 RVI B2 Broadleaved forest abundance
A7 NIR A25 NDVIre1n B3 Coniferous forest abundance
A8 N_NIR A26 NDVIre C1 DEM
A9 SWIR1 A27 NDVI C2 Slope

A10 SWIR2 A28 gNDVI C3 Aspect
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Table 1. Cont.

Features Indicators Features Indicators Features Indicators

A11 SAVI A29 GI D1–D10 Mean (A1–A10)
A12 BSI A30 Chlogreen D11–D20 Variance (A1–A10)
A13 MSAVI2 A31 EVI2 D20–D30 Homogeneity (A1–A10)
A14 NDBBI A32 NDWI D30–D40 Contrast (A1–A10)
A15 OSAVI A33 NDWI1 D40–D50 Dissimilarity (A1–A10)
A16 DVI A34 NDWI2 D50–D60 Entropy (A1–A10)
A17 SR1 A35 NHI D60–D70 Second Moment (A1–A10)
A18 SR2 A36 MNDWI D70–D80 Correlation (A1–A10)

Note: A1–A10 are the 10 remote-sensing bands (excluding bands 1, 9 and 10) obtained after atmosphere correction;
VRE1–VRE3 represent the three vegetation red-edge bands; N_NIR represents the narrow near-infrared bands; SR1
represents the ratio of near-infrared and vegetation red-edge 1 and the meanings of features A18–A23 are similar to
SR1; NDVIre and NDVIre1n represent two different vegetation indices. The reader is referred to Njoku (2014) [57]
for a detailed description of the indices listed in Table 1 and to Table A2 (Appendix A) for the corresponding
formulas. The DEM used is at the 12.5-m resolution and freely available from the Alaska Satellite Facility
(https://vertex.daac.asf.alaska.edu/).

However, in order to reduce data dimension and improve computational efficiency, the features
should be selected prior to classification. As it can rank features in order of importance (a higher value
implies a more important feature), random forest (RF) is often used for selecting essential features from
a large number of features [58]. The number of decision trees in a random forest (mtree) and the number
of features per node (ntry) are two key parameters in RF [59], and how they are combined impacts
classification accuracy. Classification accuracy usually increases with the increase of mtree, and an
optimal ntry is among

√
p/2,

√
p, and 2

√
p, where p is the number of features. This study set several

different combinations of parameters and explored the effects of different parameter combinations
on the feature importance. By constraining the range of mtree (100, 300, 500, 1000, 1500) and the
range of ntry (5, 11, 22), random forest returned the importance of the 126 features for 15 different
parameter combinations (Figure 3). Although the importance of each feature changed with parameter
combination, their relative ranking almost always remained the same.
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the classification—because textural features proved important for land-cover classification in previous
studies [60,61]. The chosen features used for classification are shown in Table 2. They were 54 in total,
consisting of 40 spectral features, three vegetation abundance features, one terrain feature (i.e., DEM),
and 10 textural features.

Table 2. Features selected for image classification.

Category Feature Number of Features

Spectral features A1–A40 40
Vegetation abundances B1–B3 3

Terrain features C1 1
Textural features D1–D10 10

Total 54

3.3. Support Vector Machine Classifier

The support vector machine (SVM) is a machine learning algorithm based on statistical learning
theories. By constructing a classifying hyperplane, it can effectively solve the problems of limited,
non-linear, and high-dimensional training samples [62]. If the samples are linearly separable, a linear
discriminant function is established by constructing the classification surface to ensure the maximum
distance between the samples. If the samples are linearly inseparable, the SVM projects the training
samples to a high-dimensional space and finds the optimal classifying hyperplane [63].

