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Abstract: Climate change has been linked to distribution shifts and population declines of numerous
animal and plant species, particularly in montane ecosystems. The majority of studies suggest
both that low-elevation avian and small mammal species are shifting up in elevation and that
high-elevation avian communities are either shifting further upslope or relocating completely with
an increase in average local temperatures. However, recent research suggests numerous high elevation
montane species are either not shifting or are shifting down in elevation despite the local increasing
temperature trends, perhaps as a result of the increased precipitation at high elevations. In this
study, we examine common vertebrate species distributions across the Hubbard Brook valley in the
White Mountain National Forest, including resident and migratory songbirds and small mammals,
in relation to historic spring temperature and precipitation. We found no directional change in
distributions through time for any of the species. However, we show that the majority of low-elevation
bird species in our study area respond to warm spring temperatures by shifting upslope. All bird
species that shifted were long-distance migrants. Each low-elevation migrant species responded
differently to warm spring temperatures, through upslope distribution expansion, downslope
distribution contraction, or total distribution shift upslope. In contrast, we found a majority of
high-elevation bird species and both high- and low-elevation mammal species did not shift in
response to spring temperature or precipitation and may be subject to more complex climate trends.
The heterogeneous response to climate change highlights the need for more comprehensive studies
on the subject and careful consideration for appropriate species and habitat management plans in
northeastern montane regions.
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1. Introduction

Mounting evidence suggests plants and animals are responding to ongoing climate change
in numerous ways, including through significant distributional shifts [1–3]. A simple paradigm
asserts that species will respond to rising temperatures by shifting their distributions poleward (e.g.,
References [4–6]) or up in elevation [2,3,7]. However, as time goes on, studies are finding some species
are either not shifting or are shifting downslope through time, even as temperatures increase [8–11].
Yet, it is not clear what is driving montane species to shift heterogeneously and how montane species
are ultimately moving in the face of climate change.
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Montane species can be particularly susceptible to the effects of climate change, because their
distributions are elevationally constrained, leaving them vulnerable to range restriction or local
extirpation through an inability to react sufficiently to a changing climate [12–14]. Montane songbird
species and some small mammal species often occupy narrow niches [15,16] and therefore may be
sensitive to climate induced habitat alteration [17,18]. The elevational gradient of montane regions
may also exacerbate the severity of climate change, as climate regimes are not changing uniformly
at all elevations [19–21]. Most notably, precipitation rates are typically greater at high elevations,
and precipitation is expected to increase more rapidly at high elevations with ongoing climate
change [19–21]. As a result, precipitation may affect high-elevation species disproportionately [10,21],
and in some cases, species may shift down to find areas with more favorable precipitation [12,21].
Temperature may also increase more rapidly at some higher elevation sites [20,22], putting further
stress on montane communities. Migratory bird species may be particularly impacted, as individuals
must recolonize areas yearly and may therefore shift greater distances than non-migratory species [23].
Songbirds and small mammals in northeastern montane forests may be especially vulnerable, as these
regions are highly threatened by climate change [19,20]. However, with few studies of climate induced
distributional shifts in northeastern forests, it is relatively unknown how climate change will impact
songbird and small mammal species in these regions.

Long-term studies of songbird and small mammal communities are crucial to understanding
how these communities are responding to a changing climate. The songbird and small mammal
communities have been systematically surveyed annually since 1999 at the Hubbard Brook
Experimental Forest (HBEF) within the White Mountain National Forest. Here, we used these long-term
survey data to test whether changing climate has affected songbird and small mammal distributions in
northeastern hardwood and boreal forests. We hypothesized that both temperature and precipitation
contribute to fine scale distributional shifts within the songbird and small mammal communities
and that songbird migratory status would affect the magnitude of the distribution shifts. If songbird
and small mammal distributions are governed by climate, we predicted low-elevation species would
shift upslope with warm temperatures, while high-elevation species would predominantly shift
downslope in response to increased high-elevation precipitations. Additionally, we predicted that
migratory songbird species that recolonize breeding grounds within HBEF yearly would exhibit larger
distribution shifts than resident species.