In our study, we constructed four different SVM classification models differing in the feature used:
Model 1 with spectral features (SF) (M1: SF); Model 2 with SF and digital elevation model (DEM)
(M2: SF + DEM); Model 3 with SF, DEM, and textural features (TF) (M3: SF + DEM + TF); and Model
4 with SF, DEM, TF, and vegetation abundances (VA) (M4: SF + DEM + TF + VA). These four SVM
classification models were tested to identify the best one for mapping and discriminating urban forest
types of the study area. Classifications were implemented using an ENVI add-in known as EnMAP-box,
which allows SVM and RF classifications [64]. The kernel function of the SVM classifications was
Radial Basis Function (RBF), and the optimal penalty parameter (C) and the nuclear parameter (g)
were determined by the grid search method [65]. Model accuracy was used to assess which parameter
combination was best when constructing the SVM model with the training samples.

4. Results and Discussion

4.1. LSMA Result and Analysis

After MNF and endmember selection, three vegetation endmembers were identified, including
broadleaved forest, coniferous forest, and low vegetation (Figure 4). Despite typical spectral signature
vegetation with peaks and troughs located at quite similar wavelengths, they showed contrasting
reflectance values in the same spectral range (e.g., 800–900 nm). In the visible part of the electromagnetic
spectrum, low vegetation had higher reflectance than the other two types. This is because broadleaved
forests can effectively use the red light and blue–violet light more efficiently than coniferous forests and
low vegetation in photosynthesis [66]. However, highest reflectance was observed for low vegetation,
and it was lowest for coniferous forest in the NIR–SWIR (near infrared-shortwave infrared) region,
especially in the “vegetation red-edge” band (700–800 nm). This is likely to be explained by the
complex canopy structures of low vegetation and broadleaved forests. Light cannot transmit them
easily, resulting in increased reflections on the canopy surface. As for coniferous forests, their needle
leaves are more prone to transmission and, thus, lower reflectance.
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Through the FCLS-based LSMA, three vegetation abundance maps were produced (Figure 5).
All vegetation abundance values ranged from 0 to 1—a brighter pixel had a higher vegetation abundance
value and vice versa. The RMSE of the FCLS was 0.019, indicating that our LSMA result is reliable [67].
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As explained in Section 3.1, an abundance value refers to the ratio of the area of an urban forest
type to the total area of a given pixel. Through the LSMA, the abundance of each forest type in every
pixel can be derived. Given the spatial resolution of the image used (10 m × 10 m, i.e., the ground area
of a pixel was 100 m2), the areas of different urban forest types in the study area were straightforwardly
calculated (Table 3 and Figure 5). Results show that coniferous forests covered a maximal area of
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15.28 km2 (accounting for 14.09% of the study area) and were mostly distributed on the hills of Yunlong,
Zhushan, Zifang, and Jiuli (Figure 1d). They were dominated by Platycladus orientalis, mostly grown
from local forestation projects between the 1950s and 1960s. Low vegetation (13.96 km2) was primarily
distributed in parks and idle construction land, while broadleaved forests (4.21 km2) were mostly
found in parks, rural settlements, and less hilly areas.

Table 3. Areas of urban forest types in the study area.

Urban Forest Type Area (km2) Percentage of the Study Area (%)

Coniferous forest 15.28 14.09
Broadleaved forest 4.21 3.88

Low vegetation 13.96 12.87
Total 33.45 30.84

4.2. Interpretation of Feature Importance

In this study, to determine a proper number of features used for urban forest discrimination, we
first built a dataset of 126 candidate features and selected only 54 from them using the random forest.
They covered a variety of spectral features (e.g., vegetation index and soil index), topographic features,
and vegetation component abundances (Table 2). Among the features selected, spectral features like
N_NIR, VRE2, and VRE3 bands (see their definitions in the note below Table 1) were highly ranked in
the parameter combinations, suggesting their important roles in discrimination. This is not unexpected
as these bands serve the vegetation monitoring purpose of the Sentinel-2A sensor, one of its major
applications [44]. As reflectance at these bands is related to vegetation cellular structure [57] and varies
with vegetation type, it is useful to use these bands to discriminate urban forest types [68]. We discuss
textural features in Section 4.3.

4.3. SVM Classification Results and Accuracy Assessment

By means of the grid search method, the optimal values of parameters C and g for the four
classification models were determined as (125, 0.04), (25, 0.2), (125, 0.4), and (625, 0.04), with model
accuracies all being over 97%. Then, we performed the classifications and produced four different
land-cover maps (Figure 6). Accuracy assessment based on the validation data acquired from our
fieldwork showed that the highest accuracy and Kappa coefficient were achieved by M4 (89.86% and
0.83) and the lowest by M1 (86.96% and 0.79) (Table 4). Overall classification accuracy was improved
by 1.45% when adding DEM to M1, and was further improved when textural features and vegetation
abundances were added one by one. This suggests that classification accuracy tends to increase with the
number of input features, which agrees with the study of Raczko and Zagajewski (2017) [69]. Reasons
for the improvements vary. In the case of topography, it helps to improve classification accuracy
because the impact of topography on vegetation growth is considered [70–72]. Textural features often
prove useful in vegetation classification because vegetation texture varies with age, species, and many
other factors [60,61]. Although only a few textural features were relatively highly ranked in terms
feature importance, they might contribute to the improvement in classification accuracy. Vegetation
abundances were shown to have a positive effect on classification, which is in agreement with the
finding of Adams (1995) [39].

As M4 produced the best classification result, we here present its confusion matrix for a detailed
analysis (Table 5). Both the highest user accuracy and producer accuracy were observed for the
coniferous forest type. This is likely attributed to the fact that coniferous forests in the study area
consisted mostly of Platycladus orientalis (L.) Franco, and these trees tend to grow in large numbers.
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Table 4. Accuracy assessment of the four support vector machine (SVM) classification models using
the validation data acquired from fieldwork.

SVM Classification Models M1:
SF

M2:
SF + DEM

M3:
SF + DEM + TF

M4:
SF + DEM + TF + VA

Number of features 40 41 51 54
Optimal parameters (C) 125 25 125 625

Optimal kernel function (g) 0.04 0.2 0.04 0.04
Model accuracy (%) 97.40 97.66 98.38 98.35
Overall accuracy (%) 86.96 88.41 89.13 89.86

Kappa 0.79 0.81 0.82 0.83

Table 5. Confusion matrix of M4 (SF + DEM + TF + VA). Each row designates the classification result,
and each column designates the field-based validation data.

Types of Forests Low
Vegetation

Broadleaved
Forests

Coniferous
Forests

User Accuracy
(%)

Low vegetation 26 5 0 83.87
Broadleaved forest 4 66 3 90.41
Coniferous forest 0 2 32 94.12

Producer accuracy (%) 86.67 90.41 91.43
Overall accuracy (%) 89.86

Kappa 0.83

The classification model (M4) resulting in the best accuracy (overall accuracy 89.86% and
Kappa 0.83) was not employed in previous studies but it is still interesting to compare it with other
urban vegetation classification studies. For example, De Colstoun et al. (2003) [73] mapped vegetation
types in the Pennsylvania national forest park using a decision tree (C5.0) and multi-temporal Landsat
data with an overall accuracy of 82.05% and a Kappa coefficient of 0.80. Liu and Yang (2013) [74]
tested the multiple endmember spectral mixture analysis (MESMA) technique for urban vegetation
classification with a maximal classification accuracy of 80.55%. Based on the SVM classifier, Poursanidis
et al. (2015) [75] extracted urban land cover in the Greek city of Rafina by combining textural and
spectral information, resulting in a highest classification accuracy of 89.23%. Compared with these
studies, our method is more capable of discriminating different urban forest types.

4.4. Comparison of Different Classifier Results

In order to evaluate the differences between SVM and other machine learning classifiers for urban
vegetation information extraction, and whether vegetation abundances can enhance urban vegetation
discrimination similarly, three machine learning algorithms, i.e., RF (random forest), ANN (artificial
neural network), and QUEST (quick unbiased efficient statistical tree), were used to discriminate urban
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forest types before and after adding vegetation abundances. The classification based on the SVM
classification without vegetation abundance (i.e., M3, with 51 features) was labeled as SVM, and the
SVM classification with vegetation abundances (i.e., M4, with 54 features) was labeled as SVM + VA.
Similarly, we also named the RF-, ANN-, and QUEST-based classifications with and without vegetation
abundances (Table 6).