2. Materials and Methods

2.1. Study Site

Hubbard Brook Experimental Forest (43º56’N, 71º45’W, NH, USA; HBEF) is a 3600 ha watershed
located within the White Mountain National Forest, ranging from 200–1000 m above sea-level (Figure 1).
HBEF is forested and comprised of northern hardwoods found predominantly at low to middle
elevations, transitioning to boreal spruce-fir forests at elevations above 800 m [24]. The climate within
HBEF is temperate, with long, cold winters and mild, wet summers [25]. Over 100 bird species regularly
breed within HBEF, the majority of which are Neotropical migrants that spend temperate winters
in the tropics. Eastern chipmunks (Tamias striatus Linnaeus; EACH) and red squirrels (Tamiasciurus
hudsonicus Erxleben; RESQ) are also common in the valley and are frequent nest predators of these
bird species [26,27].
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Figure 1. Map of Hubbard Brook Experimental Forest (HBEF) with survey locations in relation to 
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north–south transects, separated by 500 m that span the elevation gradient within HBEF. Survey 
locations along each transect were spaced either 100 or 200 m apart. Each survey location (n = 373) 
was surveyed at least three times during the breeding season (May through July), by a different 
trained surveyor each time. Point counts were conducted between 0530 and 1000 EDT (Eastern 
Daylight Time). Counts were not conducted in conditions that could hinder the surveyors’ ability to 
detect individuals (rain, high winds, canopy drip, fog, etc.). During the ten-minute survey, all bird 
species, EACH, and RESQ seen or heard within 50 m of the point were recorded. Birds and mammals 
assessed to be outside 50 m were not used in this study to avoid accidental double counting of 
individuals at adjacent points. 

2.3. Surveyed Species 
We selected five songbird species to represent low-elevation bird species and five songbird 
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Figure 1. Map of Hubbard Brook Experimental Forest (HBEF) with survey locations in relation to
New Hampshire.

2.2. Survey Methods

Point count surveys were used to collect avian and mammal occupancy data and were conducted
annually from 1999 to 2016, excluding 2003 and 2004. Counts were conducted along 15 north–south
transects, separated by 500 m that span the elevation gradient within HBEF. Survey locations along
each transect were spaced either 100 or 200 m apart. Each survey location (n = 373) was surveyed
at least three times during the breeding season (May through July), by a different trained surveyor
each time. Point counts were conducted between 0530 and 1000 EDT (Eastern Daylight Time). Counts
were not conducted in conditions that could hinder the surveyors’ ability to detect individuals (rain,
high winds, canopy drip, fog, etc.). During the ten-minute survey, all bird species, EACH, and RESQ
seen or heard within 50 m of the point were recorded. Birds and mammals assessed to be outside 50 m
were not used in this study to avoid accidental double counting of individuals at adjacent points.

2.3. Surveyed Species

We selected five songbird species to represent low-elevation bird species and five songbird species
to represent high-elevation bird species, based on our prior knowledge of their breeding distributions
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within HBEF and to remain consistent with species selected in other regional studies [12,13]. Species
designations were then confirmed using species occupancy curves over the elevation gradient in our
study site, as outlined in the statistical methods. The low-elevation species we selected were the
black-capped chickadee (Poecile atricapillus Linnaeus; BCCH), black-throated blue warbler (Setophaga
caerulescens Gmelin; BTBW), hermit thrush (Catharus guttatus Pallas; HETH), ovenbird (Seiurus
aurocapilla Linnaeus; OVEN), and red-eyed vireo (Vireo olivaceus Linnaeus; REVI). The high-elevation
species we selected were the blackpoll warbler (Setophaga striata Forster; BLPW), magnolia warbler
(Setophaga magnolia Wilson; MAWA), dark-eyed junco (Junco hyemalis Linnaeus; DEJU), Swainson’s
thrush (Catharus ustulatus Nuttall; SWTH), and winter wren (Troglodytes hiemalis Viellot; WIWR).

Red squirrel (RESQ) data were available for all years, excluding the two years during which
surveys were not conducted, 2003 and 2004. The eastern chipmunk (EACH) data was missing one
additional year of data (2002). No other mammals were surveyed systematically during our study
period. We categorized mammal species into low- and high-elevations using the same criteria we used
for birds. EACH were designated as a low-elevation species and RESQ as a high-elevation species
because of their association with conifers [16].