Table 6. Accuracy assessment of classifications comparing different machine learning classifiers.

Classification
Model

Number of
Features

Overall
Accuracy Kappa Note

QUEST 51 79.71% 0.66
RF 51 81.29% 0.70

ANN 51 82.14% 0.72
SVM 51 89.13% 0.82 M3 in Table 4

QUEST + VA 54 83.45% 0.73
RF + VA 54 84.21% 0.75

ANN + VA 54 85.00% 0.76
SVM + VA 54 89.86% 0.83 M4 in Table 4

As such, there were eight different classification models. These classifications were performed
using the same training samples and assessed using validation data as the four SVM classifications
in Table 4. For both RF classifications, their optimal mtry and ntry values were 1000 and 22 based on
the result of out-of-bag error (OOB) test (see its definition in Li et al. (2017) [76]). The QUEST is a
type of decision tree classifier and has a faster calculation and higher accuracy than other types [77].
Classification maps are presented in Figure 7 and the number of features, overall accuracy, and kappa
coefficient for each classification model are shown in Table 6.
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Among the eight classification models, the SVM + VA model obtained the highest accuracy
(89.86%) and Kappa coefficient (0.83). In terms of classifier, SVM produced the best classification results,
which agrees well with previous studies [8,36]. It has two evident advantages. Firstly, it can find an
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optimal hyperplane with the highest classification boundary in the n-dimensional feature space. This
prevents the classifier from falling into local minima [63], which is the case for ANN. Secondly, SVM
can minimize unseen errors in training samples [78] and, thus, a higher classification accuracy [79].

For each classifier, adding vegetation abundances in classification resulted in increased accuracy.
This is particularly remarkable for the RF, ANN, and QUEST classifiers. Their classification accuracies
were approximately 82% and the Kappa coefficients were less than 0.72, which rose to above 85%
and 0.75, respectively. Classification accuracy of the SVM was also improved by including vegetation
abundances, although such improvement was not that prominent. Additionally, our results suggest
that ANN and RF could achieve similar classification accuracies, which was also confirmed by previous
studies [80]. In our case, classification accuracies of ANN and RF were 82.14% and 81.29% before
vegetation abundances were added, and increased by 2.86% and 2.92% for ANN and RF, respectively,
after vegetation abundances were included.

In addition, if we examine the SVM- and RF-based classification maps closely (Figure 8), we can find
that adding vegetation abundances resulted in more homogeneous classification maps. This is because
it could effectively reduce the salt-and-pepper effect that usually occurs in pixel-based classification.
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5. Conclusions

This study aimed at mapping and discriminating urban forest using single Sentinel-2A imagery
and machine learning algorithms, such as SVM, ANN, RF, and QUEST. Input features were selected
based on the feature importance of RF and included vegetation abundances obtained from linear
spectral mixture analysis. From the results, we conclude the following:

• Three urban forest endmembers can be successfully identified from Sentinel-2A image data, and the
LSMA method allows accurate mapping of their abundances with a low mean RMSE of 0.019.

• Classification accuracy of SVM classification tends to increase when spectral, topographic,
and textural features and vegetation abundances are added one by one.

• The SVM classifier outperforms the other three machine learning algorithms based on the same
classification samples and field-based validation data.
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• Vegetation abundances help improve classification accuracy regardless of classifier.

Our study provides a basis for urban biomass estimation and has practical implications for forest
management. It also demonstrates the capability of 10-m Sentinel-2A image data to discriminate
vegetation types in a complex urban context. However, an avenue for future research would be to use
different sources of remote-sensing data, such as Sentinel-1 SAR (Synthetic Aperture Radar) imagery.
This might enable full use of the textural features of vegetation surfaces.
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Appendix A

Table A1. Fieldwork sites for acquiring validation data for classification accuracy assessment.