2.4. Environmental Variables

For this study, we focused on climate variables with long-term datasets available through our
study period (1999–2016). We were primarily interested in how temperature and precipitation during
the months when surveys were conducted affected species distributions within HBEF. Most migratory
species arrive back at HBEF to breed in May. Therefore, we used mean May temperature and
precipitation as potential drivers of distribution shifts since they coincide with the arrival of migratory
bird species [28] and when RESQ and EACH pups first typically become active [29,30] (hereafter called
“spring temperature” and “spring precipitation”, unless specified). For migratory bird species that
arrive at the breeding grounds in late May, and as such may not be influenced by early May weather,
we chose to test whether mean June temperature and precipitation influenced their distribution shifts.
Daily temperature and precipitation data from 1999 to 2014 were downloaded from the Long Term
Ecological Research Network website (https://portal.lternet.edu). Additional temperature data for
2015 and 2016 were provided by the US Forest Service. All temperature and precipitation data were
collected from the weather station at the USDA Forest Service Headquarters building at HBEF (252 m
above sea level). Daily mean temperature and precipitation were averaged each year over May and
June to generate mean annual May and June temperature and precipitation values.

2.5. Statistical Methods

Imperfect detection during animal surveys can lead to biased occupancy and abundance estimates
and is common in point count data [31]. To account for imperfect species detection in our analyses,
we used single and multi-season occupancy models (unmarked package v0.12-0, [32]) to predict true
species occupancy in relation to elevation. Using these adjusted occupancy estimates, we confirmed
our a priori songbird and small mammal elevation designations by assessing how their multiyear site
occupancy probability varied over the elevation gradient within HBEF (Figure 2). Species occupancy
curves that increased to 100% predicted the occupancy above 800 m (approximately where the ecotone
between deciduous and boreal forests reside in HBEF) were confirmed as high-elevation species,
and species with a predicted occupancy that peaked and then declined before 800 m in elevation were
confirmed as low-elevation species.

https://portal.lternet.edu
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Figure 2. The simulated occupancy probabilities of high- and low-elevation species occupying a given 
elevation within HBEF, New Hampshire in relation to varying mean spring temperatures based on 
survey data corrected for imperfect detection. The solid lines represent species occupancy in a year 
with low spring temperatures, and the dashed lines represent occupancy in a year with high spring 
temperatures. The quantiles show how species distribution changes within their yearly range with 
mean spring temperatures. 
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50%, 75%, 95%, and 97.5%) to allow us to assess how species distributions were shifting and whether 
species distributions shifted uniformly, contracted, or expanded. Separate linear models for each 
predicted occupancy quantile were used to assess whether elevational distributions shifted through 
time within our study period. Linear models for each quantile were then used to assess whether the 
observed elevational distribution shifts were in response to average annual spring temperatures or 
average annual spring precipitations. We used Akaike’s Information Criterion for limited sample 
sizes (AICc, MuMIn package v1.42.1, [33]) to identify the most parsimonious models among our 
candidate set of models. For low-elevation bird species, we examined the relationship between 
environmental covariates and the elevation of the 97.5% quantile across all low-elevation species, as 
the upper distributional range appears more sensitive to changes in climate [2,21]. For high-elevation 
bird species, we focused on the 2.5% quantile across all high-elevation species because HBEF is at the 
lower elevation band of their distribution. For our mammal species, we tested model appropriateness 
at the 50% quantile across both mammal species because our mammals include both high-elevation 
and low-elevation species. 

All data are presented as mean ± 95% confidence interval, and results were considered 
significant at p < 0.05. All data were analyzed in R (v3.5.1, [34]). 

Figure 2. The simulated occupancy probabilities of high- and low-elevation species occupying a given
elevation within HBEF, New Hampshire in relation to varying mean spring temperatures based on
survey data corrected for imperfect detection. The solid lines represent species occupancy in a year
with low spring temperatures, and the dashed lines represent occupancy in a year with high spring
temperatures. The quantiles show how species distribution changes within their yearly range with
mean spring temperatures.

The elevational gradient within HBEF (approximately 200 to 1000 m) likely does not encompass
the full elevational distribution of some of the species included in our analyses, particularly those
of high-elevation species. Following DeLuca and King [12], we accounted for partial elevational
distributions by segmenting the predicted occupancy for each species into quantiles (2.5%, 5%, 25%,
50%, 75%, 95%, and 97.5%) to allow us to assess how species distributions were shifting and whether
species distributions shifted uniformly, contracted, or expanded. Separate linear models for each
predicted occupancy quantile were used to assess whether elevational distributions shifted through
time within our study period. Linear models for each quantile were then used to assess whether the
observed elevational distribution shifts were in response to average annual spring temperatures or
average annual spring precipitations. We used Akaike’s Information Criterion for limited sample
sizes (AICc, MuMIn package v1.42.1, [33]) to identify the most parsimonious models among our
candidate set of models. For low-elevation bird species, we examined the relationship between
environmental covariates and the elevation of the 97.5% quantile across all low-elevation species, as the
upper distributional range appears more sensitive to changes in climate [2,21]. For high-elevation bird
species, we focused on the 2.5% quantile across all high-elevation species because HBEF is at the lower
elevation band of their distribution. For our mammal species, we tested model appropriateness at
the 50% quantile across both mammal species because our mammals include both high-elevation and
low-elevation species.

All data are presented as mean ± 95% confidence interval, and results were considered significant
at p < 0.05. All data were analyzed in R (v3.5.1, [34]).
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3. Results

3.1. Environmental Variables

Historic mean annual temperature (df = 59, R2 = 0.36, p < 0.001; Figure 3) and precipitation rates
(df = 35, R2 = 0.09, p = 0.044; Figure 3) have increased within HBEF, mirroring the trends observed in
the northeastern North America over the past 100 years [19,20]. However, there was no change in the
mean May temperature (df = 16, R2 = 0.06, p = 0.165) or precipitation (df = 14, R2 = −0.07, p = 0.909)
over the 18-year period (1999 to 2016) that coincides with our survey data. The same 18-year period
had substantial annual variability in both temperature and precipitation (Figure 3).
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Figure 3. The mean annual temperature (1957–2017) and precipitation (1978–2014) trends in HBEF,
New Hampshire. All data were collected from the USDA Forest Service Headquarters building at
HBEF at 252 m above sea level.

3.2. Low-Elevation Birds

We found no evidence that low-elevation songbird species distributions shifted significantly
with time over the study period (Table S1). However, three of five low-elevation bird species
shifted upslope significantly with warm spring temperatures (BTBW, OVEN, and REVI; Table 1
and Table S2), while no-low elevation species shifted as a result of mean spring precipitation
(Table S3). BTBWs contracted the bottom half of their distribution upslope by an average of 9.11 m/◦C,
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while their upper distribution above 50% remained stable. In contrast to BTBWs, OVENs expanded
their upper distribution (95 to 97.5% quantiles) upslope by an average of 10.58 m/◦C, while their
lower distribution remained stable. REVIs shifted nearly their entire elevational distribution (5% to
97.5% predicted occupancy quantiles) upslope significantly with warm spring temperature, moving
the top 50% of their distribution upslope an average of 16.94 m/◦C, with the top 5% shifting
an average of 20.48 m/◦C. All (100%) of the species that shifted significantly were species that
migrate to wintering grounds outside of the United States [35–37] (hereafter “long-distance migrants”),
while the remaining two species were residents or migrants within the United States [38,39] (hereafter
“short-distance migrants”).

The mean spring temperature alone was the most parsimonious of our candidate models for
low-elevation bird species (Table S4), although two other models (temperature + precipitation and
time + temperature) had ∆AICc values of <2.0.

Table 1. HBEF songbird and small mammal species distribution shifts in relation to the mean spring
temperature. The mean May temperature was used for all species, excluding BLPW, where the mean
June temperature was used. Asterisks (*) denote statistically significant p-values (* p ≤ 0.05; ** p ≤ 0.01;
*** p < 0.001). Periods (.) denote near significant p-values (0.05 < p ≤ 0.10). Abbreviations: Black-capped
chickadee (BCCH), black-throated blue warbler (BTBW), hermit thrush (HETH), ovenbird (OVEN),
red-eyed vireo (REVI), blackpoll warbler (BLPW), magnolia warbler (MAWA), dark-eyed junco (DEJU),
Swainson’s thrush (SWTH), winter wren (WIWR), red squirrel (RESQ), and eastern chipmunk (EACH).