Number X-coordinate Y-coordinate UF Types Number X-coordinate Y-coordinate UF Types

1 514405 3787635 BF 2 514945 3787685 BF
3 515975 3787725 CF 4 516875 3787885 CF
5 515035 3787905 CF 6 517725 3787995 BF
7 517205 3788075 CF 8 517015 3788245 CF
9 515405 3788525 CF 10 517635 3788785 CF

11 516645 3788865 BF 12 517005 3789155 BF
13 518705 3789215 LW 14 518115 3789545 LW
15 516015 3790555 BF 16 519985 3793155 BF
17 512425 3793635 LW 18 512205 3794045 CF
19 512965 3794215 CF 20 513865 3794485 CF
21 513795 3794735 CF 22 514205 3795255 BF
23 516095 3796225 CF 24 516995 3796385 BF
25 513875 3797275 LW 26 517555 3797965 LW
27 520075 3786135 LW 28 517635 3786305 CF
29 520305 3786325 BF 30 519035 3786365 LW
31 520165 3786525 BF 32 517805 3786555 CF
33 518205 3786605 BF 34 513585 3786715 BF
35 518335 3786835 CF 36 518865 3786925 BF
37 514075 3787025 LW 38 517615 3787125 BF
39 513865 3787145 BF 40 513345 3787245 LW
41 515405 3787255 BF 42 516045 3787335 CF
43 514065 3787385 BF 44 514955 3787415 BF
45 515565 3787415 CF 46 513655 3787435 BF
47 517625 3787435 BF 48 519545 3787475 CF
49 518785 3787665 BF 50 515125 3787725 CF
51 513885 3787875 BF 52 515845 3787955 CF
53 512015 3787995 BF 54 512405 3788085 CF
55 517485 3788175 BF 56 515125 3788215 BF
57 513085 3788225 BF 58 515685 3788235 CF
59 511625 3788245 BF 60 512965 3788445 BF
61 511345 3788455 LW 62 517225 3788465 CF
63 517855 3788515 BF 64 517475 3788785 LW
65 511455 3788855 BF 66 516075 3788855 BF
67 515635 3788905 BF 68 516885 3789325 BF
69 511795 3789355 LW 70 515995 3789425 BF
71 520285 3789435 BF 72 519905 3789465 BF
73 515105 3789505 LW 74 520135 3789585 BF
75 513045 3789645 CF 76 512465 3789665 BF
77 516545 3789855 BF 78 519755 3789925 BF
79 519565 3790205 BF 80 516205 3790305 BF
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Table A1. Cont.

Number X-coordinate Y-coordinate UF Types Number X-coordinate Y-coordinate UF Types

81 512425 3791195 BF 82 514155 3791505 BF
83 519625 3792175 CF 84 518885 3792185 CF
85 520435 3792825 BF 86 512715 3792845 BF
87 519695 3793135 BF 88 513785 3793485 LW
89 512215 3793785 LW 90 512485 3793895 BF
91 512785 3793895 CF 92 513755 3794005 BF
93 511945 3794035 BF 94 517275 3794065 BF
95 512845 3794365 LW 96 515735 3794465 BF
97 513165 3794515 LW 98 512305 3794715 BF
99 514085 3794855 CF 100 512285 3794885 LW
101 512145 3795265 BF 102 513005 3795325 BF
103 515255 3795355 BF 104 511355 3795485 BF
105 515665 3795515 BF 106 515795 3795765 CF
107 514905 3795785 BF 108 512805 3795905 BF
109 513245 3795935 BF 110 514425 3795995 LW
111 515555 3795995 CF 112 516595 3796145 CF
113 511215 3796195 BF 114 515395 3796245 LW
115 514825 3796345 BF 116 516575 3796575 BF
117 511485 3796605 BF 118 517035 3796625 BF
119 512375 3796685 CF 120 515295 3796725 LW
121 516355 3796725 LW 122 517545 3796755 LW
123 517805 3796845 BF 124 518535 3796855 LW
125 517225 3796985 LW 126 518705 3797015 CF
127 512025 3797065 BF 128 514945 3797165 LW
129 513195 3797255 LW 130 513165 3797415 BF
131 517765 3797495 LW 132 518505 3797515 LW
133 515755 3797585 CF 134 515165 3797825 LW
135 516845 3797865 BF 136 518795 3797975 LW
137 519175 3798005 CF 138 515655 3798105 LW
139 516385 3798135 BF 140 518965 3798255 LW

Note: UF refers to urban forest, BF refers to broadleaved forest, CF refers to coniferous forest, and LW refers to
low vegetation.

Table A2. Formulas used for calculating spectral indices [55].

Spectral Indices Formula

Green index (GI) GI = Green/Red
Green normalized different vegetation index (gNDVI) gNDVI = (N_NIR−Green)/(N_NIR + Green)

Normalized difference vegetation index (NDVI) NDVI = (NIR−Red)/(NIR + Red)
Ratio vegetation index (RVI) RVI = NIR/Red

Difference vegetation index (DVI) DVI = NIR−Red
Enhanced vegetation index 2 (EVI2) EVI2 = (NIR−Red)/(1 + NIR + 2.4×Red)
Chlorophyll green index (Chlogreen) Chlogreen = N_NIR/(Green + VER1)

Normalized difference vegetation index (NDVIre1) NDVIre1 = (NIR−VER1)/(NIR + VER1)
Normalized difference vegetation index (NDVIre1n) NDVIre1n = (N_NIR−VER1)/(N_NIR + VER1)

Simple ratio 1 (SR1) SR1 = NIR/VER1
Simple ratio 2 (SR2) SR2 = N_NIR/VER1
Simple ratio 3 (SR3) SR3 = N_NIR/Red
Simple ratio 4 (SR4) SR4 = N_NIR/Green
Simple ratio 5 (SR5) SR5 = N_NIR/Blue
Simple ratio 6 (SR6) SR6 = Blue/VER1
Simple ratio 7 (SR7) SR7 = NIR/Red

Normalized difference water index (NDWI) NDWI = (Green−NIR)/(Green + NIR)
Normalized difference water index 1 (NDWI1) NDWI1 = (N_NIR− SWIR1)/(N_NIR + SWIR1)
Normalized difference water index 2 (NDWI2) NDWI2 = (Green−N_NIR)/(Green + N_NIR)

Normalized humidity index (NHI) NHI = (SWIR1−Green)/(SWIR1 + Green)
Normalized difference infrared index (NDII) NDII = (NIR− SWIR1)/(NIR + SWIR1)

Modified normalized difference water index (MNDWI) MNDWI = (Green− SWIR1)/(Green + SWIR1)
Normalized difference build-up index (NDBI) NDBI = (SWIR1−NIR)/(SWIR1 + NIR)

Build-up area index (BAI) BAI = (Blue−N_NIR)/(Blue + N_NIR)
Enhanced index-based built-up index (EIBI) EIBI = NDBBI−(4×EBSI+SAVI+MNDWI)/6

NDBBI+(4×EIBI+SAVI+MNDWI)/6
Soil-adjusted vegetation index (SAVI) SAVI = N_NIR−Red

N_NIR+Red+L × 0.5

Modified soil-adjusted vegetation index 2 (MSAVI2) MSAVI2 = 0.5×
[
(2×NIR + 1) −

√
(2×NIR + 1)2

− 8× (NIR−Red)
]

Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (NIR−Red)/(NIR + Red + 0.16)
Bare soil index (BSI) BSI = [(SWIR1 + Red) − (NIR + Blue)]/[(SWIR1 + Red) + (NIR + Blue)]

Normalized difference bareness and built-up index (NDBBI) NDBBI = 1.5×SWIR2−(NIR+Green)/2
1.5×SWIR2+(NIR+Green)/2

Note: VRE1–VRE3 represent the three vegetation red-edge bands; N_NIR represents the narrow near-infrared bands.
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