Mean Spring Temperature (1999–2016)
Low-Elevation Species

Spp. % Occu Intercept R2 p Significance

BTBW

2.5% 8.71 0.30 0.016 *
5% 10.29 0.38 0.007 **

25% 10.40 0.61 0.000 ***
50% 7.06 0.38 0.007 **
75% 3.77 −0.01 0.370
95% 3.43 −0.04 0.545

97.5% 4.39 −0.03 0.446

OVEN

2.5% −0.90 −0.01 0.390
5% −1.00 −0.04 0.534

25% 0.40 −0.07 0.882
50% 2.78 −0.01 0.361
75% 5.78 0.10 0.129
95% 10.12 0.22 0.040 *

97.5% 11.05 0.21 0.041 *

REVI

2.5% 0.77 0.14 0.082 .
5% 1.62 0.21 0.040 *

25% 6.43 0.53 0.001 ***
50% 10.95 0.67 0.000 ***
75% 15.86 0.70 0.000 ***
95% 21.55 0.55 0.001 ***

97.5% 19.41 0.42 0.004 **
High-Elevation Species

BLPW

2.5% 14.81 −0.06 0.656
5% 9.47 −0.01 0.392

25% 4.93 0.21 0.041 *
50% 3.47 0.34 0.011 *
75% 1.83 0.33 0.012 *
95% 0.42 0.47 0.002 **

97.5% 0.16 0.23 0.034 *
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3.3. High-Elevation Birds

We found that most high-elevation songbird species distributions did not shift significantly with
time. Two species shifted portions of their distributions upslope with time (SWTH and DEJU) but
only for one predicted occupancy quantile for each (25% and 75% respectively; Table S1). One of
three high-elevation, long-distance migrant species [40] shifted distributions with the mean spring
temperature (BLPW; Table 1), while the remaining long-distance migrants [41,42] and resident
species [43,44] did not (Table S2). Contrary to our predictions, no high-elevation species shifted
downslope, with the exception of the BLPW. The upper edge of the BLPW’s distribution, at the
maximum elevation of our study site, contracted slightly downslope with warm May temperature
(97.5% quantile; −0.14 m/◦C). However, BLPW distribution from the 25% to 97.5% quantiles expanded
upslope with the mean June temperature (Table 1), with an average upslope shift of 2.16 m/◦C.

No high-elevation bird distributions shifted as a result of the mean spring precipitation (Table S3).
Our most parsimonious model of our candidate high-elevation species models was spring precipitation
(Table S4), although models for both temperature and time had ∆AICc values of <2.0.

3.4. Mammals

We found no evidence that time, mean spring temperature, or mean spring precipitation had any
significant effect on RESQ or EACH distributions through our study period (Tables S1–S3). The mean
spring temperature was the most parsimonious model of our candidate models for mammals (Table S4)
but only slightly more so than precipitation (∆AICc = 0.05) and time (∆AICc = 0.11).

4. Discussion

Overall, we did not find that songbird or small mammal elevational distributions were shifting
through time within our study period. This is perhaps because temperature and precipitation did not
increase significantly over our study period. Instead, our study species responded proximately to
annual variations in climatic variables, with the majority of low-elevation songbird species responding
to warm spring temperatures by shifting upslope (Figure S1a). However, most high-elevation songbird
species and both small mammal species did not respond to temperature or precipitation (Figure S1a,b),
perhaps because shifts seen in other studies occurred at higher elevations than those within our study
site and climate constraints may be more extreme at higher elevations [8,11,12].

The distributional shifts we observed in low-elevation songbirds may be related to migratory
status. Avian migratory status has been assessed by a handful of other studies (e.g. References [21,23])
but is not commonly assessed by studies looking at distributional shifts. Walther et al. [23] argue
that migratory species are more likely to shift than resident species because they recolonize areas
yearly. Within HBEF, first time breeders often must colonize new territories and are therefore subject
to distribution shifts through changes in abundance and reactions to climatic variables and territory
quality. This is in contrast with the resident species that take the slower, more stable route of
local population extinction and colonization. They therefore exhibit smaller and slower distribution
shifts [23], and is perhaps why we did not see shifts in resident species. Similar to Walther’s [23]
findings, we found that all three of our low-elevation songbird species that shifted upslope with warm
spring temperatures were long-distance migrants, while the two species that did not shift significantly
were a resident species (BCCH) and a short-distance migrant (HETH). Notably, our low-elevation
migrant with the longest migration route and latest spring arrival time of our low-elevation songbirds,
the REVI, was our most responsive species to warm spring temperatures. REVIs shifted nearly their
entire distribution upslope with warm spring temperatures and shifted upslope farther than any of
our other low-elevation species, at almost +20 m per degree of temperature increase. The other two
low-elevation species that responded to warm spring temperature (BTBW and OVEN) responded to
a lesser degree, shifting shorter distances and only portions of their distribution (Table 1). Long distance
migrants have no way of assessing specific climate conditions at their summer breeding grounds,
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and they may instead use cues other than temperature, including day length [45,46] and favorable
flying conditions at wintering grounds [47] to determine when to begin spring migration. Plastic
responses to habitat quality upon arrival at summer breeding grounds may help buffer against
phenological mismatches inherent with having a relatively set migratory schedule. Species with the
longest migration routes, such as the REVI, which winters in South America [37], may benefit from
having plastic settlement patterns, and these long migration routes may be one of the underlying
reasons we see REVIs shift more than other species.

Contrary to our predictions, low-elevation mammals did not shift significantly with time,
temperature, or precipitation. Although EACH is a frequent nest predator of songbird eggs and
nestlings [26,27], their diet consists primarily of tree seeds, including those from the exceptionally
long-lived [48] American beech trees (Fagus grandifolia Ehrhart) and sugar maple trees (Acer saccharum
Marshall) [29,49]. EACH are therefore highly reliant on seed producing tree species as a food source,
especially for caching food for consumption over the winter months [29,49]. In non-mast years,
when tree seeds are scarce, EACH still rely heavily on vegetative food sources [29]. This reliance on
seed producing tree species and other vegetation may be driving distribution shifts, or the lack thereof,
as EACH may be tracking the slower changes in distribution of long-lived tree species over changes in
temperature and precipitation [50].

In contrast with low-elevation songbird species, we found no distributional shifts in high-elevation
songbirds (Figure S1a), with the exception of the BLPW, which shifted downslope with warm May
temperatures. However, with an average shift of −0.14 m/◦C, BLPW distributional shifts as a result of
the mean May temperature were much smaller than those seen in low-elevation species. Others have
also documented high-elevation birds shifting downslope [8,12,21], although the proposed causes
vary. Some potential explanations include shifting vegetation [8,12] and increased high-elevation
precipitation [12,21]. Neither of these explanations appear to be occurring within HBEF, as HBEF forest
structure appears stable [51] and BLPWs did not respond to the mean spring precipitation. However,
BLPW distributional shifts may be responding to the mean June temperature. Contrary to shifts related
to the May temperatures, BLPWs showed a significant upslope expansion through all but the lowest
reaches of their distribution with warm June temperatures (Figure S1a). BLPWs are long-distance
migrants [40] and are typically the latest birds to arrive in HBEF out of the species we assessed in
this study. They typically arrive to HBEF near the end of May and begin nesting shortly after [40].
As a result, they are likely influenced most by the temperature at the end of May, which, within HBEF,
are more typical of temperatures we would expect to see in June. So, why is the BLPW shifting while
other high-elevation species are not? Like the REVI, BLPWs are one of the longest distance migrants of
our high-elevation species [40] and may be more plastic in their response to environment as a way to
buffer against phenological mismatches when arriving at breeding grounds.

Overall, the lack of observed distribution shifts by high-elevation songbird and mammal species
at HBEF, with the exception of BLPWs, may be due in part to the elevation range in our study site.
Most of our high-elevation sites are lower than those in numerous other studies that observed birds
and small mammals move downslope (elevational maximums: this study, 903 m; Archaux [8], 3099 m;
DeLuca and King [12], 1470 m; etc.), and climate constraints on our high-elevation species may
not be as extreme as those at higher elevation sites [19,20]. Boreal habitats within HBEF are found
primarily above 800 m in elevation and are therefore restricted to the highest ridges in the valley.
As a result, we also may be missing reactions to precipitation by high-elevation species due to the
small elevational range of boreal spruce-fir within HBEF. Alternately, high-elevation species in HBEF
may be experiencing the effects of increased precipitation but may not be shifting significantly out
of necessity for specific breeding habitats. Archaux [8] found that avian abundance and distribution
within two study sites in the French Alps was closely tied with habitat distribution shifts, despite
significant warming. Similar studies of high-elevation mammals like RESQ have found they may also
be tracking habitat distribution shifts over changes in climatic conditions, much like their low-elevation
counterparts [11,50]. RESQ are heavily reliant on conifer seeds as a food source and typically hold
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territories in or near stands of conifers [16,52]. Elevationally restricted habitat may cause increased
competition by habitat-constrained species for breeding or food caching territory [12,15,29], and as
a result, high-elevation species may be using all of the available habitat that suits their needs, regardless
of quality. If this is the case, any evidence of habitat tracking would likely only be seen over longer
time periods, as vegetation distribution shifts are typically slower than temperature change, due to the
long lifespans of trees [1,20].

4.1. Future Implications

Distributional shifts will likely impact montane passerines and small mammals in several ways.
With temperature and precipitation rates expected to increase faster at higher elevations, species
shifting upslope may encounter novel combinations of climate and vegetation. Also, because some
species are shifting while others are not, the avian community composition will likely change as
a result, and novel species interactions may arise [53]. As birds shift in elevation, they are also likely to
encounter non-avian species and habitats they have not interacted with before [53,54]. While these
novel interactions may be beneficial for some species, it is unknown how this will ultimately affect
sensitive populations and ecosystem dynamics. For instance, nest predation is a major factor in avian
reproductive success or failure [27,49,55], and as bird species distributions shift, birds moving into
areas where RESQ and EACH overlap may encounter higher rates of nest predation, potentially
impacting their ability to produce young. Additionally, species that are not shifting may encounter
southern and lower-elevation species that are expanding into areas left by species moving upslope or
poleward [6,13], like red-bellied woodpeckers (Melanerpes carolinus), tufted titmice (Baeolophus bicolor),
and eastern gray squirrels (Sciurus carolinensis). Species with contracting distributions, like the BTBW,
may also face increased intraspecies competition during the breeding season, as the preferred breeding
habitat decreases.

Small yearly distributional shifts may not be ecologically significant alone, and over short
timescales, the impacts of elevational shifts may not be obvious. However, as temperatures increase
over the long term, these small shifts may lead to larger scale shifts that will affect ecosystems and
individual species alike. The mean annual temperature in New England is expected to increase 1.7
to 4.4 ◦C or more by the year 2100 [19,20], and under the worst-case warming scenario, we could
see REVI and other highly plastic species shift upslope an average of almost 100 m by the year 2100.
For species occupying sites near the maximum elevation within HBEF, an upslope shift of 100 m will
likely extirpate them from the valley entirely. Precipitation and temperature increases are expected to
be more severe at higher elevations [20,21]. As a result, species at higher elevations in the region may
shift even farther than the species detailed here [12,21,54], thus exacerbating the effects of elevational
shifts and novel community interactions.

4.2. Further Research

Long-term datasets are invaluable for measuring species distribution shifts. Therefore,
the continued collection of species occupancy and abundance coupled with climate variables is
essential to understanding the impacts of climate change on montane species as well as impacts on
lower elevation species that may eventually colonize montane habitats. It is likely other local and
regional variables in addition to temperature and precipitation influence elevational distribution shifts
in our study species. Other variables should be assessed to increase our understanding of how species
distributions are changing, including vegetation shifts at transition zones, changes in winter snowpack
depth, intra and interspecies interactions, and prey distribution shifts.

HBEF supports a wide variety of avian species, including high-elevation species, despite HBEF
being at the lower end of many of their elevational distributions. Yet, as climate continues to change
and species continue to shift upslope, we may begin to lose high-elevation species within HBEF as
they move to higher elevation sites elsewhere. Mountaintop extirpation as a result of climate change
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has been the focus of only a few studies in the northeast and should be explored further to increase
our understanding of how species distributions shift with climate change.

5. Conclusions

We found almost no directional change in distributions through time for any of our songbird
or small mammal species. However, we found three of our five (60%) low-elevation bird
species (BTBW, OVEN, and REVI) responded to warm spring temperatures by shifting upslope.
All low-elevation songbird species that shifted were long-distance migrants, while those that did not
shift were year-round residents of HBEF or short-distance migrants (BCCH and HETH, respectively).
Each low-elevation migrant species responded differently to warm spring temperatures, through
upslope distribution expansion, downslope distribution contraction, or total distribution shift upslope.
BLPW was the only high-elevation songbird species that shifted with warm spring temperature
(downslope with the mean May temperature and upslope with the mean June temperature).
The remaining high-elevation bird species (MAWA, DEJU, SWTH, and WIWR) and both high- and
low-elevation mammal species (RESQ and EACH, respectively) did not shift in response to spring
temperature or precipitation. This may be due to the limited elevation range in our study site, which
may not experience the severe climate constraints found at higher elevations.
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